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Abstract: Nowadays, with the increase in cyber‑attacks, hacking, and data theft, maintaining data se‑
curity and confidentiality is of paramount importance. Several techniques are used in cryptography
and steganography to ensure their safety during the transfer of information between the two parties
without interference from an unauthorized third party. This paper proposes a modern approach to
cryptography and steganography based on exploiting a new environment: bases and protein chains
used to encrypt and hide sensitive data. The protein bases are used to form a cipher key whose
length is twice the length of the data to be encrypted. During the encryption process, the plain data
and the cipher key are represented in several forms, including hexadecimal and binary representa‑
tion, and several arithmetic operations are performed on them, in addition to the use of logic gates
in the encryption process to increase encrypted data randomness. As for the protein chains, they are
used as a cover to hide the encrypted data. The process of hiding inside the protein bases will be
performed in a sophisticatedmanner that is undetectable by statistical analysis methods, where each
byte will be fragmented into three groups of bits in a special order, and each group will be included
in one specific protein base that will be allocated to this group only, depending on the classifications
of bits that have been previously stored in special databases. Each byte of the encrypted data will be
hidden in three protein bases, and these protein bases will be distributed randomly over the protein
chain, depending on an equation designed for this purpose. The advantages of these proposed al‑
gorithms are that they are fast in encrypting and hiding data, scalable, i.e., insensitive to the size of
plain data, and lossless algorithms. The experiments showed that the proposed cryptography algo‑
rithm outperforms the most recent algorithms in terms of entropy and correlation values that reach
−0.6778 and 7.99941, and the proposed steganography algorithm has the highest payload of 2.666
among five well‑known hiding algorithms that used DNA sequences as the cover of the data.

Keywords: cyber‑attacks; hacking; security; cryptography; steganography; hexadecimal system;
protein motifs

1. Introduction
In the realmof cyber security, the intertwining concepts of cryptography and steganog‑

raphy offer a robust approach to countering the escalating threats of computer andnetwork
attacks. The historical vulnerabilities that have plagued each of these fields independently
are now being reimagined as strengths when combined.

The synergy between cryptography, the art of securing data through encryption tech‑
niques, and steganography, the science of concealing information within innocuous medi‑
ums, presents an innovative defense mechanism. This integrated strategy is particularly
pertinent as the Internet continues its rapid expansion, necessitating novel solutions to
safeguard sensitive information.

Amid this landscape, the imperative for heightened security measures is undeniable.
Web servers and individual users’ sites frequently fall victim to unauthorized compro‑
mises, often oblivious to the underlying vulnerabilities. These vulnerabilities, ranging
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from perilous SQL injection to pervasive cross‑site scripting, underscore the importance of
fortified defenses. Institutional breaches, corporate infiltrations, website hijackings, and
assaults on social media platforms pose grave risks to both confidentiality and stability.
It is within this context that data confidentiality emerges as a paramount concern across
diverse domains. OWASP’s (Open Web Application Security Project) diligent efforts, en‑
capsulated in its vigilant tracking of threats such as SQL injection and cross‑site scripting,
serve as crucial safeguards against such vulnerabilities. As technology’s trajectory forges
ahead, the unification of cryptography and steganography presents a potent solution to
these contemporary challenges. This approach is underscored by the pressing need to up‑
hold privacy and fortify systems against escalating threats, cementing the significance of
data security in the digital age [1,2].

Cryptography, also known as the science of secret writing, involves techniques and
mathematical principles to safeguard information. It focuses on data integrity, confiden‑
tiality, and authentication of the data source and entities involved. Encryption aims to
make data unreadable, ensuring secure storage and transmission across insecure networks
without compromising its content or exposing it to unauthorized parties [3–5].

Steganography and cryptography have a shared goal of safeguarding information
against attacks, but their approaches to data protection differ. Cryptography transforms
data to make it unreadable, while steganography conceals data within a cover, preserving
its original structure to remain inconspicuous.

Various methods have been developed for hiding data, including audio, video, and
images. Previous research has proposednumerous algorithms to hide sensitive datawithin
images [6–8]. However, images have limited capacity for embedding data, leading to the
storage of only small amounts of information within them [9].

To overcome the limited capacity of traditional methods, a groundbreaking approach
called “DNA steganography” was introduced in 1999. DNA, composed of four bases (ade‑
nine, guanine, cytosine, and thymine), contains intricate information about organisms. Uti‑
lizing DNA sequences as carriers enables the secure transfer of sensitive data [10,11].

DNA steganography is an evolving scientific field that focuses on concealing data
within a diverse range of DNA sequences to prevent unauthorized parties from reading
and decrypting messages. The key to its success lies in safeguarding the patterns from
potential adversaries [12–14]. This area of research was introduced in the previous years
with novel and secure solutions for data hiding and transmission.

Animeshet et al. (2018) provided an overview of the approaches utilized inDNA cryp‑
tography and their real‑time implementation [15]. The first approach is the DNA random
one‑time pad method, using non‑repeating characters arranged randomly as ciphertext
for input. While offering enhanced security, it is limited to short messages due to hard‑
ware constraints.

The second approach uses DNA chips, which represent a significant breakthrough
in DNA cryptography. These chips enable encryption and decryption operations through
biochemical processes and can encrypt images and plaintext messages. However, DNA
chip characteristics may be susceptible to alteration by external factors, potentially affect‑
ing the ciphertext.

The third approach is DNA steganography, a recently developed technique for con‑
cealing substantial data using biological strands. However, environmental changes can
lead to data contamination.

The fourth approach involves DNA fragmentation, dividing the DNA sequence into
small fragments for added protection. Additionally, the encryption of the key itself is im‑
plemented. Hybrid methods combining conventional, elliptic curves, DNA, and quantum
cryptography are also being explored.

