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Abstract: Power and energy efficiency are among the most crucial requirements in high-performance
and other computing platforms. In this work, extensive experimental methods and procedures
were used to assess the power and energy efficiency of fundamental hardware building blocks
inside a typical high-performance CPU, focusing on the dynamic branch predictor (DBP). The
investigation relied on the Running Average Power Limit (RAPL) interface from Intel, a software
tool for credibly reporting the power and energy based on instrumentation inside the CPU. We
used well-known microbenchmarks under various run conditions to explore potential pitfalls and
to develop precautions to raise the precision of the measurements obtained from RAPL for more
reliable power estimation. The authors discuss the factors that affect the measurements and share the
difficulties encountered and the lessons learned.
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1. Introduction and Motivation

In the past, the primary interest of computer architects and software developers was
in increasing performance. However, in the last couple of decades, power and energy
efficiency have emerged as major requirements in computing. One of the reasons that led
to power and energy efficiency interest in computing is the need to reduce the power con-
sumption of HPC to achieve exascale supercomputers [1]. This goal motivated researchers
to investigate some fundamental software building blocks, such as sorting, matrix multipli-
cation, and shortest path algorithms, commonly used in HPC applications to find the factors
that affect power consumption. Fundamental hardware components, such as arithmetic
units, caches, and dynamic branch predictors (DBPs), should raise similar concerns.

There are several reasons to be interested in the energy behavior of DBP in particular.
Firstly, it is an essential component in all modern CPUs used in HPC. Secondly, conditional
jump instructions represent a significant percentage of most typical application instructions.
Modern CPUs use DBP to guess the direction and the target address of jump instructions
which means a heavy utilization of DBP during any application run. Consequently, any
power savings related to this component may yield substantial benefits in the total energy
consumption. Thirdly, according to some statistics, DBPs account for 10 to 40 percent of
CPU dynamic power consumption [2]. Fourthly, the recent DBP security issues appeared,
and the solutions proposed to mitigate them need investigation from a power and energy
perspective [3–5]. Lastly, the lack of research papers studying DBP and its security issues
from a power and energy perspective provided an extra justification for this investigation.

As many research papers pointed out, software style impacted program performance
and power and energy consumption of computing devices in significant ways [6]. The im-
pact demanded that developers find easy ways to measure power consumption. Intel’s
RAPL (Running Average Power Limit Energy Reporting), introduced in modern processors,
is one of the most prominent software tools that can report the power in different CPU
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domains [7]. However, using RAPL for credibly measuring power consumption needs
some precautions to avoid noise in measurement [8].

This report presents the researchers’ experiences in empirically assessing the power
consumption on the Intel Haswell platform and the precautions recommended to raise the
credibility of measurements obtained from the RAPL tool. The main contribution of the
research described here is the development of a methodology suitable for an empirical study
of the power characteristics of DBP, a hardware building block. Previous work focused
on the empirical study of software building blocks or studying DBP using simulation
or mathematical models [9]. Power and energy consumption are directly related to the
hardware. The DBP is a complex piece of hardware that can be difficult to simulate in detail
or model adequately to get reasonable consumption assessments. Haswell incorporated
separate sensors within the processor to measure power consumption at different levels,
such as the package, individual cores, and DRAM providing real-time feedback on power
usage and allowing for reliable higher-resolution readings of power consumption [8]
without needing additional external devices like power meters or infrared imaging of
relevant regions in the silicon. Therefore, RAPL on Haswell CPUs offered improved
granularity in power measurement compared to previous generations. Empirical power
estimation, using fine-grained instrumentation, such as in Haswell-class and later CPUs,
should provide realistic insights into the power consumption of such complex units as
DBP without getting into the complexity of mathematical modeling or detailed simulation
that requires a deep understanding of the internal workings and interactions with other
components. RAPL provides an attractive alternative.

The paper’s organization is as follows. Section 2 is a literature review of pertinent
previous work. Section 3 provides the background of the DBP and RAPL. Section 4
explores various factors that affect RAPL readings and act as sources of noise. Section 5
examines the different ways to acquire credible results from RAPL tools available in Linux.
Section 6 presents the results of extensive experimentation to develop a methodology
for relevant empirical investigations. Section 7 highlights the main findings, precautions,
and experiences. Section 8 offers concluding remarks and suggestions for future work.

2. Literature Review

Researchers have recognized the impact of software on computing power and energy
consumption since the 1990s. Mehtal et al. [10] proposed software techniques to reduce the
energy consumption of a processor using compiler optimization, such as loop unrolling
and recursion elimination. They also studied how various algorithms and data structures
affect power and energy usage.

Capra and Francalanci [11] considered the design factors that influence the energy
consumption of applications that perform the same functionality but have different de-
signs. They experimentally assessed the energy efficiency of management information
systems. In their study, they found that the application design has a significant impact on
energy consumption.

Sushko et al. [12] studied the effect of loop optimization on the power consumption of
portable computing devices. They applied their study to ARMv8 architectures. Their study
showed the power efficiency gained by fitting data in the cache and using parallelization
for loop optimization.

Al-Hashimi et al. [13] studied the effects of three iteration statements on the system
power consumption: For loop, While loop, and Do-While. For each case, they measured
the average time, power, and temperature; the value of the maximum temperature; and the
number and percentage of times reached. They found that the For loop was the most
power-efficient and that the While loop had the worst power efficiency.

Abulnaja et al. [14] analyzed bitonic mergesort compared to an advanced quicksort on
the NVIDIA K40 GPU for power and energy efficiency. They introduced the factors that
affected power consumption and studied those that led to higher energy and power con-
sumption, such as data movement and access rate. They concluded that bitonic mergesort
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is inherently more suitable for the parallel architecture of the GPU. This study triggered
the investigation of more software building blocks, such as spanning tree algorithms and
binary search algorithms.

