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Abstract: Social media networks have grown exponentially over the last two decades, providing the
opportunity for users of the internet to communicate and exchange ideas on a variety of topics. The
outcome is that opinion mining plays a crucial role in analyzing user opinions and applying these to
guide choices, making it one of the most popular areas of research in the field of natural language
processing. Despite the fact that several languages, including English, have been the subjects of
several studies, not much has been conducted in the area of the Arabic language. The morphological
complexities and various dialects of the language make semantic analysis particularly challenging.
Moreover, the lack of accurate pre-processing tools and limited resources are constraining factors.
This novel study was motivated by the accomplishments of deep learning algorithms and word
embeddings in the field of English sentiment analysis. Extensive experiments were conducted
based on supervised machine learning in which word embeddings were exploited to determine
the sentiment of Arabic reviews. Three deep learning algorithms, convolutional neural networks
(CNNs), long short-term memory (LSTM), and a hybrid CNN-LSTM, were introduced. The models
used features learned by word embeddings such as Word2Vec and fastText rather than hand-crafted
features. The models were tested using two benchmark Arabic datasets: Hotel Arabic Reviews Dataset
(HARD) for hotel reviews and Large-Scale Arabic Book Reviews (LARB) for book reviews, with
different setups. Comparative experiments utilized the three models with two-word embeddings and
different setups of the datasets. The main novelty of this study is to explore the effectiveness of using
various word embeddings and different setups of benchmark datasets relating to balance, imbalance,
and binary and multi-classification aspects. Findings showed that the best results were obtained
in most cases when applying the fastText word embedding using the HARD 2-imbalance dataset
for all three proposed models: CNN, LSTM, and CNN-LSTM. Further, the proposed CNN model
outperformed the LSTM and CNN-LSTM models for the benchmark HARD dataset by achieving
94.69%, 94.63%, and 94.54% accuracy with fastText, respectively. Although the worst results were
obtained for the LABR 3-imbalance dataset using both Word2Vec and FastText, they still outperformed
other researchers’ state-of-the-art outcomes applying the same dataset.

Keywords: Arabic Sentiment Analysis; Word2Vec; FastText; convolutional neural networks; long
short-term memory; recurrent neural networks
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1. Introduction

Sentiment analysis (SA) is a highly popular and active field of study in natural lan-
guage processing (NLP), also known as opinion mining. It can be defined as the process
of extracting and analyzing the sentiment and polarity of a given piece of text [1]. It has
numerous applications across various industries, including politics, business, and social
media. Social media platforms such as Twitter and Facebook have gained significant impor-
tance in analyzing people’s reviews on specific topics, products, services, or other subjects.
In the business sector, sentiment analysis enables companies to collect reviews about their
products and services that help them make decisions to enhance their offerings [2]. Sim-
ilarly, sentiments can be used in politics to analyze people’s reactions toward political
events and actions and help in decision-making [3]. While there have been numerous
studies utilizing both classical and deep learning approaches for the English language,
limited work has been conducted to develop models for sentiment analysis in the Arabic
language [4,5].

Sentiment analysis can be conducted at many different levels, such as document level,
sentence level, and aspect level [6,7]. This study employs sentence-level sentiment analysis
on two Arabic datasets to evaluate whether the review’s polarity is positive, negative, or
neutral. The limited research on the Arabic language is due to its ambiguity, morphological
complexities, various dialects [8], the unavailability of accurate pre-processing tools, and
the shortage of its dataset resources [9]. The two techniques that can be used for the SA
are the lexicon and machine learning-based techniques. The lexicon- or corpus-based
technique uses a dictionary that contains words and their corresponding polarities [10],
whereas machine learning-based techniques require a massive labeled dataset with manual
annotation [11]. Deep learning’s (DL) success in a variety of fields, including computer
vision, reveals its use in the field of natural language processing [12–14]. Because DL
does not use feature engineering to learn continuous text representations from data, it
outperforms traditional machine learning. With the use of various word embedding
approaches, deep contextual properties of words are extracted in a lower-dimensional
space [15]. For NLP, many DL approaches are used, such as convolutional neural networks
(CNNs) [12,16] and long short-term memory (LSTM) [17]. Although such DL techniques
are frequently applied to English corpora, Arabic Sentiment Analysis deep learning models
are not getting as much attention [18–20].

Each similar word is mapped closer to the other in a continuous vector space where
words are represented by word embedding. Embedding methods have recently outper-
formed traditional text-feature extraction methods such as bag of words. Similar terms can
be used to categorize new words that are missing from training texts. There are many word
embedding techniques, such as Word2Vec, FastText, Glove, and BERT [21].

