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Abstract: Image processing techniques are based nearly exclusively on RGB (red–green–blue) rep-
resentation, which is significantly influenced by technological issues. The RGB triplet represents a
mixture of the wavelength, saturation, and lightness values of light. It leads to unexpected chro-
maticity artifacts in processing. Therefore, processing based on the wavelength, saturation, and
lightness should be more resistant to the introduction of color artifacts. The proposed process of
converting RGB values to corresponding wavelengths is not straightforward. In this contribution, a
novel simple and accurate method for extracting the wavelength, saturation, and lightness of a color
represented by an RGB triplet is described. The conversion relies on the known RGB values of the
rainbow spectrum and accommodates variations in color saturation.

Keywords: multispectral images; color systems; RGB; wavelength reconstruction; color conversion;
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1. Introduction

Color images are widely used and processed in various fields, particularly in image
processing, where essential features are extracted. Recently developed methods for image
processing, e.g., edge detection, filtering, image enhancement, etc., process monochromatic
images. Due to technological advances, color-acquiring devices are more or less standard.
They are used in image capture and processing, computer vision, surveillance, satellites,
and aerial applications in the civil, military, and space fields. The RGB (red–green–blue)
representation is used nearly exclusively. The BMP, JPEG, or RAW formats are used for
storing and processing nearly exclusively.

It is well known that the RGB representation only captures a fraction of the natural
colors found in the rainbow spectrum [1–17].

Interestingly, accurately computing the wavelength λ of a color c given in RGB (red–
green–blue) is not a simple task. Images are captured using the Bayer array and primarily
stored in the RAW format at the best of the camera sensor’s performance. The Bayer array
is usually formed as four color filters in configurations BGGR, RGBG, or RGGB [18–21].
However, images are converted to the JPEG format due to data compression, which is
lossy and introduces some color artifacts. Wavelength representation is used in many
applications, e.g., processing of satellite multispectral images [22–24], vegetation produc-
tion [25–27], object detection [28], spatial image processing [29], and underwater image
processing [30], etc.

The common approach involves converting RGB values to HLS (hue–saturation–
lightness), HSV (hue–saturation–value), or similar color systems and estimating the wave-
length from the hue value, which tends to be quite inaccurate.

To address this issue, our contribution proposes a precise method for computing the
wavelength λ, saturation S, and lightness L by resampling the spectral rainbow curve
with 100% color saturation. The rainbow curve RGB samples are given in Table A1 with a
precision of 5 nm (the RGB table with 1 nm wavelength precision is available on request).
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To facilitate the computation, we perform preprocessing to create a look-up table
encompassing the entire wavelength range, independent of specific images. This allows
efficient run-time computation and accurate extraction of the wavelength using the look-up
table.

The proposed algorithm uses projective geometric algebra [16,31,32].

2. Projective Space and Duality

The projective extension of Euclidean space is not a part of standard computer sci-
ence courses. However, homogeneous coordinates are used in computer graphics and
computer vision algorithms, as they enable representation of geometric transformations
like translation and rotation by matrix multiplication and also are able to represent a point
in infinity.

The mutual conversion between Euclidean space and projective space in the case of
the E2 space can be achieved using:

X =
x
w

Y =
y
w

w 6= 0 (1)

where X = (X, Y), i.e., x = [x, y : w]T are coordinates in the Euclidean space E2, i.e., in the
projective space P2. The extension to the E3 is straightforward.

The geometrical interpretation of the Euclidean and the projective spaces is presented
in Figure 1.

Figure 1. Projective extension and dual space.

It should be noted that a distance of a point X = (X, Y), i.e., x = [x, y : w]T , from a line
p in the E2 is defined as:

dist =
aX + bY + c√

a2 + b2
=

ax + by + cw
w
√

a2 + b2
, p = [a, b : c]T (2)

where n = (a, b) is the normal vector (actually it is a bivector) of the line p and c is related
to the orthogonal distance of the line p from the origin. In the E3 case:

dist =
aX + bY + cZ + d√

a2 + b2 + c2
=

ax + by + cz + dw
w
√

a2 + b2 + c2
, p = [a, b, c : d]T (3)

where n = (a, b, c) is the normal vector (actually it is a bivector) of a plane ρ and d is related
to the orthogonal distance of a plane ρ from the origin.
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Principle of Duality

A line p given by two points xA = [xA, yA : wA]
T , xB = [xB, yB : wB]