Vantigaru (2019) [16] introduced a dual‑layered approach to enhance algorithm per‑
formance. It combined DNA steganography in the first layer and AES and DES cryptog‑
raphy through parallel programming in the second layer. The combination resulted in
20–30% less time required compared to traditional encryption methods.
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In Noura’s groundbreaking study (2022) [17], the “stego‑protein algorithm” was in‑
troduced, representing the first‑ever exploration of data hiding using protein motifs. This
algorithm stands out by providing the highest data‑hiding capacity compared to other
DNA and RNA‑based algorithms. Utilizing the 20 protein bases, the stego‑protein algo‑
rithm surpasses its DNA‑based counterparts owing to the broader spectrum of protein
bases available, which far exceeds the limited pool of four bases found in DNA and RNA.

In this paper, a method is proposed that employs protein sequences to accomplish
the cryptography and steganography processes. Protein bases are utilized to generate the
cipher key. The encrypted data is discreetly concealed and randomly distributed within
the protein chains. This evades detection of the hidden data by statistical methods and
analysis algorithms. This method offers a wide storage environment capable of accommo‑
dating a significant amount of data within the protein chains. In contrast to image‑based
hiding algorithms and the one‑time pad algorithm, which have limited storage capacity,
the proposed algorithm provides a greater capacity for data storage.

The amino acids used in previous concealment processes are biological components.
They are susceptible to physical variations that may result in unpreserved biological se‑
quence functionality. This vulnerability is eliminated in the proposed steganography tech‑
nique, where the data are securely hidden within purposefully designed protein chains.
Moreover, the proposedmethod, the steganographymethodusingprotein chains (SMUPC),
outperforms the “stego‑protein algorithm” and other algorithms in terms of correlation,
entropy, payload capacity, and clear superiority in performance. Section 2 presents some
concepts of the proteins related to the objectives of the paper before explaining the pro‑
posed method in Section 3.

2. Protein Chain
Computational biology, also known as bioinformatics, is amultidisciplinary field that

revolves around the application of computer software to both biological and non‑biological
systems. Its primary focus lies in the analysis, interpretation, and manipulation of biolog‑
ical data, with the ultimate goal of addressing various biological challenges. The term
“computational biology” stems from the convergence of information technology, biology,
and mathematics.

At its core, computational biology is dedicated to modeling biological processes, par‑
ticularly those involving genes, DNA, RNA, and protein chains. This approach proves
especially valuable when comparing genes with other protein chains or exploring interac‑
tionswithin and between different organisms. Furthermore, computational biology delves
into investigating the intricate relationship between evolution and living organisms, unrav‑
eling the underlying mechanisms that drive evolutionary changes.

A pivotal application of computational biology lies in the identification of patterns
present in DNA and protein sequences. By employing sophisticated algorithms and ana‑
lytical tools, researchers candiscern functional regionswithinDNAandproteins, shedding
light on their roles and contributions to various biological processes. This capability opens
up new avenues for drug discovery, disease diagnosis, and the exploration of fundamental
biological phenomena.

In essence, computational biology serves as a powerful ally to modern biology, har‑
nessing the potential of cutting‑edge computational techniques to gain deeper insights into
the complexities of life, laying the foundation for groundbreaking discoveries, and advanc‑
ing our understanding of the natural world [18].

In this research paper, the selection of the protein chain instead of the other well‑
known chains such as DNA and RNA sequences was driven by its broader capacity for
data hiding. Unlike DNA and RNA, which are represented by only four bases, the protein
chain boasts a more extensive repertoire of 20 bases, as indicated in Table 1. This larger
base set offers increased flexibility and versatility in the steganography process.
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Table 1. Protein bases’ names, abbreviations, and their suggested binary representation and
partitioning.

Amino Acid Code of
Amino Acid

Binary Code
(010 XX XXX)

Amino Acid Code of
Amino Acid

Binary Code
(010 XX XXX)

Matching Matching
2‑Bits 3‑Bits 2‑Bits 3‑Bits

Proline P 10
000

Aspartic acid D 00
100Histidine H 01 Leucine L 01

Alanine A 00

001

Threonine T 10
Isoleucine I 01 Glutamic acid E 00

101Glutamine Q 10 Methionine M 01
Tyrosine Y 11 Phenylalanine F 00

110Arginine R 10 010 Asparagine N 01
Cysteine C 00

011
Valine V 10

Lysine K 01 Glycine G 00
111Serine S 10 Tryptophan W 10

This method capitalizes on the inherent patterns within the binary makeup of protein
bases. The concept revolves around strategically selecting groups of bits, akin to assem‑
bling pieces of a puzzle, while meticulously preserving the overall structural coherence of
the genetic code. This delicate artistry of integration ensures that the encoded text can be
subtly enmeshed within the binary framework, effectively camouflaging the information
without raising suspicions.

The beauty of this approach lies in its ability to harness the genetic blueprint as a car‑
rier for hidden communication. As advancements inmolecular biology and bioinformatics
continue to unfold, the fusion of these disciplines paves the way for unobtrusive informa‑
tion embedding. This strategy holds potential for a wide array of applications, ranging
from covert data transmission in genetic research to secure communication channels in‑
spired by the very fabric of life itself. The choice of the protein chain as the medium for
data hiding stems from its diverse and rich composition of amino acids. Each amino acid
corresponds to a specific base within the protein sequence, and this diverse range of bases
enhances the hiding capacity of the steganography algorithm. In contrast, DNA and RNA
sequences, being limited to only four bases (adenine, cytosine, guanine, and thymine in
DNA or uracil in RNA), offer a more constrained scope for concealing information.

By leveraging the 20 bases of the protein chain, researchers can embed data in a man‑
ner that effectively hides the information while preserving the integrity of the protein’s
primary function.