Aljabri et al. [15] conducted a comprehensive empirical investigation into the power
efficiency of mergesort compared to a high-performance quicksort on the Intel Xeon CPU
E5-2680 (Haswell), which is more commonly used in HPC and has more accurate sensor
readings than the previous-generation Intel Xeon E5-2640 CPU (Sandy Bridge) utilized
in an earlier work [16]. The research was motivated by the fact that divisions by powers
of two, the most frequent operation in mergesort, may be performed by a power-efficient
barrel shifter. Mergesort’s procedure applies a divide-and-conquer strategy in which the
original list (or array) is divided, recursively, into two equal lists. The study concluded that
mergesort had an advantage over quicksort in terms of power efficiency, with comparable
time efficiency between the two algorithms. This study encouraged more investigation
into other algorithms that perform similar tasks but have different time efficiencies from a
power perspective.

NZ Oo et al. [17] studied Strassen’s matrix multiplication algorithm from a perfor-
mance vs. power perspective. In their study, they found a way to enhance performance and
reduce energy consumption by using loop unrolling on the recursive level of the algorithm
to minimize cache misses and increase the data locality. They claimed that their method
increased performance by 93 percent and reduced energy consumption by 95 percent.

Jammal et al. [18] studied the power efficiency of three matrix multiplication algo-
rithms, i.e., definition-based, Strassen’s divide-and-conquer, and improved divide-and-
conquer, on the Intel Xeon CPU E5-2680. The main finding of this work is that the fastest
divide-and-conquer algorithm is power-efficient only for small matrix sizes. For larger
sizes, the definition-based algorithm turned out to be more power-efficient. They also
studied the effect of every cache level miss on power consumption.

Some of the previous works hypothesized that some algorithms are superior to others
that are equivalent in performing tasks in terms of power efficiency, but others have an
advantage in terms of time efficiency. Those studies involved factors that play significant
roles in power saving to open the door for further investigation that could lead to a balance
between power and time efficiency.

In this work, the researchers were motivated by previous work to investigate funda-
mental hardware building blocks inside the CPU, rather than software building blocks,
from a power and energy perspective. A recent study by Lastovetsky et al. [19] introduced
methods usable as building blocks to scale HPC computing systems to achieve energy and
performance optimization on the application level. They required the energy profiling of
computational components. They introduced some precautions to reduce the noise in the
measurements. While their study considered the whole system, this study was concerned
with individual CPU components, specifically the dynamic branch predictor. Table 1 is a
summary that captures the essence of the literature review and highlights the contribution
of our study.

Table 1. Literature review summary.

Authors Year Findings Tool

Mehtal et al. 1990
Compiler optimization has a positive im-
pact on software energy consumption of
RISC processors.

Simulation method-
ology

Capra and Francalanci 2012 Application design has a significant im-
pact on energy consumption.

External hardware
device (Ammeter
clamps)

Sushko et al. 2017
Power efficiency was gained by fitting
data in the cache and using paralleliza-
tion for loop optimization.

Mathematical
model based on
software structure
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Table 1. Cont.

Authors Year Findings Tool

Al-Hashimi et al. 2017
The For loop is the most power-efficient,
and the While loop has the worst power
efficiency.

RAPL of Sandy
Bridge

Abulnaja et al. 2018
Bitonic mergesort has a power and en-
ergy consumption advantage over ad-
vanced quicksort in a GPU.

NVIDIA Nsight Vi-
sual Studio

Aljabri et al. 2019 Mergesort had an advantage over quick-
sort in terms of power efficiency. RAPL of Haswell

NZ Oo et al. 2021
Using loop unrolling on the recursive
level of Strassen’s matrix multiplication
algorithm reduces power consumption.

Intel Power Gadget

Jammal et al. 2023

The fastest divide-and-conquer al-
gorithm is power-efficient only for
small matrix sizes. For larger sizes,
the definition-based algorithm turned
out to be more power-efficient.

RAPL of Haswell

Lastovetsky et al. 2023 Accurate component-level energy run-
time measurements were made. Energy meter

In contrast to these works, which primarily focused on software building blocks and
algorithms, this study shifts the emphasis toward hardware functionality units,

such as the DBP. Our main research contribution is the development of RAPL measurement
precautions for more reliable energy and power measurements.

3. Background

This section introduces the background of dynamic branch prediction and the RAPL
interface.

3.1. Dynamic Branch Predictor

One of the most efficient features used inside modern CPUs to attain high performance
by increasing Instruction-Level Parallelism (ILP) is speculative execution. This feature
overcomes stalling in some of the CPU’s processing stages caused by structure, control,
or data hazards. Branch instructions are a major source of such dependencies. For instance,
in conditional branch instructions, the CPU needs to decode and execute a branch instruc-
tion before it decides whether to take the branch by jumping to the branch instruction target
address or continuing to the next instruction in the program sequence [20], which causes
a control hazard. According to most program statistics, branch instructions represent 10
to 20 percent of all program instructions in most workloads. This percentage warrants
careful treatment by a CPU. Otherwise, it would dramatically degrade the performance.
Modern CPUs use speculative execution to predict the outcome of branch instructions
before decoding them.

In general, branch prediction techniques fall into the static or dynamic category. Static
branch prediction mechanisms append a bit to every branch instruction operation code
(OPCODE) during program compilation, which indicates whether the branch is taken or not
taken by assigning a zero or one to indicate taken or not taken, respectively. The criterion
that the static decision depends on is the nature of the branch instruction. For instance,
unconditional branch and backward conditional instructions are always guessed as “taken”,
while forward conditional instructions are guessed as “not taken” [1].

In contrast, in dynamic branch prediction (DBP) techniques, the predictor collects
information about a branch instruction while running a program. This information is a sort
of history that describes the behavior of the branch instruction during its last number of
executions (taken or not taken and its target address). This information is used the next
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time the branch instruction is executed to guess its direction (taken or not taken). Dynamic
prediction is much more accurate than static prediction [21].

The DBP is a principal component of speculative execution resources [22]. It is a
digital circuit called the Dynamic Branch Unit (DPU), used in pipelined CPUs to guess
the direction and the target address of the branch instructions to improve the flow in the
pipeline. The DBP has a significant positive impact on CPU performance. The DBP is
accessed almost every cycle on average: i.e., it consumes more power and dissipates more
heat. So, any improvement in its power consumption leads to significant CPU power and
energy efficiency [21,22].