T is given
using the outer product as (in this case, the outer product is formally equivalent to the
cross product):

p = xA ∧ xB =

∣∣∣∣∣∣
i j k

xA yA wA
xB yB wB

∣∣∣∣∣∣ =
∣∣∣∣∣∣

i j k
XA YA 1
XB YB 1

∣∣∣∣∣∣
[yAwB − yBwA,−(xAwB − xBwA) : xAyB − xByA]

T = [a, b : c]T

(4)

where wA > 0, wB > 0, p = [a, b : c]T are coefficients of the line p, and i, j, k are the
orthonormal basis vectors of the projective space [33]. There is a direct connection with the
geometric product, which is defined as ab = a · b + a∧ b, i.e., ab = a · b + a× b.

The projective extension of the Euclidean space enables the use of the principle of
duality for the intersection of two lines p1 and p2 in E2 using the outer product:

x = p1 ∧ p2 =

∣∣∣∣∣∣
i j k

a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ =
[b1c2 − b2c1,−(a1c2 − a2c1) : a1b2 − a2b1]

T = [x, y : w]T

(5)

This is due to the fact that lines and points are dual primitives in the P2 projective
extension [34–42].

The outer product xA ∧ xB is equivalent to the cross product xA× xB in the P2 projective
extension case and the non-normalized normal vector of the line p is n = [a, b : 0]T .

In the E3 case, the dual primitives are points and planes, i.e.,

x = ρ1 ∧ ρ2 ∧ ρ3 =

∣∣∣∣∣∣∣∣
i j k l

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

∣∣∣∣∣∣∣∣ = [x, y, z : w]T

ρ = xA ∧ xB ∧ xC =

∣∣∣∣∣∣∣∣
i j k l

xA yA zA wA
xB yB zB wB
xC yC zC wC

∣∣∣∣∣∣∣∣ = [a, b, c : d]T

(6)

It should be noted that the non-normalized directional vector s of the line p in E2 is
orthogonal to the normal bivector of the line, and it is given as:

s = (XB − XA, YB −YA) = (sX , sY) = (−b, a) , n = (a, b) (7)

The line p splits the E2 plane into two half-planes:

Fp(x) = 0 , Fp(x) = p · x = pTx = ax + by + cw (8)

where w > 0. If w→ ±∞, then the point x is close to infinity or at infinity.
It should be noted that the dot product (scalar product) is a single instruction on

the GPU.

3. Color and Color Representation

Light phenomena and color understanding have been studied for a very long time.
Around the year 165, Ptolemy described a wheel with different colors in the book Optics.
Sir Isaac Newton (1642–1726) observed the color dispersion of light exiting an optical prism
in 1666.
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Newton’s contributions in the field of color dispersion stand as an indelible mark
in the progression of scientific thought. In the mid-17th century, a series of experiments
involving prisms and light unveiled the profound relationship between white light and its
multicolored spectrum. The transformative journey of light through the prism’s material
became evident as the colors elegantly unfurled, challenging prevailing assumptions and
establishing a new paradigm. The work of Newton, characterized by precise observation
and methodical deduction, crystallized in the form of his seminal publication Optics, which
remains an enduring cornerstone of optical exploration.

The color spectrum is a continuum of colors that spans the gamut from warm reds
to violets. This spectrum, which is a specific manifestation of the wavelengths of light,
forms the essence of the chromatic diversity of the visible world. Each hue in the spectrum
corresponds to a unique range of wavelengths within the electromagnetic spectrum, a
result found in Newton’s pioneering work.

There are many ways to represent colors. They are oriented to numerical processing
or user perception, some are based on linear transformations, some are highly non-linear.
Other color systems are oriented toward the best color representation and reproduction
in DTP (sesktop publishing) studios, etc. Also, some representations are organized as a
“catalog”, e.g., color systems like Munsell and Ostwald [4,5], etc.

Probably, the most used color system in image processing is the RGB color system. It
is simple and easy to use. However, it mixes different properties of light, i.e., intensity and
chromaticity. This leads to chromaticity artifacts in some operations [43,44].

3.1. RGB Color System

The RGB color model encompasses both the luminosity and chromaticity aspects of
colors. In this context, chromaticity is represented in a two-dimensional space, covering
both the wavelength and saturation of the given color.

The wavelengths corresponding to the colors in white light are illustrated in Figure 2,
with reference wavelengths of λR = 780 nm for red, λG = 546.1 nm for green, and
λB = 435.8 nm for blue. The RGB spectral values for iso-energetic white color are provided
in Table A1 [15].