This method capitalizes on the inherent patterns within the binary makeup of protein
bases. The concept revolves around strategically selecting groups of bits, akin to assem‑
bling pieces of a puzzle, while meticulously preserving the overall structural coherence of
the protein base. This delicate artistry of integration ensures that the encoded text can be
subtly enmeshed within the binary framework, effectively camouflaging the information
without raising suspicions.

The beauty of this approach lies in its ability to harness the genetic blueprint as a
carrier for hidden communication. As advancements in molecular biology and bioinfor‑
matics continue to unfold, the fusion of these disciplines paves the way for unobtrusive
information embedding. This strategy holds potential for a wide array of applications,
ranging from covert data transmission in genetic research to secure communication chan‑
nels inspired by the very fabric of life itself. This approach not only ensures a higher level
of security but also minimizes the chances of data loss or corruption during the hiding
process [19–21].

In conclusion, the utilization of the protein chain as cover data in this steganography
approach represents a strategic choice, capitalizing on its broader base and versatility to
achieve more efficient and effective data concealment.
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3. The Proposed Cryptography and Steganography Algorithms
In this section, we initially introduced the theoretical requirements that led to the

design of the proposed algorithm. The protein chain will be used in both the encryption
and ciphertext steganography processes. In the encryption process, a chain of proteinswill
be generated to be used as a key in the plaintext encryption and decryption processes. This
key will be hidden in the main protein chain, and then it will be used by the recipient to
decrypt the ciphertext.

The second use of the protein chain in this paper is in the field of steganography of
ciphertext, where it is used as cover data, which plays the role of a container that hides
the ciphertext, and then it will be sent to the recipient without raising suspicions about
this message. The process of hiding occurs inside the protein bases. Initially, the protein
bases are manipulated as binary ASCII codes. In this paper, the protein base in binary
representation is divided into three groups; consider Figure 1.
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Figure 1. Suggested partitioning of protein base in binary representation/steganography.

The first group consists of three bits (X3X2X1), the second group consists of two bits
(X5X4), and the third group consists of three bits (X8X7X6). All bases have the same pat‑
tern in the 3rd group, i.e., 010. Therefore, the last three bits from each protein base will
not be mentioned in Table 1, but the first and second groups are mentioned, in which the
operations of hiding the cipher texts will occur.

Table 1 is built based on the similarity of the first three bits of the protein bases. Figure 2
shows the groups of protein bases that share the same sequence of the first three bits, while
Figure 3 shows the other groups of protein bases that have the same sequence of the fourth
and fifth bits.

In this section, cryptography and steganography will be combined to protect data
from penetration. In this paper, four algorithms are designed to perform the information
protection process: Two of them are responsible for the encryption and decryption pro‑
cesses, and the other two are responsible for the cipher text hiding and discovery processes.
These proposed algorithms will be presented with examples to explain their work.

3.1. Encryption Algorithm
This algorithm is responsible for converting the plaintext into cipher text using a key

that is generated from a protein character set that will be used later in the processes of
steganography, transmitting the cipher text, and delivering it to the second receiving party.
Figure 4 illustrates the proposed algorithm and how it works, based on an illustrative ex‑
ample. It is written in an unprecedented manner that combines the algorithmic steps and
the illustrative example steps to understand the algorithm.

In the first step, the key that will be used in the encryption process will be randomly
generated from the protein chain, and its length will be twice the plaintext length. This key
is converted to the hexadecimal system and divided equally into two parts, K1 and K2, after
which the order of the second part of the key is reversed, as shown in the second step.
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The first part of the key, K1, is passed to the third step and combined with the plain
text after converting the plain text to the hexadecimal system and saving the result to the
H_Summatrix. The second part of the key, K2, is passed to the fourth step; each hexadeci‑
mal number of K2 is separated into two digits; multiply these two digits; the result is stored
in the Mult_Dig matrix.
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K2 
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Step1# key=Generate_protein_randomly (plain text length*2); 
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Figure 4. Block diagram and illustrative example for encryption algorithm.

H_Sum andMult_Dig are converted to binary. Their results are saved in Arr_En1 and
Arr_k2, respectively, as shown in the fifth step. Each byte of Arr_En1 and its correspond‑
ing byte of Arr_k2 are subtracted, and the result is passed to the NOT Gate to obtain the
cipher text.

3.2. Steganography Method Using Protein Chains (SMUPC)
In this paper, a new algorithm is proposed for the process of hiding the cipher text

in different random locations within the protein chain. The steps of this algorithm will be
explained in detail in this section.
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The hiding mechanism in this algorithm is based on dividing each byte of the cipher‑
text into three parts, two of which are three bits in size and one of which consists of two bits.
Three bases of the protein chain, which were previously explained in Section 2, will be gener‑
ated such that their bits in predetermined locations are the matching bits of these three bases.

This algorithm introduces a new technique in the hiding process that is based on a
variable known as a “fixed variable.” A fixed variable is a type of static variable that does
not lose its final value when the algorithm is finished but instead keeps its last value, and
this stored value is used when the algorithm is called again. This variable will have an ef‑
fective role in determining the locations where the hiding operations will start in a protein
chain, and these locations will differ each time the algorithm is called depending on the
value of a fixed variable, as we will explain while displaying the algorithm steps. In the
first use of the algorithm, this variable is devoid of any value. Figure 5 displays a block
diagram that shows how the algorithm works with an illustrative example that explains
how to hide the text that has been encrypted in Section 3.1.

The first step in this algorithm will be to initialize the protein chain, where several
random protein bases are generated according to the fixed variable value. If the fixed vari‑
able value is zero, then the protein chain generated based on the fixed variable value is
empty. This condition is executed only on the first use of the algorithm. This is because
the value of the fixed variable will change with each use of the algorithm, where it will
be increased by the plain text length, L, as shown in the last step of this algorithm, but if
the fixed variable value is equal to a Z, then Z protein bases are randomly generated and
added at the beginning of the protein chain.