Various DBP techniques have emerged in the last three decades. Examples are two-
level predictions, interference-reducing predictors, neural predictors, and hybrid branch
predictors. In the earlier era of DBP design, the primary goal of these techniques was to
improve the CPU’s performance, which requires a balance between the accuracy of DBP
prediction and the access time to it. However, power and energy awareness became a
crucial goal for all modern CPU components, including the DBP. So, modern CPUs require
trade-offs in design between cost, performance, and power consumption [21].

Even though the exact organization of a CPU’s DBP is not usually made public,
industrial implementations of DBPs generally consist of five major parts that distinctly
influence power consumption [23].

1. The Branch Target Buffer (BTB) is a set-associative cache that stores the target ad-
dresses of conditional and unconditional branch instructions.

2. The Indirect Branch Target Buffer (IBTB) is a direct-mapped cache that stores the
target addresses of indirect branch instructions.

3. A loop predictor is a set-associative cache to predict the outcome of conditional branch
instructions with loop behavior.

4. A global predictor is a set-associative cache to predict the outcome of the general
conditional branch instructions.

5. A bimodal predictor is a two-bit saturating counter.

In this research, the authors hypothesized that just as there are factors that affect
power consumption in some algorithms, there are factors that affect power consumption in
the DBP. The research interest of this work was in investigating these factors and trying
to stress different DBP components to identify components that may contribute more to
power consumption than others.

3.2. Intel RAPL

RAPL (Running Average Power Limit), a feature of Intel CPUs since the advent of
Sandy Bridge architecture, performs two tasks. The first and foremost task is limiting the en-
ergy consumption of different components in CPUs to protect them from the thermal effect.
The second task is to provide a software tool to measure the power and energy consumed
by these different components during the program run in fine granularity [24,25].

RAPL is a valuable feature that was first introduced by Intel in the Sandy Bridge
architecture in 2011 to help researchers and system designers obtain estimates of the power
and energy of different domains inside and outside the CPU, namely, a whole package,
core, un-core, and DRAM [26]. Several free tools can benefit from the RAPL interface. Some
of these tools can run under Windows and Mac operating systems, and others run under
the Linux operating system.

In modern Intel CPUs, RAPL can limit and measure the power and energy of different
levels (or domains) in the CPU. The biggest domain is called the package domain. This
is where RAPL can control and measure the power and energy consumed by the whole
CPU socket. The second domain, Power Plane 0 (PP0), deals with the total power/energy
consumed by all cores in the CPU. The third one, called the DRAM domain, can measure
the power and energy consumed by the dynamic RAM. The fourth domain, Power Plane
1 (PP1), can measure the power and energy consumed by the GPU. Another one, called
PSys, was introduced in some Intel CPUs to control and monitor the power and thermal
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impacts of previous domains in addition to eDRAM (the embedded DRAM integrated into
the same CPU between cache level 3 and DRAM) and some other features in recent Intel
CPUs, such as CPU System Agent, responsible for handling I/O between the components
and the CPU. However, not all Intel CPUs support all of the mentioned domains. One
needs to review documents to check the power domains that a CPU supports [26].

Several researchers who investigated CPU power and energy consumption confirmed
the effectiveness of the RAPL tool. Giardino et al. used RAPL registers to calculate the
average power for SPEC CPU2006 benchmarks through the perf_events command in
Linux [27]. Khan et al. demonstrated the accuracy of RAPL in power and energy estimation.
They also showed some weaknesses and limitations of RAPL [8]. Desrochers et al. found
that power and energy estimation for DRAM using RAPL matches the power and energy
estimated by WattsUpPro, a power measurement device, with a constant offset between
RAPL and WattsUpPro [24]. Zhang and Hoffmann evaluated RAPL as a power limit control.
They concluded that RAPL achieves good power stability in stable applications running
for a long time [28].

Khan et al. compared the power consumed by the CPU package, as measured by
an external power measurement device connected to the wall socket, to the power con-
sumption measured by RAPL. Their results demonstrated a strong correlation between
the measurement obtained from the wall socket and that obtained from RAPL. Khan and
Nizam introduced a comprehensive study about the accuracy of RAPL measurement.
They concluded that RAPL was effective and a suitable alternative to external hardware
devices [7].

This work focuses on RAPL to measure the power and energy consumption of different
CPU domains in servers, workstations, desktops, and laptops, as well as how to obtain
more accurate and, hence, reliable readings.

Before RAPL, CPUs predicted and estimated power based on a group of performance
counters that could model predictive estimations of power and energy. RAPL, on the other
hand, is an onboard digital meter (a set of counters) that gives better estimates of the power
and energy compared to the old way that depended only on modeling since it also relies
on embedded voltage regulators. RAPL exposes readings to the software layer through a
group of registers classified as Machine-Specific Registers (MSRs). Reading from or writing
to these registers can be performed through two privileged machine instructions: RDMSR
and WRMSR. The RAPL MSRs are updated approximately every millisecond in Intel CPUs.
So, if any MSR multiple reading operations happen during one millisecond, the read values
will be the same and considered old values [28].

4. Noise Sources in RAPL Power Estimations

The term noise, in the context of this work, is used in a specific way. It refers to any
one of the many factors that can affect the accuracy of the intended measurements. It stems
chiefly from the experimental environment but can also come from the methods and the
tools behind the readings. Understanding the sources of noise can help obtain accurate
readings for the intended measurement. This section elaborates on these factors.

4.1. CPU Temperature

The most important environmental factor is the CPU temperature. It is well known
that there is a strong correlation between the CPU temperature and RAPL readings [8]. This
makes the surrounding temperature one of the most important causes of noise. The rise
in CPU temperature could happen because of the lab temperature, the heavy utilization
of the CPU, poor ventilation inside the computer case, or a faulty CPU heat dissipation
system [15].