It is noteworthy that the curve for the red color exhibits partial negativity. This implies
that some colors of the rainbow spectrum are not fully represented within the RGB color
model, as the color is confined to the RGB cube in the range [0, 1]× [0, 1]× [0, 1].

Figure 2. RGB coefficients; courtesy of Marco Polo.

The RGB representation is not convenient for wavelength λ determination. Another
system recently used in color television broadcasts was YIQ color representation.
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3.2. YIQ Color System

The YIQ color system [4,5,8] splits the intensity and chromaticity as the Y represents
intensity, while IQ represents chromaticity. The YIQ color representation is converted from
RGB by a linear transformation; see Equation (9):

Y
I
Q

 =

0.2990 0.5870 0.1140
0.5959 −0.2746 −0.3213
0.2115 −0.5227 0.3112

R
G
B

 (9)

Due to the conversion linearity and the huge number of pixels to be converted, the
YIQ system would be seemingly preferred (the fragment (pixel) shaders on GPU could be
used for significant speed-up).

However, the chromatic coordinates of IQ change non-linearly with the wavelength λ
(see Figure 3) and they are too complex to easily extract the wavelength λ (see Figure 4). It
can be seen that the YIQ color system is not convenient for wavelength extraction.

Figure 3. Diagram of intensity (Y) and chromatic coordinates IQ.

Figure 4. Diagram of chromatic coordinates IQ for different wavelengths λ.
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There are also “user-oriented” color systems, e.g., HLS, HSV, HSI [45], etc., based on
human perception, where the color is represented in a cylinder-like system.

3.3. HSI Color System

The HSI (hue–saturation–intensity) color system is a user-oriented system that belongs
to the so-called HSI color model family. It was originally used to distinguish:

• Saturation (S), represents a distance of a color c from a diagonal of the RGB cube;
• Intensity (I) or lightness (L);
• Hue (H), represents human color sense. The hue is represented as an angle, i.e.,

H ∈ [0◦, 360◦), where 0◦, 120◦, 240◦ represents red (R), green (G), blue (B) colors
in RGB.

There are actually two HSI systems that have been used, the historical one introduced
by Tektronics defined by Equations (10) and (11) in two steps, or by transformation to the
HLS or HSV color systems based on RGB (with range [0, 1]) defined by Equation (13).

[
M1 M2 I1

]
=

1√
6

 2 −1 −1
0
√

3 −
√

3√
2
√

2
√

2

[R G B
]

(10)

Then,

H = arctan
M1

M2
, S =

√
3√
2

√
M2

1 + M2
2 , I =

1√
3

I1 (11)

It should be noted that the computation of the hue H is imprecise as the ratio M1
M2

might
be close to ±∞ and the hue H, represented as an angle, would be imprecise or invalid (the
function arctan2 should be used to avoid problems with ∞). The inverse transformation is
defined by Equation (12)

M1 =

√
2√
3

S sin H , M2 =

√
2√
3

S cos H , I1 =
√

3 I (12)

Another HSI formulation was given in Plataniotis [46], and applied in Ma [47]. The
conversion from RGB to HSI (range [0, 1]) is non-linear and complex.

θ = arccos
(R− G) + (R− B)

2
√
(R− G)2 + (R− B)(G− B)

H =

{
θ if B ≤ G
360◦ − θ if G > B

, S = 1− 3 min{R, G, B}
R + G + B

, I =
R + G + B

3

(13)

The inverse transformation can be found in [46].
However, both HSI representations are computationally expensive and highly non-

linear. Therefore, direct wavelength computation from RGB respecting all rainbow colors
is more appropriate for precise wavelength computation.

3.4. CIE-xy Color System

The CIE-xy color system [1,4,5,8] was created by the International Commission on
Illumination (CIE) in 1931; see Figure 5. The intensity was separated from chromaticity
using linear transformations and color mixing is simple.

To remove the intensity component, the RGB values are projected onto a unitary plane
using Equation (14). This projection ensures that the sum of the RGB values is equal to 1,
effectively normalizing the color values.
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In this projection, the chromaticity of a color is represented by the values r and g in
the r− g plane. These values together convey information about both the color’s saturation
and its corresponding wavelength.

r =
R

R + G + B
, g =

R
R + G + B

, b = 1− r− g (14)

After projecting to the unitary plane, colors form the area in Figure 5 (pseudo-coloring
was used). Colors in the r < 0 are not captured within the RGB system.