In the second step, the length of the plaintext will be prepared for the hiding process
within the protein chain. It will be converted from decimal to binary and divided into
three groups of bits according to the following sequence: The first to the third bits are
stored in the first group; the second group selects bits from the fourth bit to the sixth bit;
and the last two bits of the seventh and eighth positions are stored in the third group, as
shown in Figure 6. After that, three protein bases will be generated such that their bits are
identical to the three groups mentioned previously.

For example, Figure 7 contains the byte of the plaintext length, i.e., 4, which will be
divided into three sections (S2Bits = 00, S3Bits = 000, and S3Bits = 100). To hide the binary
value of the plaintext length, a protein whose first three bits are identical to the first section
(100) will be generated. Recall Figure 2, where there are three protein bases that meet these
specifications; one of them will be chosen randomly in the process of hiding. Suppose
that the generated base is D. For the second section, i.e., (000), the same process will be
performed to generate a suitable protein base. Indeed, there are two identical options (H
and P), and one of themwill be chosen to hide this section. For illustration, P is selected as
shown in Figure 7.

The third section, i.e., (00), is only two bits long. A protein base in which the fourth
and fifth bits are identical to the third section must be selected. Recalling Figure 3, it is
noticed that there are six protein bases matching this section: A, C, D, E, F, and G. Suppose
that A is chosen for this purpose.

The three protein bases that contain the length of the plaintext are added to the protein
chain at positions Z + 1, Z + 2, and Z + 3, as shown in the third step. In the fourth step,
L protein bases are randomly generated and added along with the key to the protein chain
to complete the process of hiding the cipher key. The fifth step is responsible for setting
the locations where the ciphertext will be hidden, based on Equation (1):

New location = Old location + ((Old location/3L) + (Old location% 3 L))/2 (1)

Note: If this was the first step, i.e., i = 1, in the process of hiding the ciphertext, the value
of the old location, (x [1]), would be set equal to the current protein chain length.
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In the sixth step, the ciphertext is initialized for the hiding process. The process be‑
gins with selecting a byte from the ciphertext, and the same operations that were previ‑
ously explained in the second step will be repeated on the encrypted byte as a hash and by
creating three new protein bases called Pro_text. As shown in the seventh step, random
protein bases are generated based on the difference between the new and old locations
(x[i + 1] − x[i]) and added to the protein chain along with the Pro_text. Steps 5–7 are re‑
peated until all ciphertext bytes have been concealed. In the ninth step, a random protein
sequence of length equal to the length of the plain text is generated and added to the pro‑
tein chain for stamping.

Finally, the value of the fixed variable will be increased by the value of L. This new
value will be kept in the fixed variable and will be used later when the algorithm is reused
again to encrypt and hide a new text.

3.3. Discovery Algorithm
Figure 8 presents the function of the discovery algorithm, which extracts the cipher‑

text from the protein chain in addition to the plaintext length and the key that was previ‑
ously used in the encryption process and will be used later in the decryption process. The
extraction of hidden elements from the protein chain is affected by the value of the fixed
variable. In the first use of this algorithm, the value of the fixed variable is zero; after that,
its value changes every time the discovery algorithm is called.
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Fixed=4                    // fixed=0+4 

 

Step5#Go back to step#3 until extract all 

Ciphertext L Key 

Figure 8. Block diagram and illustrative example for discovery algorithm.
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In the first step, the length of the plaintext is extracted from the positions (Fixed_variable +
1, Fixed_variable + 2, andFixed_variable + 3) of theprotein chain. ThepositionFixed_variable+1
contains two bits that are hidden in the fourth and fifth bits of the protein character, and
each of the remaining two characters of the protein contains three bits that are hidden in the
first three positions of each byte, as shown in Figure 9. These bits are extracted from these
three locations and combined to form a single byte. The collected byte is converted from bi‑
nary to decimal to obtain the plaintext length.

In the second step, the key is located and extracted from the protein chain by using
the length of the plaintext. The plaintext length was extracted in the previous step. The
third step is responsible for identifying the locations where the ciphertext is hidden using
the same equation that has been used in Section 3.2. After that, the ciphertext is extracted
from the protein chain, as shown in the fourth step. Steps 3 and 4 are repeated until all of
the ciphertext from the protein chain has been extracted.

In the last step of the algorithm, the value of the fixed variable is updated. Its value
increases with the plaintext length that has been extracted from the protein chain in the
first step. This new value will be stored and used later when this algorithm is used again.
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3.4. Decryption Algorithm
After extracting the ciphertext, plaintext length, and cipher key from the protein chain

in the previous section, the ciphertext will be decrypted and converted into an under‑
standable plaintext using the following decryption algorithm, shown with an example in
Figure 10. The steps of this algorithm are similar to those of the encryption algorithm de‑
scribed earlier in Section 3.1, but the order of these steps is different.

In the first step, the cipher key will be converted to hexadecimal, and then it will be
divided into two equal parts, K1 and K2. The K2 matrix will undergo a reverse order of
its contents to facilitate its use later in the next stage of the algorithm. Each hexadecimal
number of K2will be split into two digits. Then, these two digits will bemultiplied by each
other, and the resulting values will be converted into binary code and stored in Arr_k2, as
shown in the second step.