Therefore, the experiment must be conducted in an appropriately air-conditioned
environment to maintain a reasonable and consistent ambient temperature. Otherwise,
RAPL readings will be affected by the ambient CPU temperature [15]. Reducing the effect
of CPU-heavy utilization will be discussed in a later sub-section.
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4.2. Cross-Core Thermal Exchange Effect

The rise in temperature in a core can significantly influence its neighbor cores. This
effect arises from the thermal exchange between adjacent physical cores in the same die.
The heat seeps from one core to a neighboring one and may become a source of RAPL
reading noise [15].

4.3. Using Multiple Cores for One Application

Some applications utilize multiple cores by design to leverage their performance in
parallel. However, the power estimation of applications that run on many cores leads to
inaccurate results when using RAPL hardware counters. With such applications, we can
set the affinity to restrict them to running on one core [15].

4.4. Context Switching between Applications and Operating System

Most applications need services from the operating system, such as file management
and input/output device control. These services are not a part of the program whose
energy we intend to estimate. So, we need to deal with these services carefully to ensure
that measurements of the power consumption are purely due to the application. However,
some researchers may consider these services a part of the application and find it necessary
to include them in a proper estimate of an overall power consumption [15].

4.5. Hyper-Threading Technology

Unlike multithreaded applications, where an application can run on different cores,
the hyper-threading feature in some modern CPUs allows threads from many programs
to run on the same processor core. Hence, one physical core can function as two logical
cores. The hyper-threading feature can be enabled or disabled (enabled by default) by the
user from the BIOS. For accurate power estimation, hyper-threading should be turned off
to ensure that no other applications than the one we intend to measure share the same
physical core [26].

4.6. Operating System Issues

When we use the RAPL interface to measure the power consumed by software, the op-
erating system plays a significant role in the accuracy of results. The effect of the operating
system on the readings comes in several manifestations.

Many functions managed by the operating system run in the background and con-
tribute to the inaccuracy of power estimation. These functions should be isolated from the
application one way or another [15].

When an application deals with a lot of data from the secondary storage, the loading
operation consumes a large amount of power that is not due to the actual application logic.
For accurate results, in this case, the data could be embedded in the application file to be
stored in the main memory when the application loads [15].

Another feature controlled by the operating system is the power management feature
in all operating systems today. The technology tries to implement the most efficient power
mode for as long as possible. For an accurate comparison of power and energy between
two codes, this feature needs to be disabled [29].

4.7. Compiler Optimization Issues

Compilers come with many optimization options. These options may affect RAPL
readings. For instance, loop unwinding increases program speed by reducing the number of
loop windings. If we estimate the power for an application compiled with loop unwinding
optimization, the measured power will be for a modified code that may not match the
original logic [30].

Compiler power consumption optimization is another feature supported by popular
compilers. When we try to estimate the power consumption of a code apart from the
architecture or platform, it is more accurate to avoid such optimization to measure the
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native attributes of the code [31]. However, when the optimization exploits features specific
to the architecture or platform and the code targets that environment, then it is reasonable to
apply that optimization. In general, for accurate power measurement, power optimization
options should be turned on or off depending on the purpose of measurement, whether it
targets the code itself or the platform, or both.

5. Accurate RAPL Power and Energy Estimation in Linux

In this section, the authors introduce RAPL interface tools available in Linux to read
MSR registers. They also discuss policies and procedures to obtain more accurate results.

5.1. Linux RAPL Tools

Several tools are available for Linux that can deal with the RAPL interface. The follow-
ing only lists the most common ones.

The TurboStat tool is a part of the Linux kernel (needs root privilege) that can read
RAPL information from MSR registers and gives information about the power consumption.
It comes with many options that control the display of the information and the period time
of information collection [32].

PowerTOP is another Linux tool that can estimate the power consumption in a CPU,
GPU, or DRAM. It has several options that define the domain of measurement and the way
the information is displayed [33].

The perf tool is one of the easiest Linux power profilers. By using it, one can collect
power from various CPU domains (package, core, GPU, Psys). Perf can be used as a
primary interface to the kernel to report a set of RAPL counters [34].

5.2. Containerization Technology

Containers were originally Linux features. So, the majority of them are Linux-based.
Containerization is a way to isolate the application by creating a run environment around
it called a container. All application dependencies, such as libraries, configuration files,
and binaries, are encapsulated with the application in a standardized lightweight envi-
ronment called a container. This operation helps the applications behave consistently
when run on different hosts or multiple times on the same host. To assess an application
on different hosts, it is better to containerize it to compare the effect of different archi-
tectures or platforms on power consumption. This measure is perhaps also useful when
comparing the power consumption or performance of algorithms or applications on the
same machine. In this research, we tested, experimentally, the effect of containerization on
RAPL measurements.

Many engines, such as Docker, CoreOS RKT, and runC, are available to containerize
any application [35]. The popular Docker container was used for experimentation.

5.3. CPU Affinity Setting

In multicore CPUs, the applications running can use, by default, any set of available
cores. To restrict an application to specific cores, one should set the processor affinity to the
intended cores. For a more accurate power estimate for an application, it should be set to
run on one core. The measurement accuracy is due to the fact that restricting the application
to one core minimizes context switching and CPU migration, eliminates hyper-threading,
and reduces cache misses. Rises in these factors represent major sources of noise in RAPL
readings. The taskset command is used to set the processor affinity in Linux [36].

5.4. Dedicating One Core to an Application

Setting affinity for a CPU core ensures that the application runs on a single core, but it
is not enough to ensure that no other programs share the application on the core. To assign
a processor core exclusively to an application, the operating system must reserve the core
from the beginning (during boot operation) to prevent the system scheduler from using it
for any process. After that, the reserved core can be assigned to the application whose power
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consumption is under measurement. To reserve a core in Linux, the isolcpus = 〈CPU_ID〉
kernel parameter is added to the GRUB boot loader configuration file [37]. For instance,
to reserve core number 5 in the CPU, one must add isolcpus = 5 to the GRUB file and reboot
the system to activate the configuration. More than one core can be reserved by separating
their numbers by commas [38].

