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Abstract: Detecting violence in various scenarios is a difficult task that requires a high degree of
generalisation. This includes fights in different environments such as schools, streets, and foot-
ball stadiums. However, most current research on violence detection focuses on a single scenario,
limiting its ability to generalise across multiple scenarios. To tackle this issue, this paper offers a
new multi-scenario violence detection framework that operates in two environments: fighting in
various locations and rugby stadiums. This framework has three main steps. Firstly, it uses transfer
learning by employing three pre-trained models from the ImageNet dataset: Xception, Inception, and
InceptionResNet. This approach enhances generalisation and prevents overfitting, as these models
have already learned valuable features from a large and diverse dataset. Secondly, the framework
combines features extracted from the three models through feature fusion, which improves feature
representation and enhances performance. Lastly, the concatenation step combines the features of the
first violence scenario with the second scenario to train a machine learning classifier, enabling the
classifier to generalise across both scenarios. This concatenation framework is highly flexible, as it
can incorporate multiple violence scenarios without requiring training from scratch with additional
scenarios. The Fusion model, which incorporates feature fusion from multiple models, obtained
an accuracy of 97.66% on the RLVS dataset and 92.89% on the Hockey dataset. The Concatenation
model accomplished an accuracy of 97.64% on the RLVS and 92.41% on the Hockey datasets with
just a single classifier. This is the first framework that allows for the classification of multiple violent
scenarios within a single classifier. Furthermore, this framework is not limited to violence detection
and can be adapted to different tasks.

Keywords: deep learning; feature fusion; transfer learning; violence detection

1. Introduction

Surveillance cameras are widely employed in supermarkets, gas stations, streets, roads,
cafes, and similar areas. They are commonly used to monitor suspicious activities, known
explicitly as anomaly behaviours. These behaviours cover a wide range of actions, such as
attacks, harassment, fights, robberies, and vandalism. Anomaly behaviour refers to actions
that deviate from the usual norms within a given context. Regarding computer vision (CV),
anomalies are identified via data patterns showing significant deviations from normal
data [1]. Regrettably, significant amounts of time and money are dedicated to monitor
and detect these activities without the support of automated systems [2]. This scenario
emphasises the growing necessity for automated systems to comprehend and evaluate
these actions. Machine learning (ML) techniques are crucial in providing efficient solutions
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for detecting anomaly behaviour, specifically for violence detection in video surveillance.
Implementing these methods can significantly mitigate the risk of social violence [3–11].
ML algorithms usually rely on dependable features to accurately represent input data and
classify output outcomes [12]. The precision of behaviour recognition is directly linked to
the quality of the chosen features. Utilising empirically based feature extraction methods
may lead to a decrease in classification accuracy. Deep learning (DL) employs neural
network (NN) models to detect and capture characteristics from input data, eliminating the
need for a distinct feature extraction stage. DL excels at efficiently classifying vast amounts
of data and incorporating intricate features [13]. DL has a significant benefit in not requiring
any preprocessing to obtain feature descriptions. The neural network can automatically
determine numerous unknown parameters through the training process. While the training
may be time-consuming, the outcome can be highly gratifying [14]. Convolution neural
networks (CNNs) are powerful DL algorithms that can extract meaningful features from
video frames and learn to classify them based on their content. Violence detection in videos
involves identifying violent actions and events, which can be carried out by training a
CNN on a labelled video dataset [6]. Training convolutional neural networks (CNNs) to
achieve good performance requires vast data. However, the high data requirement poses a
significant challenge. To address this issue, the idea of transfer learning (TL) has been widely
accepted by researchers as a potential solution [15–20]. TL is a process where a pre-trained
CNN model is employed for a new task [21]. The model is trained on a specific dataset and
it learns features for a particular task. The model is then fine-tuned for the new task, even
in a different domain. The potency of this concept has led to its widespread adoption in
various image classification and action recognition tasks. Several studies have employed
deep TL models for the automatic detection of violent scenes in videos, such as VGG16 [22],
GoogleNet [19], InceptionV3 [17], and MobileNet [8]. However, existing methods employed
in video anomaly detection frequently encounter challenges associated with generalisation,
which pertains to a model’s capability to perform effectively on unseen data. The flexible
integration of multiple models into a cohesive framework poses a common hurdle in this
field. Moreover, the scalability of video anomaly detection becomes increasingly critical
as datasets expand in size and complexity. Incorporating new datasets without requiring
extensive retraining from the ground up is vital [23]. Furthermore, achieving accurate and
discriminative feature representation remains a significant challenge in video anomaly
detection. These aforementioned challenges have been specifically targeted and addressed
by introducing novel approaches in this paper. DL has long been regarded as a complex
and opaque process, often referred to as a “black box”. Unfortunately, a significant portion
of the existing literature has failed to incorporate virtualisation techniques to elucidate
the decision-making mechanisms employed by DL systems. Consequently, this lack of
transparency can undermine trust in these systems’ final decisions [24]. In light of this
concern, the present study employs the Grad-CAM method to address these limitations
and provide a more comprehensive understanding of how DL arrives at its decisions. The
primary contributions of this paper are outlined as follows:

• A novel generalisation framework, the Concatenation model, has been proposed to
address the generalisation problem in video violence detection. This approach offers
flexibility in incorporating new datasets without requiring training for new tasks;

• An interior deep feature fusion approach, the Fusion model, has been adopted to
enhance feature representation by integrating multiple DL models;

• Three pre-trained models from ImageNet have been utilised in this paper, leveraging
TL to tackle data scarcity and improve feature representation and reduce the risk of
overfitting;

• The Fusion model attained an accuracy of 97.66% on the RLVS and 92.89% accuracy
on the Hockey datasets during interior fusion. These results show better performance
than the best existing methods;

• The proposed Concatenation model attained 97.64% accuracy on the RLVS and 92.41%
on the Hockey datasets with the same classifier. As far as we know, no existing
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method performed similar work of a single model on multiple tasks in video anomaly
detection;

• The results are further validated and explained using the Grad-CAM technique.