Arr_k2 and the cipher text are passed to the third step. The cipher text will be passed
to the Not gate, and the result will be saved in the Bin_Cipher matrix. Each byte of Arr_k2
will be combined with its counterpart in the Bin_Cipher, and the result will be converted
to a hexadecimal number and stored in the H_En1 matrix. The final step in the decryption
algorithm is to extract the plain text by subtracting the numbers in H_En1 from the first
part of the key, K1, and converting the result to characters to obtain the plain text.
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Figure 10. Block diagram and illustrative example for the decryption algorithm.
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4. Experimental Result
In this section, we will evaluate the security of the algorithms discussed earlier and

examine whether they meet the security criteria outlined by their respective factors. We
will analyze the robustness and effectiveness of each algorithm in meeting the desired se‑
curity objectives.

4.1. Comparison Criteria for the Proposed Cryptography Algorithm
We compared the proposed algorithms with algorithms presented in [5,17,22–24] ac‑

cording to correlation coefficient and information entropy.

4.1.1. Correlation Coefficient
Calculating the correlation coefficient and assessing how well the attacker can access

the plaintext data allow the researchers to assess the encryption’s strength. The more the
result of the correlation coefficient moves away from the value of 1 and approaches the
value of −1, the cipher text’s resistance increases [25]. The correlation coefficient is calcu‑
lated using Equation (2) as follows:

CorrCoef(n,m) =
∑k
i=1(ni−E(n))(mi−E(m))

D(n) D(m)

E(n) = 1
k ∑k

i=1 ni, D(n) =
√

∑k
i=1 (ni − E(n))2

(2)

where ni represents plain text, mi represents cipher text, k denotes total characters of plain‑
text, and E(n) and E(m) represent average values of ni and mi, respectively.

The suggested algorithm achieves excellent results compared to earlier encryption
algorithms for the average correlation coefficients obtained in Table 2 for data files whose
sizes range from 1256 to 10,277 bytes.

Table 2. The averages of the correlation coefficient comparison.

Algorithms Ref [25] Ref [23] Ref [17] Ref [24] Ref [5] Proposed Algorithm

Avg. Correlation
Coefficient 0.0091 0.0021 −0.0000091 −0.002945 −0.4735 −0.6778

4.1.2. Information Entropy Analysis
This metric, known as the Shannon entropy, is used to calculate how difficult it is to

guess or crack a particular encryption algorithm. Shannon’s entropy, Equation (3), states
that the amount of information contained in a message t is proportional to the logarithm
of its size (k) [26,27]:

H(t) = −∑{0 ≤ i ≤ k− 1} p(ti ) log2 p(ti) (3)

H(t) = 8 is the best entropy that can be obtained for a message t, where P(ti) denotes the
likelihood of mi and t = t0, t1, t2, … t255. In reality, it is not possible to reach the entropy of
a perfect case, and hence a data encryption method must be able to create encryption with
as much entropy as possible in order to make it more secure. Secure cryptography must
be able to operate on the information in the entropy, and as such, the encrypted message
should not divulge any information about the original message. The results show that the
entropy value of the suggested cryptosystem method is approximately 7.99941, as shown
in Table 3.

Table 3. Entropy comparison.

Algorithms Ref [25] Ref [24] Ref [17] Ref [23] Ref [5] Proposed
Algorithm

Entropy 7.9978 7.7403 7.8199 7.90190 7.9983 7.99941
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4.2. Comparison Criteria of SMUPC Algorithm
The efficacy of a protein steganography technique is dependent on several factors,

which include but are not limited to:
• Data payload

The payload in the steganography literature, which is related to the DNA sequences,
has two definitions; it is the largest amount of bits that can be concealed by the cover me‑
dia, or it is the length of a sequence after and before steganography. This concept can be
generalized to protein sequences. Accordingly, the best value for the payload is obtained
when the payload equals zero, as determined by Equation (4).

Payload = |PSafter_stego| − |PSbefore_stego| (4)

where |〖PS〗_(after_stego)| is the length of the protein sequence to be the cover and
|〖PS〗_(before_stego)| is the length of the protein sequence after the hiding process.

According to the first definition, the payload unit for biosequences such as DNA,
RNA, and proteins is the number of bits per nucleotide (bpn). The suggested steganog‑
raphy approach takes three bytes to cover each byte of the encrypted data, S. Thus, if S is
N bytes long, then (3 ×N) protein bases really contain the bytes of S. So, Equation (5) will
be used to determine the payload:

Payload =
(N× 8 bit)

3 ×N nucleotides
=

8
3
= 2.666 bpn (5)

Table 4 shows the payload of some previous algorithms and the SMUPC algorithm;
all algorithms are DNA dependent except the state‑of‑the‑art algorithm presented in [17],
which used protein motifs to hide encrypted data.

• The cracking probability (CP)

Assessing the probability to ensure a minimum cracking probability is crucial for es‑
tablishing a secure steganography technique. This analysis involves evaluating the likeli‑
hood of an attacker successfully breaking the hidden information within the carrier. The
steganography technique can be consideredmore secure by ensuring aminimum cracking
probability, as it becomes increasingly challenging for unauthorized individuals to detect
or extract hidden data.

The SMUPC algorithm generates a cover protein sequence for each session; therefore,
there are unlimited possible sequences. But if we suppose that the range of generated se‑
quences is included in the known proteins in the NCBI archive and that there are currently
1,098,741,385 sequences of proteins accessible online in the NCBI archive, the likelihood of
correctly predicting a reference protein chain as shown in Equation (6) is:

CP =
1

Number of Protein Sequences in NCB I
=

1
1, 098, 741, 385

(6)

Additionally, and according to Table 1, the likelihood that each part of the binary
secret message will be guessed as shown in Equation (7):

1
22 bits ×

1
23 bits ×

1
23 bits =

1
256

(7)

since a secret message’s binary byte is segmented into three parts: one 2‑bit part of the first
segment and two 3‑bit parts of the second and third segments.