5.5. Minimizing CPU-Heavy Utilization Effect

To average a large number of RAPL readings, researchers run the application many
times to take the average of the results. Although this operation can give more reliable
results by minimizing the noise effect, it could become a source of thermal noise because
of the heavy utilization of the CPU. To make the most of averaging and avoid the heavy
utilization effect, the CPU can take a short rest time between runs. One can automate this
operation in Linux by using loop commands in a script file and inserting a Linux sleep
command at the end of every run loop to pause the next iteration for a while and give the
CPU a chance to cool down [15].

5.6. CPU Power Management Feature

The power management feature in modern CPUs can affect the RAPL reading results.
So, the authors strongly recommend disabling this feature to obtain a more accurate power
estimate for the targeted application. This feature can be disabled or enabled from the
BIOS [15].

5.7. Minimizing Script Command Effect

In the case of running the application repeatedly to take the average power, the com-
mands in the script file used to automate this operation are not a part of the application
code to be measured. One may ignore the effect of script commands if the application
execution time is too long compared to the script code. However, this effect may become
significant and a source of inaccurate results for applications with small code footprints.
Repeating the application to form a long enough code can mitigate scripting effects [25].

5.8. DBP Power Estimation Methodology

In contrast to the previously mentioned research papers in the literature, in which
the goal was to investigate the fundamental software building blocks, the aim of this
research was to examine the dynamic branch predictor (DBP) as a fundamental hardware
component.

Since RAPL can directly measure the power consumed by all CPU cores (PP0 domain),
a way to estimate the power consumed by the DBP alone is needed. The DBP is accessed
almost every cycle [21], so interest is focused on the dynamic power of the DBP. As a
simplification, the authors assume that the DBP’s dynamic power is caused only by the
branch instructions, and any other DBP access contributes to the DBP’s static power. As the
aim is not the estimation of all power consumed by the DBP (static and dynamic power),
we assume that the equation for PP0 domain power can be formulated as follows:

TotalCoresPower = DynamicDBPPower + RestCoresComponentPower, (1)

where Total Cores Power represents the total power measured by RAPL for the PP0 domain,
Dynamic DBP Power is the dynamic power consumed by the DBP, and Rest Cores Component
Power is the static and dynamic power consumption of the rest component in the PP0
domain, including the DBP’s static power.

To do so, a set of microbenchmarks that enable the isolation of the DBP’s dynamic
power consumption from the rest of the PP0 domain need to be applied. Furthermore,
the microbenchmarks must stress the main components of the DBP to amplify the dynamic
power consumed by each one. Then, linear regression modeling can be applied to the col-
lected data to calculate the dynamic power consumed by the DBP and its major component.
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The appropriate branch-related events should be selected with matching microbenchmarks
to build a suitable linear regression equation.

6. Experiments and Results

This section reports on the experiments that examined the points discussed in
Sections 4 and 5 on the factors that influence the accuracy of RAPL. In the experiments
described in this section, four benchmarks of the PARSEC suite, described in Table 2, were
used to test different aspects of the CPU’s power. The PARSEC benchmark is an open-source
suite comprising a collection of parallel and multithreaded benchmark programs designed
to simulate real-world computing scenarios. It includes applications such as fluid dynamics
solvers, image processing algorithms, and data mining applications [39]. The suite is
widely used to compare and evaluate different shared-memory architectures, programming
models, and optimization techniques, including power modeling [40]. Table 3 describes
the machine used for the experiments. The researchers opted for a lightweight version of
Ubuntu to help further reduce OS-related environmental noise. Lubuntu uses the LXQt
environment, designed to be resource-efficient. It utilizes fewer system resources, such as
CPU and RAM, which leads to lower power consumption. It also reduces system energy
usage while applications run, making it a good choice for experimentation. The Linux perf
tool collected data and CPU events for the four benchmarks. The numbers are detailed in
Tables A1–A4 in the Appendix A.

Table 2. Benchmark specifications.

Benchmark Workload Type Computational Characteristics

Blackscholes Financial computation tasks Computation intensity, data dependency,
irregular memory access patterns

Ferret Search application
Search intensity, intensive communica-
tion between processes, distance calcula-
tions, data retrieval

Raytrace Interactions between rays and ob-
jects in a scene

Computational intensity, data locality,
memory footprint

FFT Fast Fourier transform application Complex mathematical computations,
single-instruction multiple data (SIMD)

Table 3. Experimental environment specifications. Lubuntu is a lightweight version of Ubuntu.

Processor Intel Xeon E5-2680v3; physical/logical cores: 12/24

Cache L1 (data/instruction): 32/32 KB; L2 per core: 256 KB; L3 shared: 32 MB

Compiler GCC 7.5.0

OS Lubuntu 18.04.6 LTS; kernel: 4.15

Each workload ran three hundred (300) times. The experimental results revealed that
more runs did not contribute to the convergence of the average. The workloads ran with
one thread (1T), two threads (2T), and four threads (4T). In each case, the benchmarks
were executed inside (IC) and outside (OC) Docker containers. The collected data included
execution time (ET), energy (E), task clock (TC), executed instructions (#inst) and branches
(#Br), branch misses (BrM), last-level cache store (LLCS) and load (LLCL), last-level cache
misses (LLCM), context switches (CS), CPU migrations (CPUM), and page faults (PF).
The researchers chose these events because of their direct impact on energy [40]. The data
were also collected (outside containers) in two general cases: when the Power Management
Unit was enabled (PMUen) and when the Power Management Unit was disabled (PMUdis).
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To measure the effect of compiler optimization on RAPL measurements, two bench-
marks, Ferret and FFT, were compiled with the four main GCC compiler optimization
level options, namely, O0, O1, O2, and O3, which range from minimal optimization (O0) to
aggressive optimization (O3). The experiments also tested the sensitivity of RAPL to the
CPU’s ambient temperature by covering the upper side of the computer case with a mask
with small holes. The rest of this section discusses, in detail, the results and the different
scenarios used to obtain them.