2. Related Works

This section thoroughly examines various methodologies employed in video anomaly
detection, explicitly emphasising the use of ML and DL techniques. The aim is to explore
the significance of computer vision (CV) algorithms in extracting features from input
video sequences and highlight the pivotal role of ML techniques and automated DL-based
approaches in accurately predicting and identifying anomalies. A TL-based DL model
was presented in [20] to identify aggressive human behaviour and detect violent scenes in
videos. The model uses the GoogleNet architecture as a source task network and is fine-
tuned on the Hockey and Movies datasets with optimised parameters. The authors of [19]
presented a three-step violence detection scheme for movies. To identify violent and non-
violent shots in a movie, we use a process that involves dividing the movie into segments
called shots, choosing a frame that stands out from each shot, and running them through a
simple deep learning model customised using TL. Finally, non-violent scenes are combined
to generate a violence-free movie that children and violent, paranoid people can watch. The
research in [6] proposed a DL architecture for video violence detection using a combination
of 2D CNN and RNN and optical flow computed from video sequences. CNN is responsible
for extracting spatial features, while RNN extracts temporal features. Additionally, the
optical flow encodes scene movements. The proposed approach has been validated on
three different databases: Hockey, Violent flow, and RLV datasets. A model called the deep
neural network was suggested in [5] for recognising violent actions carried out by a single
person, like punching and kicking. The proposed model utilises an ensemble of Mask
RCNN, key-point detection, and Long-Term Short Memory (LSTM) techniques to extract
masks and vital human points while capturing temporal information from the data. The
model utilises different techniques for better performance in detecting violent activities. The
paper [22] explored deep TL with SVM for violent video classification. The process involved
using VGGNet-16 for feature extraction, followed by SVM for classification using different
kernel functions. The results showed that SVM with linear kernel function and VGGNet-
16 had the highest accuracy compared to RBF, Polynomial kernel functions, and PCA
combined with SVM. The study referenced as [18] focused on modifying an advanced pre-
trained violence detection model specifically for detecting violence within a car. A dataset
comprising videos inside a car is created specifically for this study. Four public datasets for
violence detection are examined, and the model with fewer parameters is selected for faster
processing. TL is applied to address In-Car Violence Recognition. The model has been
trained on various violence recognition datasets like RLVS, RWF, Hockey fights, and Movies,
and its performance has been evaluated on the Car dataset. The research [25] presented
three DL-based video violence detection models. The algorithms were tested using the
AIRTLab dataset, which is designed to assess their ability to handle false positives. The
findings indicated that networks based on TL have superior generalisation levels compared
to those trained from scratch. Based on the experiments conducted, it is recommended
to keep using TL-based models for violence detection. The models proposed using 3D
CNNs have been shown to perform better than the popular 2D CNNs that were pre-trained
on ImageNet. A new system for detecting video violence was introduced in a paper
titled [10]. The system uses a combination of 2D CNNs, frame grouping, and attention
mechanisms for better spatiotemporal representation of learning. The frame grouping
technique averages input frames and groups consecutive frames, enabling the 2D CNNs
to effectively capture temporal information. Spatial and temporal attention modules are
introduced to enhance violence recognition performance. The experimental results show
that the suggested method has less computational complexity than other methods based on
3D-CNN. In [7], the authors proposed a framework for detecting and categorising violent
events from video streams using supervised learning. To identify violence, the framework
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employs 3D convolutional neural networks. It uses a pre-trained InceptionV3 model for
feature extraction and recurrent gated units for temporal processing to classify the type of
violence. The models were trained on multiple datasets, and TL was applied to improve
their performance. In a research paper titled [8], CNNs were suggested to detect violent
behaviour. Various CNN models such as MobileNet, AlexNet, VGG-16, and GoogleNet
were evaluated for their performance in the study. It concludes that the proposed MobileNet
model has the highest accuracy, lowest loss, and low computation time in detecting violence
in the Hockey fight dataset. In their article, Paper [26] presented a model for detecting
crowd violence behaviour using human contour and dynamic characteristics. The model
leverages a 3D-CNN framework to extract spatial features and LSTM to combine temporal
features. It was tested on RLVS, Hockey, and Violent flow datasets to validate the model.
A recent paper [9] introduced a new method for detecting violence in video surveillance
footage. The method uses a unique architecture that includes a spatial feature-extracting
U-Net-like network with MobileNet V2 as the encoder and LSTM for temporal feature
extraction and classification. Despite being computationally efficient and lightweight, the
method achieved excellent results. The authors in [17] employed the InceptionV3 network
to recognise abnormal human behaviour in video surveillance. The paper evaluated pre-
training and fine-tuning TL approaches in feature extraction from the input data. The
results showed that the pre-trained and fine-tuned InceptionV3 approaches effectively
classify the normal and abnormal behaviours in videos. However, fine-tuning the layers’
weights can improve the model’s performance. The fine-tuned model performed better than
the pre-trained model in terms of accuracy, recall, precision, and F1 score. A lightweight
DL model for video anomaly detection is proposed in the paper [27]. This framework
utilised a keyframe method based on histogram and dynamic thresholding to extract
the essential frames from training video clips. Furthermore, it proposed an effective
approach called Modified Spatio-Temporal (MST) for motion tracking and interest point
extraction. The pre-processed frames estimate motion tracking and create a codebook
using Discrete Wavelet Transform (DWT) combined with Principal Component Analysis
(PCA). The codebook is then fed into a Recurrent Neural Network (RNN) with an (LSTM)
classifier for sequential input and classification. A new real-time model for recognising
human violence using DL has been proposed [28]. The model is made up of two modules:
a spatial attention module that identifies spatial features and regions of interest using
frame difference between consecutive frames and morphological dilation and a temporal
attention module that identifies temporal features by averaging the RGB channels to a single
channel and inputting three frames into a 2D CNN backbone. The model’s effectiveness
was assessed in terms of efficiency, accuracy, and real-time capabilities. The literature
discusses various ways to detect abnormal video behaviour using AI algorithms. Despite
these advancements, effectively detecting anomalous videos remains a significant research
challenge. This is mainly due to existing research gaps, which are detailed below:

• The methods mentioned above have a significant issue with generalisation. They
require to be started from scratch when adding new datasets for new tasks, which
limits their ability to perform well in various situations. This problem makes anomaly
detection systems less practical and efficient. Therefore, new approaches are needed
to solve the generalisation problem without extensive retraining.

• The methodologies mentioned in [5–9,17–20,22,25,26,28] faced a shared challenge
concerning the integration of new models into the existing framework. These methods
require the existing models to be retrained from scratch, resulting in substantial
demands on computational resources and time. This computationally intensive and
time-consuming process impedes the efficiency and practicality of incorporating new
models, underscoring the need for alternative approaches to alleviate the burden of
extensive retraining, while maintaining or improving performance.

• The existing approaches outlined in references [8,17–20,22] employed a single model
for feature extraction, thereby overlooking the opportunity to achieve an enhanced
feature representation. This limitation arises due to the varying strengths exhibited
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by different models in capturing specific features or patterns within the data. By
amalgamating the capabilities of multiple models, we can establish a more inclusive
and diverse feature representation capable of encompassing a broader spectrum of
patterns and relationships in the data. Additionally, integrating multiple models
mitigates the risk of overfitting and enhances the overall generalisation capacity of
the model.

3. Materials and Methods
3.1. Datasets

Two benchmark violence datasets have been used: the Real-Life Violence Situations
(RLVS) and the Hockey datasets. The RLVS dataset [29] contains 2000 videos, equally
split into violent and non-violent activities. The videos depicting violence feature physical
confrontations in diverse environments, including streets, prisons, and schools, and the
dataset is characterised by its diversity in terms of gender, race, and age. The videos have
a high resolution ranging from 480 p to 720 p, and from 3 to 7 s. On the other hand, the
Hockey dataset [30] comprises 1000 video clips, each of size 360 × 288, and labelled into
500 instances of violent and 500 instances of non-violent events. The videos were collected
from actual hockey games played by the National Hockey League (NHL) to capture real-life
violent events, and they typically last one to two s, exhibiting a frame rate of 25 frames per
second. Sample snippets from both RLVS and Hockey datasets are shown in Figure 1. The
conducted experiments split both datasets into 80% for training and 20% for testing. In
the RLVS dataset, the violence class was partitioned into 719 video clips for training and
175 for testing. In contrast, the non-violence class was split into 800 videos for training
and 200 videos for testing. During the frame extraction process, a frame interval of 10 was
set, resulting in six frames extracted per second of the video clip. All frames from each
clip were used as input to the proposed models for the Hockey dataset. The violence class
was partitioned into 397 video clips for training and 103 video clips for testing, while the
non-violence class was divided into 399 videos for training and 101 videos for testing. The
data in the RLVS and Hockey datasets were split to establish a balanced dataset, as the
video clips have varying durations and, therefore, different numbers of frames. Table 1
details the data division followed in this work for both RLVS and Hockey datasets. It is
worth mentioning that some frames in violent videos may not depict the violent action
and can be more similar to frames from a normal video. These frames and blank and noisy
frames were manually removed during the data cleaning process to improve the overall
quality and relevance of the data utilised for training.