• Blindness

The SMUPC algorithm is a blindness technique that has the ability to operate without
transmitting the original protein chain to the recipient. The level of security is increased
by decreasing the amount of data required to be sent to the recipient.
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• Enhancing data security (encrypting)

Encrypting the confidential data before embedding it within a protein sequence offers
greater protection compared to directly embedding the original data.

• Functionality conservation

The SMUPC algorithm generates a unique cover protein sequence for every session,
meaning there is no specific functionality to preserve in the generated sequences.

• The key

The keys play a crucial role in the data‑hiding process as they enhance the steganog‑
raphy system’s security against attacks. In this algorithm, the information is encrypted
before being hidden within the protein chain. The encryption process relies on a key ran‑
domly selected from the protein bases. Moreover, two keys are used to specify the random
addresses of the bases where the hiding will take place.

The first key determines the starting address for the hiding process in the protein
chain. It hides both the cipher key and the length of the cipher key in random locations
in the chain. The second key generates additional random addresses where the ciphertext
will be hidden within the protein chain. These hiding keys remain anonymous to both the
sender and the recipient, changing each time the steganography algorithm is employed,
thereby enhancing the algorithm’s strength.

• Capacity

The capacity of data‑hiding techniques refers to the data amount that can be included in
the carrier. It is crucial for a data‑hiding technique to maintain a significant hiding capacity.

Table 4 shows the high hiding capacity and predominance of the SMUPC algorithm,
with a difference of 1.436 bpn over the nearest algorithm. This difference is noteworthy
even if the algorithm does not support preserving the function of the protein used as a
cover for the hidden data because the algorithm generates this protein and no specific
protein is adopted for this task.

Moreover, this technology incorporates the encryption of the plaintext using a cipher
key, along with two additional keys dedicated to concealing the ciphertext within the pro‑
tein chain. This approach significantly enhances the robustness and security of the tech‑
nique. Additionally, the support for blindness, where the original protein sequence is
not transmitted to the recipient, further elevates the level of security. Consequently, the
probability of cracking the hidden information becomes exceptionally low, if not virtu‑
ally non‑existent.

Table 4. Comparison between the proposed algorithm and five DNA‑based and one protein‑based
algorithm.

Approach Type of
Chain Payload Cracking

Probability
Functionality
Conservation Blindness

Enhancing
Data

Security
Using Keys Capacity

LSBase [28] DNA 0.333 Middle Yes Yes No One key Low
Abdullah [29] DNA 0.327 Low Yes Yes Yes X Low

Highly improved
DNA based

steganography
techniques [30]

DNA 1.46 Low No No Yes Two keys Middle

Data hiding using
double DNA
sequences

techniques [30]

DNA 0.574 Middle No Yes Yes X Middle

Insertion
method [31] DNA 0.58 Low No No No X Low

Complementary
method [31] DNA 0.07 Middle No No No X Low
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Table 4. Cont.

Approach Type of
Chain Payload Cracking

Probability
Functionality
Conservation Blindness

Enhancing
Data

Security
Using Keys Capacity

Substitution
method [31] DNA 0.82 High No No No X Middle

Stego‑protein
algorithm [17] Protein

1.23 in
average
case

Very low Yes Yes Yes Two keys High

Proposed Algorithm
(SMUPC) Protein 2.666 Very low No Yes Yes Three keys High

5. Conclusions
In this paper, new cryptography and steganography algorithms have been proposed

to create a secure environment for the data. This environment includes an algorithm that
uses encryption techniques to convert data from plaintext to incomprehensible, distorted
text. This was conducted by generating a cipher key from a protein chain whose length is
twice of the plaintext length to be encrypted. Both the key and the plaintext are converted
to the hexadecimal system. This keywill be divided into two parts. The first part of the key
is combined with the plaintext through the hexadecimal addition process, and the result is
converted to a binary system. As for the second part of the key, segmentation operations
will be performed on it. The single number will be divided into two numbers, between
which a multiplication operation will take place, and the result will be converted to the
binary system. Later, it will be subtracted from the previous operation result by combining
the first part of the key with the explicit text and then passing the final result via the Not
gate to obtain the cipher text. This will result in a cipher text that will be hidden within a
protein chain that is generated in a manner appropriate to the steganography process. The
principle of steganography in this research depends on several directions that influence
the security of the proposed algorithm:
1. The environment in which the information will be hidden:

In the realm of information concealment, careful selection of the environment is
paramount. This research embraces the protein chain as the optimal canvas for this pur‑
pose. The rich diversity of protein bases, constituting an expansive array, plays a pivotal
role in minimizing the recurrence of discernible patterns. This strategic maneuver, in turn,
substantially diminishes the chances of an adversary successfully deciphering the cipher
text, bolstering the security of the hidden information.

2. The hiding mechanism:

Central to this endeavor is the method employed to facilitate the covert operations.
Guiding these intricate maneuvers is an algorithm tailored to engage with binary data, a
format known for its inherent simplicity. The algorithm’s design partitions a single byte
of data into three discrete segments of bits. These individual segments find their covert
haven within the confines of a protein base. Remarkably, a mere trio of protein bases
collaboratively conceals one byte of data. This calculated approach, harmonizing data and
cover bytes, inherently ascribes a distinctive payload ratio that further underscores the
ingenuity of this methodology.

3. Distribution of hiding locations within the protein chain:

An integral facet of the steganography algorithmemployed in this paper revolves around
identifying inconspicuous locations for information embedding. A pinnacle achievement in
this regard is the introduction of unpredictable hiding sites, a feature of paramount signifi‑
cance. At the heart of this accomplishment lies the “fixed variable”, a constant that holds the
key to initiating the hidden process within the protein chain. Maintaining a static nature, this
variable ingeniously adapts its value based on the cumulative length of prior concealed texts.
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This elusive value remains shrouded in mystery for both sender and receiver, fostering an
environment of unparalleled security.