Figure 5. Colors in RGB and XYZ coordinate systems.

The rainbow curve in this context is marked by color wavelengths with 100% color
saturation. This means that each point on the curve corresponds to a specific wavelength
and exhibits maximum color saturation [48].

Figure 6 illustrates the colors available within the RGB color system. The point E
represents the position of equal energy white light, which corresponds to the chromaticity
coordinates (1/3, 1/3). The line G–E is given as:

pGE = xG ∧ xE =

∣∣∣∣∣∣
i j k
0 1 1
1
3

1
3 1

∣∣∣∣∣∣ = [
2
3

,
1
3

: −1
3
]T

pGE :
2
3

x +
1
3

y− 1
3
= 0 , 2x + y− 1 = 0

(15)

where xE = [1/3, 1/3 : 1]T is the equal energy point position, [0, 1 : 1]T is the green color
position, and , means projective equivalency. Details on projective geometric algebra use
can be found in [16,32,49] and intersection computation in [50].
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Figure 6. RGB color sectors.

It is important to note that the positions discussed in the context of chromaticity are
given in homogeneous coordinates. In this projective space representation, a point (X, Y)
in Euclidean space can be expressed as [wX, wY : w]T in projective space, where w is a
non-zero scale factor. For the purposes of this discussion, w = 1 is used.

In the diagram Figure 5, the position xG = [0, 1 : 1]T represents the pure green color.
Similarly, xE = [1/3, 1/3 : 1]T represents the equal energy white light position.

The function F(x, y)GE serves as a separation function, and it has a positive value for
colors in the red (R)–white (E)–green (G) sector of colors. This means that given a point
(x, y) in the chromaticity space, if F(x, y)GE ≥ 0, the color falls within the red–white–green
sector. On the other hand, if F(x, y)GE < 0, the color falls within the green–white–blue
sector. This function helps in determining which sector the given color belongs to. The
specific equation for F(x, y)GE is F(x, y)GE = 2x + y− 1.

The lines R–E and B–E are given similarly as:

pRE = xR ∧ xE =

∣∣∣∣∣∣
i j k
1 0 1
1
3

1
3 1

∣∣∣∣∣∣ = [−1
3

,−2
3

:
1
3
]T

pRE : −1
3

x− 2
3

y +
1
3
= 0 , x + 2y− 1 = 0

(16)

pBE = xB ∧ xE =

∣∣∣∣∣∣
i j k
0 0 1
1
3

1
3 1

∣∣∣∣∣∣ = [−1
3

,
1
3

: 0]T

pBE : −1
3

x +
1
3

y = 0 , x− y = 0

(17)

where xR = [1, 0 : 1]T , xB = [0, 0 : 1]T and xE = [1/3, 1/3 : 1]T are positions in homoge-
neous coordinates of the red, blue, and white colors in Figure 5. The colon “:” [x, y : w]T

is used intentionally to emphasize that (x, y) is a position, while w is the homogeneous
coordinate in the projective representation.

If the given color C falls within the BER color sector (the green–white–blue sector), it is
not a spectral color, meaning it does not correspond to a specific wavelength in the rainbow.
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In such cases, to determine the relevant wavelength, the complementary wavelength is
used. For light, only the sectors REG (red–white–green) and GEB (green–white–blue) are
considered valid.

The separation function F(x, y)GE is used to decide which sector the color belongs to.
If F(x, y)GE ≥ 0, it indicates that the color is in the REG sector, and if F(x, y)GE < 0, it is in
the GEB sector.

The separation function helps in determining the relevant sector for the given color
as follows:

F(x, y)GE

{
≥ 0 the sector REG is to be used
< 0 the sector GEB is to be used

Once the sector is identified, the edges of these sectors need to be labeled with the rele-
vant wavelength λ to complete the process of computing the wavelength of the given color.

4. Wavelength Computation from RGB

In the case of the sector REG (red–white–green), to determine the wavelength of the
color represented by RGB, we find the intersection point D of a ray pEC that passes from
point E (the equal energy white light position) through the point representing the color C
with the edge of the relevant color sector, i.e., the line pRG.

The intersection point xD is computed as follows:

pEC = xE ∧ xC , pRG = [1, 1 : −1]T

xD = pRG ∧ pEC = [xD, yD : wD]
T ,

(
xD
wD

,
yD
wD

) (18)

The lines representing the edges of the triangle, i.e., pRG = [1, 1 : −1]T , pGB = [1, 0 : 0]T ,
and pBR = [0, 1 : 0]T , are constant.