Table 1. Data division details of RLVS and Hockey datasets for violence and non-violence classes.

Dataset Name Class Name Group Name No. of Clips No. of Frames

RLVS
Violence

Training 719 10,659
Testing 175 2526

Non-violence
Training 800 10,661
Testing 200 2521

Hockey
Violence

Training 397 15,795
Testing 103 3950

Non-violence
Training 399 15,776
Testing 101 3882
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3.2. State-of-the-Art Architectures

Detecting anomalous behaviours has become more effective with the use of DL al-
gorithms, which are capable of handling large amounts of data and powerful processing
capabilities. These techniques can efficiently manage all stages of the modelling process,
including data preparation, architecture design, hyperparameter tuning, and architecture
parameter selection and updating. In this study, we used recent CNN models, namely
InceptionV3, Inception-ResNetV2, and Xception, in addressing the problem at hand. These
models possess several notable advantages, including their excellent performance on the
ImageNet dataset, well-designed structures for feature extraction, and the ability to obtain
both small and large features due to their varying filter size range of 1 × 1 to 7 × 7. These
models also rectified linear units and residual connections, improved the feature representa-
tion quality and addressed the gradient vanishing problem. Additionally, they use dropout
layers and global average pooling (GAP) to reduce the risk of overfitting. Furthermore,
including Batch Normalization layers speeds up the training procedure, resulting in a more
effective and efficient method of anomaly detection in videos. In the following paragraphs,
we will briefly describe the advanced models utilised in this study.

3.2.1. InceptionV3 Model

The InceptionV3 is a complex deep CNN architecture that extracts features at different
scales [31]. This architecture comprises three main building elements: the stem, Inception
blocks, and final layers. The stem block decreases the input’s spatial resolution and
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computational complexity in the following layers. Inception blocks focus on deepening
the network and comprise convolutional layers and Inception modules. The convolutional
layers deepen the network, while the Inception modules allow for learning features at
various scales. The final layers minimise the spatial resolution of the feature maps and
produce the final result, which typically includes a GAP layer and several convolutional
layers. A fully connected layer generates the final classification by passing the output from
the last layers. The InceptionV3 model’s architecture is displayed in Figure 2.
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Figure 2. The architecture of InceptionV3.

3.2.2. InceptionResNetV2 Model

The InceptionResNetV2 is a modification of the Inception framework that incorporates
residual connections [32]. This design combines the Inception module with the ResNet
approach by using residual connections, which allows the network to learn more complex
representations more quickly. The Inception module comprises multiple branches that
uses different convolutional filters to learn features at various scales. The architecture also
employs factorisation, which makes it more efficient and compact than traditional Inception
designs. The network comprises two modules: the stem and InceptionResNet blocks. The
InceptionResNet blocks increase the network’s depth, while the stem decreases the input’s
spatial resolution. For more information, refer to Figure 3.
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3.2.3. Xception Model

The Xception network uses a more efficient type of convolution called depthwise
separable convolution. This splits the convolution process into two stages: a depthwise
convolution that applies one filter to each input channel and a pointwise convolution that
combines the result of the depthwise convolution [33]. This helps to speed up processing
and minimize the number of parameters in the network. The architecture includes fully
linked layers, a GAP layer, and an optional dropout layer to reduce the feature map’s spatial
dimensions and prevent overfitting [34]. The Xception model’s architecture is shown in
Figure 4.
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In order to tailor the pre-trained CNN models to effectively address the specific prob-
lem at hand, the fully connected layers are omitted to allow for the integration of custom
layers designed for two-class classification. This adjustment provides an opportunity to
tailor the models to the specific task at hand, enhancing their performance in distinguishing
between the two classes. Figure 5 presents a schematic diagram illustrating the pre-trained
models with the inclusion of the additional classification layers. The additional layers
include the following:

• The global average pooling (GAP) layer, which reduces the dimensions of the feature
maps and produces a fixed-length feature vector by computing the average value of
each feature map;

• Flatten layer, which transforms the multi-dimensional feature maps into a one-
dimensional representation, facilitating subsequent processing;

• The dense (fully connected) layer, which aims to capture intricate patterns and estab-
lish complex relationships within the feature vector. This layer allows for comprehen-
sive feature representation through its connectivity to every element of the preceding
layer;

• The dropout layer, which aims to deactivate neurons during training to prevent
overfitting. Doing so encourages the model to learn more robust and generalisable
features;

• The SoftMax layer, which aims to assign class probabilities for the two types of human
behaviour: violence and normal behaviour. The Softmax activation function computes
the probability distribution, ensuring that the predicted probabilities sum up to 1.
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3.3. Proposed Solutions

In this study, we propose two novel approaches, namely the Fusion and Concatenation
models, to address essential issues in video anomaly detection tasks, such as flexibility,
feature representation, stability, and generalisation. These approaches aim to improve
the model’s ability to perform accurately on unseen data. Anomaly detection in videos is
challenging as it involves identifying events or behaviours that significantly deviate from
normal patterns. Therefore, the proposed solutions aim to enhance the performance of
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video anomaly detection by fusing multiple CNN models. The subsequent subsections
present the architectures of the Fusion model and Concatenation model.

3.3.1. The Architecture of the Proposed Fusion Model

The fusion model comprises three modules: a cooperative CNN module, a feature
fusion module, and a feature classification module. In Figure 6, you can see a diagram of
the Fusion model. To begin with, the cooperative CNN module extracts feature related to
violent behaviour using three pre-trained CNN models: InceptionV3, InceptionResNetV2,
and Xception. These models were trained on the ImageNet dataset and then fine-tuned
to extract features from video frames using TL. Next, the feature fusion module combines
these extracted features from the cooperative CNN into a single feature pool, which is
then used as input for feature classification. Lastly, the feature classification module uses
machine learning classifiers, such as SoftMax, Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), AdaBoost, Logistic Regression (LogReg), and Naive Bayes classifiers, to
assign class probabilities and distinguish between two types of human behaviour: violent
and normal behaviour. The weights of the features are also trained during this process. The
Fusion model offers several advantages:

• Flexibility: It offers a flexible approach for fusing multiple CNN models without
training them from scratch. Instead, the new models are trained separately on specific
datasets of interest, and the extracted features are added to the existing feature pool.
This approach saves significant time and effort, reduces the computational resources
required, and eliminates the need to retrain the pre-trained models.