6.1. Discussion of Experimental Results
6.1.1. External Thermal Effect

The authors attempted to measure the effect of the CPU’s ambient temperature to
assess the sensitivity of RAPL power measurements to external thermals. The test-bed
computer case had ventilation holes on the rear and top sides. The execution time and the
total energy of the four benchmarks were measured when the rear and top vents were open.
They were measured again when the vents were masked. The two case conditions are
labeled Mask-on (Mon) and Mask-off (Moff) in Table A2. Unexpectedly, the measurements
were not very sensitive to ambient temperature in either the disabled or enabled state of
the PMU (see Figure 1). However, substantial changes in ambient temperature can have
terrible effects on the RAPL readings.

Figure 1. External thermal effect on RAPL readings.

6.1.2. Multithread Effect

When multiple threads are running on a processor, the processor has to work harder
to execute the instructions of each thread, which can increase the instantaneous power
consumption because more power is required to run the additional processing cores and to
move data between them. However, running multiple threads may dramatically reduce
energy consumption by allowing the processor to complete the task more quickly and enter
a low-power state sooner.

To measure the effect of the number of threads on the total energy, average power,
and the RAPL measurement accuracy, we ran the benchmarks with one, two, and four
threads outside containers (OC) and inside containers (IC). The results are summarized in
Table 2 and shown in Figure 2.

There were dramatic savings in total energy between one and two threads, ranging
from 27.25% to 40.59%, when running the benchmarks outside containers, while the savings
in total energy when they ran inside containers ranged from 28.35% to 54.00%, with a slight
increase in average power with two threads for both cases (OC and IC). The savings in total
energy ranged from 23.74% to 39.78% between two and four threads outside containers,
while the range of savings inside containers was from 19.72% to 39.35%. See Figure 3.
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Figure 2. Multithreading effect on energy consumption.

Figure 3. Effect of number of threads on energy.

6.1.3. Power Management Unit Effect

The Power Management Unit (PMU) is responsible for managing and controlling the
power consumption of a computer system. It regulates various power-related aspects, such
as voltage levels, clock frequencies, and power states of different components. To measure
the effect of the Power Management Unit (PMU) on RAPL readings, we took the RAPL
readings in two cases, Power Management Unit enabled (PMUen) and Power Management
Unit disabled (PMUdis), as indicated in Tables A1 and A2. Figure 4 shows increases
in execution time and energy and a decrease in average power in the case of PMUdis
compared to the PMUen case in three of the benchmarks. However, in the case of the FFT
benchmark, the energy consumed by the CPU in the case of PMUdis is less than the energy
consumed in the case of PMUen.

Figure 4. The effect of PMU on RAPL energy readings.

6.1.4. Compiler Optimization Effect

Table A3 shows that compiler optimization dramatically affected the total energy and
other program events. It was not always the case that, as one might expect, the more opti-
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mization, the better the time and energy savings. In the Ferret benchmark, O1 optimization
saved more power and energy than O2, while in FFT, O2 gave the best savings among the
optimization levels. O0 optimization (minimal optimization) always yielded the highest
energy readings (see Figure 5). However, it is safer to avoid compiler optimization when
comparing two software codes from a power and energy perspective.

Figure 5. Effects of compiler optimization.

6.1.5. Containerization Effect

The benchmarks ran directly on the host and also ran again inside docker containers.
These two cases are denoted by OC (outside container) and IC (inside container) in Table A1.
In most cases, running workloads inside containers led to savings in total energy compared
to running them outside containers, even though the execution time was longer inside
containers in most of the cases, as expected. However, the case of one thread in Blackscholes
and Ferret benchmarks led to more energy consumption inside containers. See Figure 6.

Running the benchmarks inside containers showed a slight increase in events com-
pared to running them outside containers.

Figure 6. Containerization effect on energy and time.

6.2. Measurement Accuracy

To estimate the accuracy of the measurements of the RAPL energy readings (300 read-
ings), we studied time–energy scatter plots of all readings taken in the different conditions.
The scatter plots, shown in Figures 7–14, were used to visualize the relationship between
the energy and time variables and the resulting patterns. They display every RAPL reading
pair (time, energy) as an individual dot on the graph, with the time variable plotted on the
horizontal axis and the energy variable plotted on the vertical axis.

Every plot caption describes the case in which the RAPL readings were collected.
For instance, the caption Blackscholes-IC-PMUdis-2Threads refers to the scatter plot of the
300 readings taken for the Blackscholes benchmark inside a docker container (IC) when the
Power Management Unit was disabled (PMUdis) and the number of threads was two.

To facilitate the comparison of the different cases, Figures 7–10 represent the scatter
plots of the four benchmarks’ RAPL readings taken when the PMU was disabled. Every
figure, in turn, is subdivided into six scatter plots arranged horizontally according to the
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number of threads and vertically according to whether the benchmark was run outside or
inside the container. When we look at every figure horizontally, we can see the effect of the
number of threads on the accuracy of the readings. In most cases, the four-thread plots are
more scattered than one- and two-thread cases.

To study the effect of containerization on the scatter plots, one can look at every figure
vertically. In some cases, there were similarities between scatter plots of the same number of
threads and run outside containers (OC) or inside containers (IC). However in most cases,
the scatter plots of IC cases are more condensed than those of OC cases, which represents
more accurate RAPL readings inside containers.

Figures 11–14 represent the time–energy scatter plots of the four sets of RAPL readings
taken in the case of one thread when the PMU was enabled, where every figure has two
subfigures according to whether the readings were taken when the workload was run
outside or inside the container.

In general, when the PMU is enabled, the scatter plots are more chaotic because of
the dynamic control that the PMU applies to the CPU power, which may differ from one
run to another, affecting, in turn, the accuracy of the measurements. As the figures show,
the scatter plots tend to have more than one cluster. This tendency makes taking the average
of the measurements inaccurate. So, it is good practice to turn off the PMU when we want
to take the average of the energy measurements to compare two or more codes from an
energy perspective.

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 7. Blackscholes time–energy scatter plots with power management unit disabled. Mea-
surements are more condensed when taken inside the container. Fewer threads seem to lead to more
condensed readings.
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(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 8. Ferret time–energy scatter plots with power management unit disabled. Taking readings
with one thread inside and outside the container are more accurate than two and four threads.