Similarly, in the case of the sector GEB (green–white–blue), we find the intersection
point xD as follows:

pEB = xE ∧ xB , pGB = [1, 0 : 0]T

xD = pGB ∧ pEC = [xD, yD : wD]
T ,

(
xD
wD

,
yD
wD

) (19)

After computing the intersection point xD, the relevant wavelength λ for the color
represented by RGB in the sector REG or GEB can be determined.

In the actual implementation, the RGB values of the spectrum given in Table A1 need
to be recomputed, and the relevant wavelengths on pRG and pGB are obtained. For the
REG sector, a projection to the x-axis is made, while for the GEB sector, a projection to the
y-axis is made.

The algorithm is formed by the following steps:

1. Recompute the RGB values for the spectral curve using a resampling factor ξ;
2. Compute the rainbow curve samples with 100% color saturation;
3. Uniformly resample the rainbow curve with a fine resolution using the scaling factor

ξ to obtain RGB values for each point;
4. Obtain relevant wavelengths on pRG and pGB;
5. Project the rainbow curve points to pRG (for the REG sector) and pGB (for the GEB

sector) lines to find the relevant points on the x-axis and y-axis, respectively;
6. Interpolate the wavelengths corresponding to these relevant points from the resam-

pled RGB values obtained in step 1.

For a given pixel with a color C = (r, g):

• Compute the relevant position of the point D using the projection on either pRG or
pGB, depending on whether C is in the REG or GEB sector;



Computers 2023, 12, 182 10 of 15

• Use the r or g value of the point D as an index to the table with the interpolated
wavelengths, applying the scaling factor ξ and the offset k as follows:

index = bξ rc, for REG sector

index = bξ g + kc, for GEB sector
(20)

• Compute the relevant position of the point D using the projection on either pRG or
pGB, depending on whether C is in the REG or GEB sector.

The scaling factor ξ should represent the number of sub-intervals on the x- or y-
axis, and k = ξ + 1 represents the index of the first row in the table with interpolated
wavelengths for the y-axis.

Following these steps, the relevant wavelength λ is determined for any color C = (r, g)
represented by RGB within the REG or GEB sector.

It should be noted that there are actually two saturations:

• saturation SRGB within the RGB cube, i.e., 100% means that the color of a pixel is on
the face of the RGB cube;

• saturation SCIE within the natural variety of colors, i.e., covering also colors outside
of the RGB cube.

SRGB was used in the experiments presented.

5. Experimental Results

Examples of wavelength extraction for two different image types are presented in
Figures 7–10 with the wavelength histograms and the saturation level. The first is the Alps
countryside scenery, and the second is a sunset. In both cases, the image resolution is
2048× 1536 pixels, stored in the JPG format.

(a) Original image (b) Pseudo-colored wavelengths
Figure 7. Original image and wavelengths.

(a) Image saturation (b) Wavelength histogram h(λ) = f (λ)
Figure 8. Image color saturation and wavelength histogram.
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(a) Original image (b) Pseudo-colored wavelengths
Figure 9. Original image and wavelengths.

(a) Image saturation (b) Wavelength histogram h(λ) = f (λ)
Figure 10. Image color saturation and wavelength histogram.

There is an unexpected occurrence of red colors with λ ∈ [770–780] nm (with a low
saturation) in the histograms in Figures 8b and 10b, which should be analyzed more
deeply. However, the wavelength resolution in the interval λ ∈ [750–780] nm is low; see
Figures 2 and 5.

6. Conclusions

The presented method for RGB conversion to wavelength seems promising and has
several advantages to be mentioned:

• Look-up table generation: The use of a precomputed look-up table for wavelength
conversion allows for fast and efficient processing of RGB images. Once the table is
generated, it can be used for all images without the need for repeated calculations.

• Simple run-time: The actual wavelength extraction using the look-up table involves
simple linear interpolation, which is computationally efficient and convenient for
processing large images.

• Wide range of applications: The method opens up various applications in image pro-
cessing, computer vision, and astro-image processing. Using wavelength information
instead of traditional gray-scale or RGB values can provide valuable insights and may
lead to novel image analysis techniques.

• Potential for future exploration: The potential use of the XYZ color system, which
eliminates negative values, can be an interesting direction for future research and
development. Exploring other color spaces and their implications on image processing
and analysis could yield valuable results.