This intrinsic property fortifies the bedrock of cryptography and steganography. Aug‑
menting this approach, a mathematical formula comes into play, generating a series of ran‑
dom numbers. These numbers serve as a guide for concealing cipher text discreetly across
the expanse of the protein chain. This innovative amalgamation of fixed variables and
mathematical formulas renders the locations indiscernible, elevating the entire process’s
robustness and effectiveness.

The proposed cryptography algorithm sets itself apart by exhibiting exceptional per‑
formance in comparison to the latest cryptographic techniques. It excels in terms of entropy
and correlation, which are essential measures of randomness and unpredictability. This
heightened level of entropy ensures that the encrypted data remains highly secure and
resistant to decryption attempts by unauthorized individuals.

Similarly, the proposed steganography algorithm surpasses its predecessors by achiev‑
ing the highest payload capacity. Thismeans that it can effectively embed a larger volume of
data within the protein sequence. This enhanced data‑hiding capacity is invaluable for con‑
cealing substantial amounts of information while maintaining the cover medium’s integrity
and appearance.

A standout feature of the steganography algorithm is its support for blindness. By
operating without the need to transmit the original cover medium, it enhances security
further. The secret keys used for hiding the information remain anonymous to both the
sender and recipient, providing an additional layer of protection against potential attacks.
This anonymity ensures that even if the steganography process is intercepted, the hidden
data remains well guarded and difficult to decipher.

In conclusion, the combined strength of the proposed cryptography and steganogra‑
phy algorithms creates a formidable data security framework. The high entropy, superior
performance, and extensive data‑hiding capacity make these algorithms highly effective
in safeguarding sensitive information against various threats, providing a robust solution
for ensuring data confidentiality and integrity.

The sender and the recipient can agree on the encryption key through any key man‑
agement mechanism, and they can use the encapsulation method, as the protein capsule
contains the hidden ciphertext, the key, and the length of the hidden data because it is
important for performing the discovery process calculations and updating the value of the
“fixed variable”.

Author Contributions: Conceptualization, N.A.M.; Methodology, N.A.M.; Software, N.A.M.; For‑
mal analysis, H.K.K.; Investigation, H.K.K.; Resources, H.K.K.; Writing—original draft, N.A.M.;
Writing—review & editing, N.A.M.; Supervision, H.K.K. Both authors contributed equally. All au‑
thors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The protein sequences that can be used as cover data can be obtained
from the NCBI GenBank website. (https://www.ncbi.nlm.nih.gov) (accessed on 11 February 2023).
Additionally, all the proposed algorithms are presented in the manuscript for future research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naser, S.M. Cryptography: From ancient history to now, its applications and a new complete numerical model. Int. J. Math.

Stat. Stud. 2021, 9, 11–30.
2. Kiruba, B.; Saravanan, V.; Vasanth, T.; Yogeshwar, B.K. OWASP Attack Prevention. In Proceedings of the 2022 3rd International

Conference onElectronics and SustainableCommunication Systems (ICESC), Coimbatore, India, 17–19August 2022; pp. 1671–1675.
[CrossRef]

3. Ramya, T.; Ramya, G.; Raju, K.; Ravi, J.; Verma, D. An Efficient AES Algorithm for Cryptography Using VLSI. ECS Trans. 2022,
107, 5605.

https://www.ncbi.nlm.nih.gov
https://doi.org/10.1109/ICESC54411.2022.9885691


Computers 2023, 12, 166 19 of 19

4. Giuseppe, A.; Danilo, F.; David, N.; Daniele, V. Match Me if You Can: Matchmaking Encryption and Its Applications. J. Cryptol.
2021, 34, 16.

5. Mawla, N.A.; Khafaji, H.K. An Ultra Lightweight Cipher Algorithm For IoT Devices and Unmanned Aerial Vehicles. In
Proceedings of the 2023 International Conference On Cyber Management And Engineering (CyMaEn), Bangkok, Thailand,
26–27 January 2023; pp. 240–244. [CrossRef]

6. Chi, H.‑X.; Chang, C.‑C.; Wang, X.; Lin, C.‑C. Hiding and Extracting Important Information in Encrypted Images by Using the
Transformation of All Possible Permutations and VQ Codebook. Electronics 2022, 11, 3475. [CrossRef]

7. Ali, A.; Abdelmotalib, A. A secure image steganography using LSB and double XOR operations. IJCSNS Int. J. Comput. Sci.
Netw. Secur. 2020, 20, 139–144.

8. Manish, C.; Gaurav, K.S. Enhanced Image Steganography Technique for Hiding Multiple Images in an Image Using LSB Tech‑
nique. TEST Eng. Manag. 2020, 83, 30561–30565.

9. Malathi, P.; Gireeshkumar, T. Relating the Embedding Efficiency of LSB Steganography Techniques in Spatial and Transform
Domains. Procedia Comput. Sci. 2016, 93, 878–885. [CrossRef]

10. Na, D. DNA steganography: Hiding undetectable secret messages within the single nucleotide polymorphisms of a genome and
detecting mutation‑induced errors. Microb. Cell Factories 2020, 19, 128. [CrossRef] [PubMed]

11. Khalifa, A. A Blind DNA‑Steganography Approach using Ciphering and Random Sequence Splicing. In Proceedings of the 2020
10th International Conference on Information Science and Technology (ICIST), Bath, London, Plymouth, UK, 9–15 September 2020;
pp. 86–90. [CrossRef]

12. Dimopoulou, M.; Antonini, M.; Barbry, P.; Appuswamy, R. Image storage onto synthetic DNA. Signal Process. Image Commun.
2021, 97, 116331. [CrossRef]

13. Dejian, F.; Shuliang, S. A New Scheme for Image Steganography based on Hyperchaotic Map and DNA Sequence. J. Inf. Hiding
Multimed. Signal Process. 2018, 9, 392–399.