• Better feature representation: It captures features from different models that can
achieve a better feature representation than a single model. This is because different
models have different strengths in capturing certain features or patterns in the data.
By fusing the strengths of multiple models, we can create a more comprehensive and
diverse feature representation that captures a wider range of patterns and relationships
in the data. Moreover, combining multiple models can reduce the risk of overfitting
and improve the model’s generalisation ability.
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3.3.2. The Structure of the Concatenation Model

The Concatenation model is composed of three major parts: the fusion module, the
concatenation module, and the feature classification module. Figure 7 depicts a schematic
diagram of the Concatenation model. The Fusion module utilises the Fusion model (without
the classification module) as a component of the Concatenation model. The Fusion model
includes three pre-trained CNN models, extracting relevant input data features. The Fusion
module uses multiple pre-trained models to capture various discriminative features from
diverse violence scenarios. In the Concatenation module, the feature pools obtained from
several datasets are concatenated into a unified feature concatenation pool that serves
as input for the feature classification module. The feature classification module trains
feature weights using SoftMax, SVM, KNN, AdaBoost, LogReg, and Naive Bayes classifiers
to assign accurate class probabilities for discriminating between two distinct categories
of human behaviour: violence and normal behaviour. The Concatenation model offers
several advantages:
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• It has improved generalisation capabilities compared to individual models trained
on specific datasets. By fusing features from different pre-trained CNN models and
incorporating dataset-specific models, the model leverages the strengths of each
component to perform well on previously unseen data, combining knowledge from
diverse violent scenarios.

• The Concatenation model has been developed with scalability, ensuring that it can
efficiently incorporate new datasets. This feature allows the model to adapt and excel
in various anomaly scenarios, including violence, arson, and road accidents, without
requiring complete retraining of the entire model. The capability to integrate new
datasets enhances the model’s versatility and practicality in real-world settings.
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3.4. Training

Our experiment involved testing five models: InceptionV3, Inception-ResNetV2,
Xception, the Fusion model, and the Concatenation model. We used two datasets, RLVS
and Hockey, and tested the models in the following scenarios:

• Training and evaluating the three models using the RLVS dataset;
• Training and evaluating the three models using the Hockey dataset;
• Assessing the performance of the proposed Fusion model, which incorporates features

from the RLVS dataset, through separate tests on both the RLVS and Hockey datasets;
• Evaluating the proposed Fusion model using features from the Hockey dataset, and

conducting separate tests on both the Hockey and RLVS datasets;
• Finally, for evaluating the proposed Concatenation model, which integrates the ex-

tracted features from both the RLVS and Hockey datasets, we performed tests specifi-
cally on the RLVS dataset. Subsequently, we also assessed the model’s performance on
the Hockey dataset.

3.5. Experiment Setup and Training Options

We used Python version 3.1 to create the model and relied on two open-source software
libraries, TensorFlow and Keras. Keras is a high-level API for neural networks in Python
and can run seamlessly on TensorFlow. For training and testing, we used a 12th Generation
Intel Core i7-1265H CPU with a clock speed of 2.30 GHz and ten cores, along with an
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NVIDIA GeForce RTX 3070 GPU with 8 GB of memory. We used specific parameter settings
during the model training process, such as a learning rate of 0.001, the ‘Adam’ optimiser,
and categorical cross-entropy as the loss function. We also utilised a batch size of 32 over
30 epochs, with a dropout rate of 0.3 and a fully connected layer consisting of 1024 neurons.

3.6. Grad-CAM

Grad-CAM is a method for interpreting DL models by creating a heatmap that high-
lights the critical areas of an input image for a particular classification decision. It uses
the output class score’s gradient concerning the network’s final convolutional layer’s fea-
ture maps, which is then weighted by the average pooling of the gradients to produce a
class-discriminative localisation map [35]. Grad-CAM has been used in various fields to
demonstrate how deep learning models make decisions. It is more accurate in localising
critical features than other saliency methods, such as Integrated gradients, Eigen-CAM,
DeepLIFT, Layer-wise relevance propagation (LRP), and Occlusion, making it superior in
visualising the critical features used by DL models for classification decisions [36]. Our
research used Grad-CAM to find regions of interest emphasised by the InceptionV3, In-
ceptionResNetV2, and Xception models. By doing so, we aimed to understand the specific
traits better and features of these models prioritised when detecting.

4. Results
4.1. Performance Evaluation Metrics

This research assessed the pre-trained and proposed solutions, evaluating their per-
formance using various metrics, including accuracy, recall, precision, and F1 score [1,13].
The accuracy metric measures the model’s ability to predict violent video behaviours based
on the test images. As the dataset used in this study was symmetric, accuracy is a critical
performance parameter for the models under investigation. The accuracy of predictions is
determined by the ratio of correctly predicted samples to the total number of predictions,
which is illustrated in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where

• TP—True positive, TN—True negative.
• FP—False positive, FN—False negative.

TP and TN predictions are correct, while FP and FN are incorrect.
Equation (2) uses recall as an evaluation measure to capture positives and determine

the number of successfully detected positive samples.

Recall =
TP

TP + FN
(2)

Precision is calculated as the ratio of correct positive results to predicted positive
results. It is a valuable measure when we require high confidence in our predictions. The
precision value can be obtained using (Equation (3)).

Precision =
TP

TP + FP
(3)

The F1 score is a metric that calculates the balanced average of recall and precision
rates. A high F1 score indicates better performance of the model. It is commonly used
when there is an uneven distribution of classes (as shown in Equation (4)).

F1score = 2 × Precision × Recall
Precision + Recall

(4)
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4.2. Evaluation of Individual Models

The three pre-trained models (InceptionV3, InceptionResNetV2, and Xception) were
evaluated for their effectiveness in violence recognition. The experimental results obtained
on the RLVS and Hockey datasets are presented in the following subsections.

4.2.1. Experiment Results on RLVS Dataset

The performance of three pre-trained models on the RLVS dataset is shown in
Figures 8–10. These figures illustrate the training and validation set losses, accuracies,
and confusion matrices. Table 2 presents the models’ accuracy, recall, precision, and F1
score. The InceptionResNet model achieved the highest accuracy and the lowest loss,
followed by Xception with the second-highest accuracy but the most significant loss. The
Inception model had the lowest accuracy but the second-lowest loss. Inception, Incep-
tionResNet, and Xception had accuracy scores of 96.0%, 96.19%, and 96.17%, respectively.
InceptionResNet had the highest precision score with 97.0%, while Xception had the highest
recall with 96.75 and an F1 score of 96.20%. Figure 11 displays the heatmap generated via
Grad-CAM for Inception, InceptionResNet, and Xception.

Computers 2023, 12, x FOR PEER REVIEW 12 of 22 
 

F1 score =  2 Precision RecallPrecision + Recall (4)

4.2. Evaluation of Individual Models 
The three pre-trained models (InceptionV3, InceptionResNetV2, and Xception) were 

evaluated for their effectiveness in violence recognition. The experimental results ob-
tained on the RLVS and Hockey datasets are presented in the following subsections. 

4.2.1. Experiment Results on RLVS Dataset 
The performance of three pre-trained models on the RLVS dataset is shown in Figures 

8–10. These figures illustrate the training and validation set losses, accuracies, and confu-
sion matrices. Table 2 presents the models’ accuracy, recall, precision, and F1 score. The 
InceptionResNet model achieved the highest accuracy and the lowest loss, followed by 
Xception with the second-highest accuracy but the most significant loss. The Inception 
model had the lowest accuracy but the second-lowest loss. Inception, InceptionResNet, 
and Xception had accuracy scores of 96.0%, 96.19%, and 96.17%, respectively. Inception-
ResNet had the highest precision score with 97.0%, while Xception had the highest recall 
with 96.75 and an F1 score of 96.20%. Figure 11 displays the heatmap generated via Grad-
CAM for Inception, InceptionResNet, and Xception. 

   
(a) (b) (c) 

Figure 8. The experimental results on the RLVS dataset using InceptionV3. (a) Loss with different 
epochs. (b) Accuracy with different epochs. (c) Confusion matrix. 