Using wavelength information instead of traditional RGB or gray-scale values can offer
additional spectral information that is not present in the standard color representations.
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This can be particularly useful in applications such as identifying specific materials or
objects based on their spectral signatures, analyzing astronomical data, or studying the
interaction of light with various materials.

There is a hope that the presented approach contributes to the field of image processing,
and will be further explored and applied in various domains in the future. However, as with
any new technique, thorough testing, evaluation, and comparison with existing methods
will be important to establish its effectiveness and applicability in different scenarios.
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Appendix A. RGB Trichromatic Coefficients

To avoid numerical instability in Equation (14) the value of r in Table A1 was set for
λ = 780 [nm] as r = 0.00001.

Table A1. RGB spectral trichromatic values.

λ r g b λ r g b

380 0.00003 −0.00001 0.00117 580 0.24526 0.13610 −0.00108

385 0.00005 −0.00002 0.00189 585 0.27989 0.11686 −0.00093

390 0.00010 −0.00004 0.00359 590 0.30928 0.09754 −0.00079

395 0.00017 −0.00007 0.00647 595 0.33184 0.07909 −0.00063

400 0.00030 −0.00014 0.01214 600 0.34429 0.06246 −0.00049

405 0.00047 −0.00022 0.01969 605 0.34756 0.04776 −0.00038

410 0.00084 −0.00014 0.03707 610 0.33971 0.03557 −0.00030

415 0.00139 −0.00070 0.06637 615 0.32265 0.02583 −0.00022

420 0.00211 −0.00110 0.11541 620 0.29708 0.01828 −0.00015

425 0.00266 −0.00143 0.18575 625 0.26348 0.01253 −0.00011

430 0.00218 −0.00119 0.24769 630 0.22677 0.00833 −0.00008

435 0.00036 −0.00021 0.29012 635 0.19233 0.00537 −0.00005

440 −0.00261 0.00149 0.31228 640 0.15968 0.00334 −0.00003

445 −0.00673 0.00379 0.31860 645 0.12905 0.00199 −0.00002

450 −0.01213 0.00678 0.31670 650 0.10167 0.00116 −0.00001

455 −0.01874 0.01046 0.31166 655 0.07857 0.00066 −0.00001

460 −0.02608 0.01485 0.29821 660 0.05932 0.00037 0.00000

465 −0.03324 0.01977 0.27295 665 0.04366 0.00021 0.00000

470 −0.03933 0.02538 0.22991 670 0.03149 0.00011 0.00000

475 −0.04471 0.03183 0.18592 675 0.02294 0.00006 0.00000

480 −0.04939 0.03914 0.14494 680 0.01687 0.00003 0.00000

485 −0.05364 0.04713 0.10968 685 0.01187 0.00001 0.00000
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Table A1. Cont.

λ r g b λ r g b

490 −0.05814 0.05689 0.08257 690 0.00819 0.00000 0.00000

495 −0.06414 0.06948 0.06246 695 0.00572 0.00000 0.00000

500 −0.07173 0.08536 0.04776 700 0.00410 0.00000 0.00000

505 −0.08120 0.10593 0.03688 705 0.00291 0.00000 0.00000

510 −0.08901 0.12860 0.02698 710 0.00210 0.00000 0.00000

515 −0.09356 0.15262 0.01842 715 0.00148 0.00000 0.00000

520 −0.09264 0.17468 0.01221 720 0.00105 0.00000 0.00000

525 −0.08473 0.19113 0.00830 725 0.00074 0.00000 0.00000

530 −0.07101 0.20317 0.00549 730 0.00052 0.00000 0.00000

535 −0.05316 0.21083 0.00320 735 0.00036 0.00000 0.00000

540 −0.03152 0.21466 0.00146 740 0.00025 0.00000 0.00000

545 −0.00613 0.21487 0.00023 745 0.00017 0.00000 0.00000

550 0.02279 0.21178 −0.00058 750 0.00012 0.00000 0.00000

555 0.05514 0.20588 −0.00105 755 0.00008 0.00000 0.00000

560 0.09060 0.19702 −0.00130 760 0.00006 0.00000 0.00000

565 0.12840 0.18522 −0.00138 765 0.00004 0.00000 0.00000

570 0.16768 0.17087 −0.00135 770 0.00003 0.00000 0.00000

575 0.20715 0.15429 −0.00123 775 0.00001 0.00000 0.00000

580 0.24526 0.13610 −0.00108 780 0.00000 0.00000 0.00000
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