14. Farahat, M.A.; Abdo, A.; Kassim, S.K. A Systematic Literature Review of DNA‑Based Steganography Techniques: Research
Trends, Data Sets, Methods, and Frameworks. In Digital Transformation Technology, Lecture Notes in Networks and Systems;
Magdi, D.A., Helmy, Y.K., Mamdouh, M., Joshi, A., Eds.; Springer: Singapore, 2022; Volume 224. [CrossRef]

15. Animesh, H.; Soumya, G.; Sampad, J. A review onDNA‑based cryptographic techniques. Int. J. Netw. Secur. 2018, 20, 1093–1104.
[CrossRef]

16. Vantigaru, S.; Basavaraj, R. Two layer encryption schemes for symmetric algorithms using DNA Sequences. Int. J. Math. Comput.
Sci. 2019, 14, 953–964.

17. Mawla, N.A.; Khafaji, H.K. Protein Motifs to Hide GA‑Based Encrypted Data. Sci. Program. 2022, 2022, 1846788. [CrossRef]
18. Raghuvanshi, D.; Solanki, V.; Arora, N.; Hashmi, F. Computational of Bioinformatics. Int. J. Trend Sci. Res. Dev. 2022, 4, 128–131.
19. Abdullah, A.A.; Ali, S.H.; Mstafa, R.J.; Haji, V.M. Image steganography based on DNA sequence translation properties. UKH J.

Sci. Eng. 2020, 4, 15–26. [CrossRef]
20. Khalifa, A. A Secure Steganographic Channel Using DNA Sequence Data and a Bio‑Inspired XORCipher. Information 2021, 12, 253.

[CrossRef]
21. Ho, B.; Seonwoo, M.; Hyun‑Soo, C.; Sungroh, Y. DNA Privacy: Analyzing Malicious DNA Sequences Using Deep Neural Net‑

works. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 888–898.
22. Muhammad, M.H.; Sagheer, A.; Muhammad, A.K.; Ehab, M.M. A Novel and Efficient Multiple RGB Images Cipher Based on

Chaotic System and Circular Shift Operations. IEEE Access 2020, 8, 146408–146427.
23. Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. GIFT: A small present‑Towards reaching the limit of lightweight

encryption. In Proceedings of the Cryptographic Hardware and Embedded Systems (CHES), Taipei, Taiwan, 25–28 September 2017.
24. Shen, H.; Shan, X.; Xu,M.; Tian, Z. ANewChaotic Image EncryptionAlgorithmBased on Transversals in a Latin Square. Entropy

2022, 24, 1574. [CrossRef]
25. Xu,M.; Tian, Z. A novel image encryption algorithm based on self‑orthogonal Latin squares. Optik 2018, 171, 891–903. [CrossRef]
26. Zhang, X.; Zhang, L. Multiple‑image encryption algorithm based on chaos and gene fusion. Multimed. Tools Appl. 2022, 81,

20021–20042. [CrossRef]
27. Wang, T.; Ge, B.; Xia, C.; Dai, G. Multi‑Image Encryption Algorithm Based on Cascaded Modulation Chaotic System and Block‑

Scrambling‑Diffusion. Entropy 2022, 24, 1053. [CrossRef]
28. Khalifa, A.; Helmy, H.S. Hiding secret Information in DNA sequences using silent mutations. Br. J. Math. Comput. Sci. 2015, 11, 1.

[CrossRef]
29. Abdullah, A.; Eesa, A.S.; Abdo, A.M. New Data Hiding Approach Based on Biological Functionality of DNA Sequence. Sci. J.

Univ. Zakho 2019, 7, 184–189. [CrossRef]
30. Al‑Harbi, O.A.; Alahmadi, W.E.; Aljahdali, A.O. Security analysis of DNA based steganography techniques. SN Appl. Sci. 2020,

2, 172. [CrossRef]
31. Shiu, H.; Ng, K.; Fang, J.; Lee, R.; Huang, C. Data hidingmethods based upon DNA sequences. Inf. Sci. 2010, 180, 2196–2208. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CyMaEn57228.2023.10051100
https://doi.org/10.3390/electronics11213475
https://doi.org/10.1016/j.procs.2016.07.270
https://doi.org/10.1186/s12934-020-01387-0
https://www.ncbi.nlm.nih.gov/pubmed/32527315
https://doi.org/10.1109/ICIST49303.2020.9202036
https://doi.org/10.1016/j.image.2021.116331
https://doi.org/10.1007/978-981-16-2275-5_31
https://doi.org/10.6633/IJNS.201811_20(6).10
https://doi.org/10.1155/2022/1846788
https://doi.org/10.25079/ukhjse.v4n2y2020.pp15-26
https://doi.org/10.3390/info12060253
https://doi.org/10.3390/e24111574
https://doi.org/10.1016/j.ijleo.2018.06.112
https://doi.org/10.1007/s11042-022-12554-3
https://doi.org/10.3390/e24081053
https://doi.org/10.9734/BJMCS/2015/19561
https://doi.org/10.25271/sjuoz.2019.7.4.647
https://doi.org/10.1007/s42452-019-1930-1
https://doi.org/10.1016/j.ins.2010.01.030

	Introduction 
	Protein Chain 
	The Proposed Cryptography and Steganography Algorithms 
	Encryption Algorithm 
	Steganography Method Using Protein Chains (SMUPC) 
	Discovery Algorithm 
	Decryption Algorithm 

	Experimental Result 
	Comparison Criteria for the Proposed Cryptography Algorithm 
	Correlation Coefficient 
	Information Entropy Analysis 

	Comparison Criteria of SMUPC Algorithm 

	Conclusions 
	References