   
(a) (b) (c) 

Figure 9. The experimental results on the RLVS dataset using InceptionResnetV2. (a) Loss with dif-
ferent epochs. (b) Accuracy with different epochs. (c) Confusion matrix. 

Figure 8. The experimental results on the RLVS dataset using InceptionV3. (a) Loss with different
epochs. (b) Accuracy with different epochs. (c) Confusion matrix.

Computers 2023, 12, x FOR PEER REVIEW 12 of 22 
 

F1 score =  2 Precision RecallPrecision + Recall (4)

4.2. Evaluation of Individual Models 
The three pre-trained models (InceptionV3, InceptionResNetV2, and Xception) were 

evaluated for their effectiveness in violence recognition. The experimental results ob-
tained on the RLVS and Hockey datasets are presented in the following subsections. 

4.2.1. Experiment Results on RLVS Dataset 
The performance of three pre-trained models on the RLVS dataset is shown in Figures 

8–10. These figures illustrate the training and validation set losses, accuracies, and confu-
sion matrices. Table 2 presents the models’ accuracy, recall, precision, and F1 score. The 
InceptionResNet model achieved the highest accuracy and the lowest loss, followed by 
Xception with the second-highest accuracy but the most significant loss. The Inception 
model had the lowest accuracy but the second-lowest loss. Inception, InceptionResNet, 
and Xception had accuracy scores of 96.0%, 96.19%, and 96.17%, respectively. Inception-
ResNet had the highest precision score with 97.0%, while Xception had the highest recall 
with 96.75 and an F1 score of 96.20%. Figure 11 displays the heatmap generated via Grad-
CAM for Inception, InceptionResNet, and Xception. 

   
(a) (b) (c) 

Figure 8. The experimental results on the RLVS dataset using InceptionV3. (a) Loss with different 
epochs. (b) Accuracy with different epochs. (c) Confusion matrix. 

   
(a) (b) (c) 

Figure 9. The experimental results on the RLVS dataset using InceptionResnetV2. (a) Loss with dif-
ferent epochs. (b) Accuracy with different epochs. (c) Confusion matrix. 
Figure 9. The experimental results on the RLVS dataset using InceptionResnetV2. (a) Loss with
different epochs. (b) Accuracy with different epochs. (c) Confusion matrix.

Table 2. The experimental results of Inception, InceptionResNet, and Xception models on the
RLVS dataset.

Model Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Inception 96.0 95.88 96.18 96.0
InceptionResNet 96.19 95.32 97.0 96.16
Xception 96.17 96.75 95.65 96.20
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4.2.2. Experiment Results on Hockey Dataset

The Hockey dataset was used to train and test three individual models in this particular
case. Training and validation set losses, accuracies, and confusion matrices were measured
across several epochs to evaluate how well these models performed. Figures 12–14 show
the corresponding outcomes. Table 3 summarises these models’ performance metrics
on the Hockey dataset. The Inception model achieved 93.75% accuracy, 91.59% recall,
95.82% precision, and 93.66% F1 score. InceptionResNet model scored 88.72% for accuracy,
91.0% for recall, 87.18% for precision, and 89.05% for F1 score. At the same time, the
Xception model achieved 92.41% accuracy, 95.50% recall, 90.0% precision, and 96.69% F1
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score. These results demonstrate how well each model performed in classifying violent
behaviour in the Hockey dataset, with Inception attaining the most accuracy and precision,
Xception achieving the highest recall, and InceptionResNet displaying the lowest overall
performance. Figure 15 illustrates the heatmap produced with Grad-CAM for the Inception,
InceptionResNet, and Xception models.
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Table 3. Experimental results of Inception, InceptionResNet, and Xception models on the
Hockey dataset.

Model Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Inception 93.75 91.59 95.82 93.66
InceptionResNet 88.72 91.0 87.18 89.05
Xception 92.41 95.50 90.0 92.69
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4.3. Experimental Results of the Fusion Model

The subsequent sections demonstrate the experimental outcomes of a Fusion model
applied to the RLVS and Hockey datasets. Figure 16 shows the Grad-Cam of three DL
models, where each model focuses on a specific region of the target. Combining the three
models represents the features excellently for the ML classifiers.
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4.3.1. Experimental Results on RLVS Dataset

Our proposed Fusion model combines three CNN models, namely InceptionV3, In-
ceptionResNetV2, and Xception, all trained on the RLVS training dataset to extract features
from video frames. These features were then merged into a single pool. To classify input
frames as violent or normal, we utilised five ML classifiers: SoftMax, SVM, KNN, AdaBoost,
LogReg, and Naïve Bayes. We assessed the performance of the Fusion model on the RLVS
testing dataset. We presented the experimental results and the confusion matrices of the
ML classifiers in Table 4 and Figure 17, respectively. Our findings show that the Fusion
model outperformed all individual models in terms of accuracy, recall, precision, and F1
score, achieving respective scores of 97.66%, 98.06%, 97.28%, and 97.67%, respectively.
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Table 4. Experimental results of the proposed Fusion model on the RLVS dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Naïve Bayes 96.69 99.16 94.49 96.77
KNN 97.12 97.98 96.34 97.15
SoftMax 97.58 97.66 97.50 97.58
SVM 97.60 97.70 97.51 97.60
AdaBoost 97.60 98.06 97.17 97.61
LogReg 97.66 98.06 97.28 97.67

Computers 2023, 12, x FOR PEER REVIEW 16 of 22 
 

AdaBoost, LogReg, and Naïve Bayes. We assessed the performance of the Fusion model 
on the RLVS testing dataset. We presented the experimental results and the confusion ma-
trices of the ML classifiers in Table 4 and Figure 17, respectively. Our findings show that 
the Fusion model outperformed all individual models in terms of accuracy, recall, preci-
sion, and F1 score, achieving respective scores of 97.66%, 98.06%, 97.28%, and 97.67%, re-
spectively. 

Table 4. Experimental results of the proposed Fusion model on the RLVS dataset. 

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%) 
Naïve Bayes 96.69 99.16 94.49 96.77 
KNN 97.12 97.98 96.34 97.15 
SoftMax 97.58 97.66 97.50 97.58 
SVM 97.60 97.70 97.51 97.60 
AdaBoost 97.60 98.06 97.17 97.61 
LogReg 97.66 98.06 97.28 97.67 

 
Figure 17. Confusion matrixes of SoftMax, BSVM, KNN, AdaBoost, LogReg, and Naïve Bayes clas-
sifiers on the RLVS dataset. 

4.3.2. Experimental Results on Hockey Dataset 
We analysed the Hockey dataset to determine how effective the Fusion model is. To 

do so, we combined the extracted features from individual models trained on the Hockey 
dataset into a single feature pool. We then tested the model’s performance on the Hockey 
testing dataset using five ML classifiers. The results and corresponding confusion matrices 
can be found in Table 5 and Figure 18, respectively. The results display that the Fusion 
model outperformed the single models in terms of accuracy, recall, precision, and F1 
score. However, the Inception model had a slightly better accuracy score. 

Table 5. Experimental results of the proposed fusion model on the Hockey dataset. 

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%) 
KNN 85.88 80.31 90.60 85.15 

Figure 17. Confusion matrixes of SoftMax, BSVM, KNN, AdaBoost, LogReg, and Naïve Bayes
classifiers on the RLVS dataset.