(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 9. Raytrace time–energy scatter plots with power management unit disabled. In this
workload, readings for two and four threads are more accurate than those for one thread outside and
inside the container.
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(a) OC-PMUdis-1threaded (b) OC-PMUdis-2threaded (c) OC-PMUdis-4threaded

(d) IC-PMUdis-1threaded (e) IC-PMUdis-2threaded (f) IC-PMUdis-4threaded

Figure 10. FFT time–energy scatter plots with power management unit disabled.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 11. Blackscholes time–energy scatter plot with power management unit enabled. The
readings outside the container consist of two main clusters and three small clusters, which adversely
affect the accuracy of the average value.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 12. Ferret time–energy scatter plot with power management unit enabled. These read-
ings consist of two main clusters outside and inside containers due to the control of the Power
Management Unit.
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(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 13. Raytrace time–energy scatter plot with Power Management Unit enabled.

(a) OC-PMUdis-1threaded (b) IC-PMUdis-1threaded

Figure 14. FFT time–energy scatter plot with Power Management Unit enabled.

The characteristics of the workload may have a significant impact on the RAPL read-
ings’ accuracy. It is essential to consider the specific software characteristics and their
effects on power consumption to obtain accurate and meaningful power consumption
measurements using RAPL. One of these characteristics is the type of instructions exe-
cuted within a workload, which impacts repeated RAPL readings. For instance, complex
instructions involving intensive calculations or data manipulations tend to consume more
power when compared to simple instructions. Consequently, the repeated execution of
workloads with computationally complex instructions may result in higher average power
consumption, which can be reflected in the RAPL readings. Another example of the impact
of workload characteristics is the number of branch instructions in the workload. The out-
come of a branch instruction determines which code path is executed next, potentially
leading to different computational demands. Workloads with more branch instructions
may exhibit more diverse execution patterns, resulting in varying power consumption
levels and potentially impacting the accuracy of RAPL readings. Additionally, branch
instructions can disrupt the instruction pipeline, impacting the efficiency of instruction
fetching and execution. Mispredicted branches can lead to pipeline stalls and cache flushes,
affecting the overall power consumption. Branch-heavy workloads may experience more
frequent pipeline stalls and cache invalidations, potentially influencing the RAPL readings.

7. Experiences and Recommendations

Extensive experimentation provided valuable insights into both the environment and
the measurement process. This section outlines the most important observations and
recommendations based on lessons learned during the investigation.

1. The readings seem sensitive to the benchmark programs used for measurement.
Researchers should be mindful of this point when devising ways to use RAPL to
quantify branch prediction behaviors. In particular, previous work established that
branch prediction schemes showed program sensitivity [41]. Therefore, researchers
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should choose their test workload carefully to be able to discern behaviors due to
branching from artifacts due to measurement.

2. Running software inside a container (e.g., the Docker container) may show savings in
RAPL energy readings despite the slight increase in the other event counts. The ap-
parent savings may be a result of including the libraries within the lighter-weight
environment. Containers are lighter versions of full virtualization. They are also
perhaps lighter than running directly under the OS. Containerization seems to reduce
environmental noise levels, which is conducive to the purposes of experimental stud-
ies. However, the effect of software containerization on energy consumption needs
further investigation with more containers to confirm it.

3. Taking the average of many measurements of RAPL tends to be more accurate. How-
ever, increasing the number of readings beyond some point does not contribute to the
accuracy. Instead, an enormous number may worsen matters due to the accumulative
thermal effect.

4. RAPL measurements are not very sensitive to the computer’s ambient temperature.
However, a good practice is to keep it consistent at a moderate level during RAPL
reading collection.

5. Running software with multithreading has a positive impact on energy consumption
and performance. However, measuring the average of RAPL readings with one
thread seems to be more accurate when comparing two or more pieces of code from
an energy perspective.

6. Compiler optimization has a measurable impact on RAPL readings. The experimental
results show that compiling software with O0 optimization (no optimization beyond
a conservative default set) always leads to the highest energy consumption. With the
other levels, the results show that more optimization is not always better for time and
energy savings. However, to compare the energy consumption of two or more pieces
of code without the unpredictable effects of the modifications typical of optimizing
compilers, skipping them may be good practice. This should help better understand
the root causes of efficiency.

7. Internal power management had a positive impact on power savings. However, our
experimental results show that enabling the PMU harmed the accuracy of RAPL
readings. This impact was probably due to the effects of the dynamic control of the
PMU on CPU power, which changed from one run to another. So, it is perhaps good
practice to disable the PMU from the BIOS before taking RAPL readings.

8. Conclusions

In computing systems, power/energy efficiency has become a crucial concern in
the last few decades because of the various issues that require meeting a number of
requirements, such as lowering the environmental footprint, relieving the constraints on
computing devices’ scalability, prolonging the life of computing energy storage devices,
reducing the cost of the electricity bill, and many other factors, including those related to
security. Jointly enhancing the quality of hardware and software together can help achieve
efficiency targets in these areas.

Some researchers were motivated by the need to reach exascale within reasonable
power budgets. They investigated fundamental software building blocks, such as sorting
and matrix multiplication, commonly used in HPC. In this study, the authors investigated
a similar approach to the DBP as a major hardware component in modern CPUs in an
attempt to quantify its impact on power and energy efficiency. This paper focuses on
the long and tedious work undertaken to understand the issues involved and to develop
the methodology to reliably estimate the power consumed by the DBP and its various
aspects. It could also serve as a blueprint for similar investigations targeting other hardware
building-block components.

RAPL is a helpful power measurement tool that can credibly replace external hardware
power measurement devices that are difficult to manage and lack granularity. This paper
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introduces the methodology used in our investigation and the various factors that can affect
the accuracy of RAPL measurements that inherently add noise to RAPL readings. To make
RAPL more accurate and reliable, several measures that diminish or eliminate measurement
noise sources are discussed in detail and supported by extensive experimentation. This
included practical RAPL experiments with four benchmarks that showed the effects of
various hardware and software controls, such as processor power management, threading,
containerization, and compiler optimization, on the RAPL readings. The techniques and
experiences described may also extend to other processor platforms that offer similar
internal instrumentation and interfaces, such as those offered by AMD.