4.3.2. Experimental Results on Hockey Dataset

We analysed the Hockey dataset to determine how effective the Fusion model is. To
do so, we combined the extracted features from individual models trained on the Hockey
dataset into a single feature pool. We then tested the model’s performance on the Hockey
testing dataset using five ML classifiers. The results and corresponding confusion matrices
can be found in Table 5 and Figure 18, respectively. The results display that the Fusion
model outperformed the single models in terms of accuracy, recall, precision, and F1 score.
However, the Inception model had a slightly better accuracy score.

Table 5. Experimental results of the proposed fusion model on the Hockey dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

KNN 85.88 80.31 90.60 85.15
SVM 92.23 93.39 91.37 92.37
LogReg 92.24 93.39 91.40 92.38
Softmax 92.29 93.65 91.28 92.45
AdaBoost 92.30 93.09 91.76 92.42
Naïve Bayes 92.89 88.06 97.60 92.59
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4.4. Experimental Results of the Concatenation Model

We conducted two experiments to evaluate the Fusion model’s ability to adapt to
different datasets. In the first experiment, the model was trained on the RLVS dataset and
we tested it on the Hockey dataset. In the second experiment, the model was trained on the
Hockey dataset and we tested it on the RLVS dataset. The evaluation of these experiments
is presented in Tables 6 and 7, respectively. Based on the results in Table 6, the model’s
ability to distinguish violent acts in various contexts and domains is limited. The Naïve
Bayes classifier achieved accuracy, recall, precision, and F1 scores of 37.19%, 3.37%, 10.76%,
and 5.14%, respectively. The SVM, SoftMax, and LogReg classifiers achieved accuracy
scores of about 41%, and recall, precision, and F1 scores of less than 3%. The KNN classifier
achieved accuracy, recall, precision, and F1 scores of 52.47%, 71.45%, 52.08%, and 60.25%,
respectively. The Adaboost classifier performed better, with accuracy, recall, precision, and
F1 scores of 58.82%, 60.81%, 58.85%, and 59.82%, respectively. However, these results still
need to be considered subpar.

Table 6. Results of the Fusion model trained on the RLVS dataset and tested on the Hockey dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

Naïve Bayes 37.19 3.37 10.76 5.14
SVM 41.50 0.43 2.55 0.73
SoftMax 41.57 0.40 2.42 0.69
LogReg 41.87 0.35 2.21 0.61
KNN 52.47 71.45 52.08 60.25
AdaBoost 58.82 60.81 58.85 59.82

The outcomes of the second experiment, outlined in Table 7, reveal that the model’s
capability to differentiate violent acts across various contexts and domains remains limited.
When utilizing the SoftMax and SVM classifiers, the accuracy, recall, precision, and F1 scores
were confined to a range between 14% and 37%. The KNN classifier achieved approximately
50% score across all metrics. Conversely, the LogReg and AdaBoost classifiers attained
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around 62% accuracy, 85% recall, 59% precision, and 69% F1 score. In contrast, the Naïve
Bayes classifier exhibited even better performance, with scores of 65.70% accuracy, 69.12%
recall, 64.73% precision, and 66.82% F1 score. Nonetheless, additional efforts are necessary
to ensure the dependability of the results and to meet the desired level of performance.

Table 7. The results of the Fusion model, which was trained on the Hockey dataset and tested on the
RLVS dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

SoftMax 37.05 16.19 27.84 20.47
SVM 37.07 14.13 26.17 18.35
KNN 51.71 57.0 51.59 54.16
LogReg 62.88 85.78 58.86 69.82
AdaBoost 62.98 85.15 59.02 69.72
Naïve Bayes 65.70 69.12 64.73 66.82

In response to the challenge of generalisation, we introduced a Concatenation model
as a solution. We evaluated the performance of the Concatenation model on the RLVS and
Hockey testing datasets. The experimental results conducted on the RLVS and Hockey
datasets are shown in Tables 8 and 9, respectively.

Table 8. Results of the Concatenated model on the RLVS dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

KNN 95.00 93.03 96.86 94.91
Naïve Bayes 97.34 98.57 96.21 97.37
SoftMax 97.60 97.78 97.43 97.60
SVM 97.60 97.70 97.51 97.60
AdaBoost 97.60 98.06 97.17 97.61
LogReg 97.64 97.98 97.32 97.65

Table 9. Results of the Concatenated model on the Hockey dataset.

Classifier Accuracy (%) Recall (%) Precision (%) F1 Score (%)

KNN 90.91 90.32 91.53 90.92
SoftMax 92.24 93.47 91.33 92.39
SVM 92.24 93.39 91.40 92.38
AdaBoost 92.25 94.0 90.93 92.44
LogReg 92.30 93.77 91.20 92.47
Naïve Bayes 92.41 96.03 89.64 92.73

According to the data presented in Table 8, SoftMax, SVM, AdaBoost, and LogReg
classifiers achieved impressive accuracy scores of about 97.60% in identifying video frames.
These classifiers also displayed excellent recall, precision, and F1 scores above 97%, indi-
cating their ability to correctly identify violent behaviour. On the other hand, the KNN
classifier had slightly lower accuracy, recall, precision, and F1 scores of 95.00%, 93.03%,
and 96.66%, respectively, but still demonstrated its efficacy in detecting violence in the
RLVS dataset. In Table 9, the Hockey dataset results showed that the Concatenation model
continued to perform well. The Naïve Bayes classifier achieved accuracy ratings of 92.41%,
96.03% recall, 89.64% precision, and 92.73% F1 score. In contrast, the KNN classifier had
a lower accuracy of 90.91%, with recall, precision, and F1 scores ranging between 90%
and 91%. Despite this, the KNN classifier performed well on the Hockey dataset, albeit
achieving lower scores than the other classifiers. Overall, the results of the Concatenation
model demonstrated its capability to handle generalization and scalability issues while
accurately identifying violent events in various scenarios. This positions it as a practical
approach for video content analysis and other relevant applications
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4.5. State-of-the-Art Analysis

Our study compared the accuracy of the proposed Fusion model to existing methods
for automatic video anomaly detection on the RLVS and Hockey datasets. We selected
these methods because they use ML and DL techniques, which align with the objective of
our research. A detailed description of these methods can be found in the related works
section of our paper. After analyzing the results from the RLVS dataset and the Hockey
dataset (presented in Tables 10 and 11, respectively), we found that our proposed Fusion
model delivered cutting-edge results. These outcomes reinforce the quality of our approach
and its substantial contribution to the current state-of-the-art in video anomaly detection.

Table 10. Comparison of the accuracy values of the proposed Fusion model with other methods
using the RLVS dataset.

Ref., Year Method Accuracy %

[29], 2019 VGG16 + LSTM 88.20
[6], 2020 ValdNet2 (GRU) 96.74
[18], 2021 Flow Gated RGB 87.25
[37], 2022 keyframe-based ResNet18 94.60
[26], 2022 HD-NET 96.50
Proposed Fusion model 97.66

Table 11. Comparison of the accuracy values of the proposed Fusion model with other methods
using the Hockey dataset.

Ref., Year Method Accuracy %

[30], 2011 STIP (HOG) + HIK 91.7

[38], 2014 Histograms of frequency-based motion
intensities + AdaBoost 90.1

[39], 2014 The variance of optical flow, SVM 86.9
[40], 2015 Motion blobs + Random Forests 82.4
[41], 2016 ViF, OViF, AdaBoost and SVM 87.5
[42], 2018 STEC + Hough Forests 82.6
[19], 2019 MobileNet 87.0
[29], 2019 VGG16 + LSTM 86.20
[18], 2021 Flow Gated RGB 92.0
[43], 2023 ConvLSTM 91.0
Proposed Fusion model 92.89

The Concatenation model obtained an impressive accuracy of 97.64% on the RLVS
dataset and 92.41% on the Hockey dataset. Moreover, this model consistently performs well
on both datasets using just one classifier, proving its effectiveness in accurately identifying
anomalies and providing a reliable solution for video anomaly recognition. Additionally,
the Concatenation model significantly improves the ability to detect violence in various
scenarios. It is worth noting that this is the first approach that combines two different
violence detection scenarios while still allowing for the inclusion of additional scenarios
without needing to start from scratch. As a result, previous studies cannot be directly
compared to our approach in terms of this specific aspect.

5. Conclusions

We have introduced a new generalisation model called Concatenation, which ad-
dresses the problem of generalisation in video anomaly detection. This flexible model can
incorporate new datasets without requiring complete retraining. Our experimental results
proved that the Fusion model outperformed other methods and achieves an accuracy
of 97.66% on the RLVS dataset and 92.89% on the Hockey dataset during model fusion.
Similarly, the Concatenation model has achieved a high accuracy of 97.64% on the RLVS
dataset and 92.41% on the Hockey dataset. Analysis through the Grad-CAM technique has
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provided additional validation and insights into our results. It is worth noting that no other
method has demonstrated similar capabilities of a single model performing multiple tasks
in video anomaly detection. Our plans include expanding our solution to multi-scenario
anomaly detection, such as fighting, stealing, and vehicle accidents.

Author Contributions: Conceptualization, S.A.J., L.A., K.A.H. and H.K.H.; methodology, S.A.J. and
L.A.; software, S.A.J. and L.A.; validation, S.A.J., K.A.H., H.K.H. and L.A.; data curation, S.A.J.,
K.A.H., H.K.H. and L.A.; writing—original draft preparation, S.A.J. and L.A.; writing—review and
editing, S.A.J., K.A.H., H.K.H. and L.A.; project administration, S.A.J., K.A.H., H.K.H. and L.A. All
authors have read and agreed to the published version of the manuscript.

Funding: Laith Alzubaidi would like to acknowledge the support received through the following
funding schemes of Australian Government: ARC Industrial Transformation Training Centre (ITTC)
for Joint Biomechanics under grant IC190100020.

Data Availability Statement: All relevant dataset links were provided in the main paper content.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jebur, S.A.; Hussein, K.A.; Hoomod, H.K.; Alzubaidi, L.; Santamaría, J. Review on Deep Learning Approaches for Anomaly Event

Detection in Video Surveillance. Electronics 2022, 12, 29. [CrossRef]
2. Amin, J.; Anjum, M.A.; Ibrar, K.; Sharif, M.; Kadry, S.; Crespo, R.G. Detection of Anomaly in Surveillance Videos Using Quantum

Convolutional Neural Networks. Image Vis. Comput. 2023, 135, 104710. [CrossRef]
3. Abd, W.H.; Sadiq, A.T.; Hussein, K.A. Human Fall down Recognition Using Coordinates Key Points Skeleton. In Proceedings of

the 2022 3rd Information Technology to Enhance E-Learning and Other Application (IT-ELA), Baghdad, Iraq, 27–28 December
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 232–237.

4. Ali, M.A.; Hussain, A.J.; Sadiq, A.T. Deep Learning Algorithms for Human Fighting Action Recognition. Int. J. Online Biomed.
Eng. 2022, 18, 71–87.

5. Naik, A.J.; Gopalakrishna, M.T. Deep-Violence: Individual Person Violent Activity Detection in Video. Multimed. Tools Appl. 2021,
80, 18365–18380. [CrossRef]

6. Traoré, A.; Akhloufi, M.A. Violence Detection in Videos Using Deep Recurrent and Convolutional Neural Networks. In
Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 154–159.

7. Gadelkarim, M.; Khodier, M.; Gomaa, W. Violence Detection and Recognition from Diverse Video Sources. In Proceedings of the
2022 International Joint Conference on Neural Networks (IJCNN), Padova, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 1–8.

8. Irfanullah; Hussain, T.; Iqbal, A.; Yang, B.; Hussain, A. Real Time Violence Detection in Surveillance Videos Using Convolutional
Neural Networks. Multimed. Tools Appl. 2022, 81, 38151–38173. [CrossRef]

9. Vijeikis, R.; Raudonis, V.; Dervinis, G. Efficient Violence Detection in Surveillance. Sensors 2022, 22, 2216. [CrossRef]
10. Kang, M.; Park, R.-H.; Park, H.-M. Efficient Spatio-Temporal Modeling Methods for Real-Time Violence Recognition. IEEE Access

2021, 9, 76270–76285. [CrossRef]
11. Abdali, A.-M.R.; Al-Tuma, R.F. Robust Real-Time Violence Detection in Video Using Cnn and Lstm. In Proceedings of the 2019

2nd Scientific Conference of Computer Sciences (SCCS), Baghdad, Iraq, 27–28 March 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 104–108.

12. Ali, L.R.; Shaker, B.N.; Jebur, S.A. An Extensive Study of Sentiment Analysis Techniques: A Survey. In Proceedings of the AIP
Conference Proceedings, Baghdad, Iraq, 8–9 December 2021; AIP Publishing: Baghdad, Iraq, 2023; Volume 2591.

13. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef]

14. Al-Khazraji, L.R.A.; Abbas, A.R.; Jamil, A.S. A Systematic Review of Deep Dream. IRAQI J. Comput. Commun. Control Syst. Eng.
2023, 23, 192–209.

15. Ali, L.R.; Jebur, S.A.; Jahefer, M.M.; Shaker, B.N. Employing Transfer Learning for Diagnosing COVID-19 Disease. Int. J. Online
Biomed. Eng. 2022, 18, 31–42. [CrossRef]

16. Abdulhadi, M.T.; Abbas, A.R. Human Action Behavior Recognition in Still Images with Proposed Frames Selection Using Transfer
Learning. iJOE 2023, 19, 47. [CrossRef]

17. Jebur, S.A.; Hussein, K.A.; Hoomod, H.K. Improving Abnormal Behavior Detection in Video Surveillance Using Inception-v3
Transfer Learning. IRAQI J. Comput. Commun. Control Syst. Eng. 2023, 23, 201–221.

https://doi.org/10.3390/electronics12010029
https://doi.org/10.1016/j.imavis.2023.104710
https://doi.org/10.1007/s11042-021-10682-w
https://doi.org/10.1007/s11042-022-13169-4
https://doi.org/10.3390/s22062216
https://doi.org/10.1109/ACCESS.2021.3083273
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.3991/ijoe.v18i15.35761
https://doi.org/10.3991/ijoe.v19i06.38463


Computers 2023, 12, 175 21 of 22

18. Durães, D.; Santos, F.; Marcondes, F.S.; Lange, S.; Machado, J. Comparison of Transfer Learning Behaviour in Violence Detection
with Different Public Datasets. In Progress. in Artificial Intelligence, Proceedings of the 20th EPIA Conference on Artificial Intelligence,
EPIA 2021, Virtual Event, 7–9 September 2021, Proceedings 20; Springer: Berlin/Heidelberg, Germany, 2021; pp. 290–298.