A limitation of this study is its focus on Intel CPUs, which somewhat restricts the
applicability of some of the findings to other CPU platforms, such as AMD, or architectures,
such as ARM. Different CPUs may have distinct power characteristics and management
mechanisms. Modern ones may have better measurement capabilities based on higher-
resolution instrumentation. All of these factors could influence the reliability of RAPL-like
readings in those systems for purposes of empirical study. Future studies should consider
expanding the investigation to encompass a broader range of CPUs to provide a more
comprehensive understanding of the effectiveness and limitations of RAPL-like tools for
reliable empirical power assessment. Finally, to confirm the finding about the effect of
containerization on the quality of measurements, future studies may be needed on more
containerization technologies other than Docker, such as Kubernetes.
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Abbreviations
The following abbreviations are used in this manuscript:

HPC High-Performance Computing
DBP Dynamic branch predictor
BTB Branch Target Buffer
IBTB Indirect Branch Target Buffer
RAPL Running Average Power Limit
BM Benchmark
1T One thread
2T Two threads
4T Four threads
OC Outside container
IC Inside container
PMUdis Power Management Unit disabled
PMUen Power Management Unit enabled
Mon Mask-on
Moff Mask-off

Appendix A

Tables A1–A4 detail the data collected using the Linux perf tool. The numbers are
the average of 300 run times for every workload. The data in Tables A1, A2, and A4 show
thirteen CPU events for the four benchmarks selected from the PARSEC suite.

The data in Table A1 were collected for two execution scenarios: (a) on the host
directly and (b) inside a docker container. The cases are denoted in the table by OC and
IC, respectively. In each case, workloads were executed with one thread (1T), two threads
(2T), and four threads (4T). Table A2 shows the data obtained when the internal Power
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Management Unit was enabled and disabled (cases denoted in the table by PMUen and
PMUdis, respectively). In each of those cases, the workload was executed with one thread.
Table A3 shows execution time and energy consumption collected when the upper side
of the computer case was covered by a mask and with the mask off to measure the effect
of ambient temperature on RAPL readings. The readings were taken when the internal
power management unit was enabled (PMUen) and disabled (PMUdis). Table A4 details
the events for two of the benchmarks measured when workloads were compiled with
four levels of GCC compiler optimization, starting from O0 (minimal optimization) to O3
(aggressive optimization).

Table A1. Event measurement data inside and outside containers.
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Table A2. Event measurement data with CPU Power Management Unit ON/OFF.

BM Blackscholes Ferret Raytrace FFT

Events PMUen PMUdis PMUen PMudis PMUen PMudis PMUen PMudis

EXT(S) 5.61 7.18 5.24 6.58 5.38 7 6.06 7.81

E(J) 254 310.99 250.90 299.65 245.8 300.59 260.27 239.41

P (W) 45.4 43.29 47.91 45.51 45.69 42.95 42.96 30.65

TC 68607 36808 63720 79182 65761 84138 73923 93878

#inst 32.59B 32.74 B 37.00B 37.94B 32.84B 32.68B 69.87B 69.17B

#Br 4.10B 4.12B 5.98B 6.05B 5.49B 5.41B 7.49B 7.37B

BrM 31.89M 39.7M 304M 316.2M 38.18M 45.41M 24.62M 12.85M

LLCL 10.20M 11.66M 126.25M 122.93M 11.39M 12.33M 9.3M 4.08M

LLCLM 0.75M 0.255M 13.96M 12.09M 0.21M 0.09M 210125 206176

LLCS 3.12 3.82M 4.38M 5.07M 2.84M 3.70M 2.93M 0.71M

LLCSM 0.16M 0.08M 132619 160834 12063 10312 21428 23025

CS 2335 3347 12591 9986 2522 3239 2912 2808

CPUM 102 161 199 202 106 151 125 138

PF 11093 10979 15883 15838 1487 1469 938 919

Table A3. Execution time and energy data.

Blackscholes Ferret Raytrace FFT

PMUen PMUdis PMUen PMUdis PMUen PMUdis PMUen PMUdis

Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff Mon Moff

EXT(S) 5.61 5.61 7.18 7.18 5.24 5.24 6.58 6.58 5.40 5.38 7.00 7.00 5.97 6.06 7.81 7.81

E(J) 254.60 254.72 310.35 310.99 254 250.90 303.04 299.65 251.08 245.80 301.35 300.59 259.39 260.27 235.86 239.41

P (W) 45.36 45.40 43.2 43.29 48.51 47.90 46.04 45.51 46.53 45.69 43.05 42.95 43.45 42.96 30.2 30.65

Table A4. Effect of GCC compiler optimization level data.

BM Ferret FFT

Events
Optimization Level Optimization Level

O0 O1 O2 O3 O0 O1 O2 O3

EXT(S) 17.45 7.74 6.58 7.49 29.08 7.13 7.81 7.47

E(J) 570.11 251.56 299.65 242.20 1172.2 286.10 239.41 299.20

P (W) 32.68 32.49 45.51 32.35 40.31 40.12 30.65 40.08

TC 193164.37 87428.93 79182 84514.79 349344.09 85629.40 93878 89699.84

#inst 109B 39.15B 37.94B 37.16B 153.29B 69.16B 69.17B 65.87B

#Br 7.98B 6.13B 6.05B 6.27B 8.14B 7.53B 7.37B 6.94B

BrM 383.04B 330.95M 316.2M 335.01M 95.14M 31.07M 12.85M 31.43M

LLCL 148.99M 118.14M 122.93M 118.27M 36.85M 8.77M 4.08M 9.41M

LLCLM 13.72M 10.51M 12.09M 10.81M 0.611M 0.17M 0.21M 0.17M

LLCS 5.30M 2.37M 5.07M 2.09M 13.82M 3.35M 0.71M 3.58M

LLCSM 140881 120906 160834 117213 59541 15610 23025 13184

CS 13895 7774 9986 7634 9442 2343 2808 2440

CPUM 443 219 202 216 458 111 138 120

PF 15984 15843 15838 15837 2036 892 919 902
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