19. Khan, S.U.; Haq, I.U.; Rho, S.; Baik, S.W.; Lee, M.Y. Cover the Violence: A Novel Deep-Learning-Based Approach towards
Violence-Detection in Movies. Appl. Sci. 2019, 9, 4963. [CrossRef]

20. Mumtaz, A.; Sargano, A.B.; Habib, Z. Violence Detection in Surveillance Videos with Deep Network Using Transfer Learning. In
Proceedings of the 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS), Bern, Switzerland,
20–22 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 558–563.

21. Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.;
Al-Timemy, A.H. A Survey on Deep Learning Tools Dealing with Data Scarcity: Definitions, Challenges, Solutions, Tips, and
Applications. J. Big Data 2023, 10, 46. [CrossRef]

22. Imah, E.M.; Wintarti, A. Violence Classification Using Support Vector Machine and Deep Transfer Learning Feature Extraction. In
Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA), Virtual, 21–22 July 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 337–342.

23. Alzubaidi, L.; Duan, Y.; Al-Dujaili, A.; Ibraheem, I.K.; Alkenani, A.H.; Santamaría, J.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.
Deepening into the Suitability of Using Pre-Trained Models of ImageNet against a Lightweight Convolutional Neural Network in
Medical Imaging: An Experimental Study. PeerJ Comput. Sci. 2021, 7, e715. [CrossRef]

24. Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.S.; Alamoodi, A.H.; Bai, J.; Salhi, A.
A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and
Data Fusion. Inf. Fusion. 2023, 96, 156–191. [CrossRef]

25. Sernani, P.; Falcionelli, N.; Tomassini, S.; Contardo, P.; Dragoni, A.F. Deep Learning for Automatic Violence Detection: Tests on
the AIRTLab Dataset. IEEE Access 2021, 9, 160580–160595. [CrossRef]

26. Chexia, Z.; Tan, Z.; Wu, D.; Ning, J.; Zhang, B. A Generalized Model for Crowd Violence Detection Focusing on Human Contour
and Dynamic Features. In Proceedings of the 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), Taormina, Italy, 16–19 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 327–335.

27. Kotkar, V.A.; Sucharita, V. Fast Anomaly Detection in Video Surveillance System Using Robust Spatiotemporal and Deep Learning
Methods. Multimed. Tools Appl. 2023, 82, 34259–34286. [CrossRef]

28. Huillcen Baca, H.A.; de Luz Palomino Valdivia, F.; Solis, I.S.; Cruz, M.A.; Caceres, J.C.G. Human Violence Recognition in Video
Surveillance in Real-Time. In Future of Information and Communication Conference (FICC); Springer Nature: Cham, Switzerland,
2023; pp. 783–795.

29. Soliman, M.M.; Kamal, M.H.; Nashed, M.A.E.-M.; Mostafa, Y.M.; Chawky, B.S.; Khattab, D. Violence Recognition from Videos
Using Deep Learning Techniques. In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and
Information Systems (ICICIS), Cairo, Egypt, 8–9 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 80–85.

30. Bermejo Nievas, E.; Deniz Suarez, O.; Bueno García, G.; Sukthankar, R. Violence Detection in Video Using Computer Vision
Techniques. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Seville, Spain, 29–31
August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 332–339.

31. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

32. Peng, S.; Huang, H.; Chen, W.; Zhang, L.; Fang, W. More Trainable Inception-ResNet for Face Recognition. Neurocomputing 2020,
411, 9–19. [CrossRef]

33. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 1251–1258.

34. Huang, C.; Wang, X.; Cao, J.; Wang, S.; Zhang, Y. HCF: A Hybrid CNN Framework for Behavior Detection of Distracted Drivers.
IEEE Access 2020, 8, 109335–109349. [CrossRef]

35. Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why Did You Say That? arXiv 2016,
arXiv:1611.07450.

36. Saporta, A.; Gui, X.; Agrawal, A.; Pareek, A.; Truong, S.Q.H.; Nguyen, C.D.T.; Ngo, V.-D.; Seekins, J.; Blankenberg, F.G.; Ng, A.Y.
Benchmarking Saliency Methods for Chest X-Ray Interpretation. Nat. Mach. Intell. 2022, 4, 867–878. [CrossRef]

37. Bi, Y.; Li, D.; Luo, Y. Combining Keyframes and Image Classification for Violent Behavior Recognition. Appl. Sci. 2022, 12, 8014.
[CrossRef]

38. Deniz, O.; Serrano, I.; Bueno, G.; Kim, T.-K. Fast Violence Detection in Video. In Proceedings of the 2014 International Conference
on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; IEEE: Piscataway, NJ, USA, 2014;
Volume 2, pp. 478–485.

39. Huang, J.-F.; Chen, S.-L. Detection of Violent Crowd Behavior Based on Statistical Characteristics of the Optical Flow. In
Proceedings of the 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (Fskd), Xiamen, China, 19–21
August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 565–569.

https://doi.org/10.3390/app9224963
https://doi.org/10.1186/s40537-023-00727-2
https://doi.org/10.7717/peerj-cs.715
https://doi.org/10.1016/j.inffus.2023.03.008
https://doi.org/10.1109/ACCESS.2021.3131315
https://doi.org/10.1007/s11042-023-14840-0
https://doi.org/10.1016/j.neucom.2020.05.022
https://doi.org/10.1109/ACCESS.2020.3001159
https://doi.org/10.1038/s42256-022-00536-x
https://doi.org/10.3390/app12168014


Computers 2023, 12, 175 22 of 22

40. Schwarz, K.; Fragkias, M.; Boone, C.G.; Zhou, W.; McHale, M.; Grove, J.M.; O’Neil-Dunne, J.; McFadden, J.P.; Buckley, G.L.;
Childers, D. Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice. PLoS ONE 2015, 10, e0122051.
[CrossRef]

41. Gao, Y.; Liu, H.; Sun, X.; Wang, C.; Liu, Y. Violence Detection Using Oriented Violent Flows. Image Vis. Comput. 2016, 48, 37–41.
[CrossRef]

42. Serrano, I.; Deniz, O.; Bueno, G.; Garcia-Hernando, G.; Kim, T.-K. Spatio-Temporal Elastic Cuboid Trajectories for Efficient Fight
Recognition Using Hough Forests. Mach. Vis. Appl. 2018, 29, 207–217. [CrossRef]

43. Garcia-Cobo, G.; SanMiguel, J.C. Human Skeletons and Change Detection for Efficient Violence Detection in Surveillance Videos.
Comput. Vis. Image Underst. 2023, 233, 103739. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0122051
https://doi.org/10.1016/j.imavis.2016.01.006
https://doi.org/10.1007/s00138-017-0894-7
https://doi.org/10.1016/j.cviu.2023.103739

	Introduction 
	Related Works 
	Materials and Methods 
	Datasets 
	State-of-the-Art Architectures 
	InceptionV3 Model 
	InceptionResNetV2 Model 
	Xception Model 

	Proposed Solutions 
	The Architecture of the Proposed Fusion Model 
	The Structure of the Concatenation Model 

	Training 
	Experiment Setup and Training Options 
	Grad-CAM 

	Results 
	Performance Evaluation Metrics 
	Evaluation of Individual Models 
	Experiment Results on RLVS Dataset 
	Experiment Results on Hockey Dataset 

	Experimental Results of the Fusion Model 
	Experimental Results on RLVS Dataset 
	Experimental Results on Hockey Dataset 

	Experimental Results of the Concatenation Model 
	State-of-the-Art Analysis 

	Conclusions 
	References