This study intends to investigate three DL models, CNN, LSTM, and CNN-LSTM, for
SA on a highly imbalanced and balanced Arabic dataset. In addition, the study demon-
strates comparative evaluation using FastText/Skip-Gram (SG) and Word2Vec/Continuous
Bag of Words (CBOW) embedding models as input to the models to be investigated. This
shows the effect of the embedding models and the datasets with the proposed models.
This research is the first to thoroughly evaluate both the Hotel Arabic Reviews Dataset
(HARD) [22] and Large-Scale Arabic Book Reviews (LABR) [23] datasets, which constitute
some of the largest publicly available Arabic review corpora with different setups using
three handcrafted DLs.

The following parts of this article are structured as follows: Section 2 discusses the
literature review of Arabic Sentiment Analysis using word embeddings and deep learning
techniques. Section 3 outlines the key components of the system and its proposed architec-
ture. Section 4 outlines the experimental parameters and measurement measures. Section 5
represents the results and discusses the main findings. Finally, Section 6 delivers a succinct
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conclusion based on the research conducted and the findings acquired to be able to present
some plans for future studies.

2. Related Works

Most of the important approaches used for conventional and deep learning techniques
are for the English language. Therefore, this research focuses solely on the analysis of
Arabic sentiment with DL techniques. This section reviews the literature pertaining to the
most recent and competitive sentiment analysis using DL models for Arabic and other
languages. Moreover, the section discusses the DL models for Arabic in which the HARD
and LABR datasets are used. The key objective of this part is to highlight the top DLs and
word embeddings used for different languages according to their accuracy.

2.1. Arabic Language

Ombabi et al. [4] developed a novel hybrid deep learning model for Arabic Sentiment
Analysis using CNN, two LSTM layers, and SVM on a multi-domain corpus, which is
supported by FastText word embedding. The results showed that the proposed model out-
performed a number of the previous studies, with up to 90.75% improvements. However,
this study focused on binary classification with a balanced dataset and one-word embed-
ding. On the other hand, Heikal et al. [24] developed an ensemble model that combined
CNN and LSTM and used a pre-trained word vector representation, AraVec, for Arabic
tweets. The model outperformed the state-of-the-art deep learning models with 65.05%
accuracy on the Arabic Sentiment Tweets Dataset (ASTD). Their studies were obtained
with a small amount of data by using one-word embedding.

Another study by Alahmary et al. [25] applied two DLs to classify sentiments in Saudi
Arabia’s dialect texts by using LSTM and bidirectional LSTM (Bi-LSTM). In this study,
the two deep learning techniques were used together with the popular support vector
machine (SVM) on a collected dataset of 32,063 tweets. Their findings stated that Bi-LSTM
surpassed other models by 94% compared to LSTM (92%), and SVM (86.4%). Additionally,
Baly et al. [26] evaluated the DL advances, namely the recursive neural tensor networks
(RNTN), as a case study of morphologically rich languages (MRL). Despite the fact that
RNTN required the existence of a sentiment treebank, which only exists for the English
language, this study contributed to the development of the first Arabic sentiment treebank
(ARSENTB). According to the experimental findings, the proposed RNTN achieved roughly
8% better at the phrase level and 10% better at the sentence level than the one for English,
as shown by the average F1 score. Additionally, it performed 7.6%, 3.2%, and 1.6% better
than popular classifiers such as support vector machines, recursive auto encoders, and
LSTM. The best accuracy obtained by RNTN when applying stems was 81%.

Al-Sallab et al. [27] developed a DL framework in which four different architectures
were proposed. Three were based on deep belief networks and deep-auto encoders, which
are based on bags of words (BOW). This approach was recently utilized to create the
Arabic Sentiment Lexicon along with the other standard lexical properties. In order to
solve the previous three models’ lack of context, the fourth model was offered. The
experiments were conducted by employing the Linguistic Data Consortium Arabic Tree
Bank dataset. The results showed that the fourth model was superior to the previous
studies by around 9% on average F1, and the accuracy was about 74.3%. However, this
study did not use the pre-trained model for vector representation or enough corpora. In
a subsequent paper [28], the same scholars developed a recursive deep learning model
for opinion mining in Arabic (AROMA) to address several challenges and limitations that
arise when applying the RAE model [27]. AROMA was tested on three Arabic corpora.
The first corpus consisted of newswire articles written in MSA; the second corpus was
a set of tweets; and by utilizing topic modeling, the third corpus was created by QALB
by extracting internet comments. Results revealed that AROMA surpasses the previous
studies as well as the standard recursive auto encoder (RAE). In order to improve the
performance of deep learning models for opinion mining, this work did not explore the
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whole orthographic and morphological space in Arabic, including different levels of surface
representation and morphological abstraction.

Another study conducted by Al-Surayyi et al. [29] developed different structures
of DL techniques such as recurrent neural networks (RNNs) with LSTM, RNNs with Bi-
LSTM, and CNNs. The experiments were conducted by using restaurant reviews from
Yelp for binary and multi-class sentiment classification. The results revealed that Bi-LSTM
achieved a better accuracy score compared to others, achieving 95.76% and 64.03% for
binary and multi-classification, respectively. Nevertheless, no empirical analysis (such as
word embedding dimensions, number of hidden units, activation functions, and cross-
validation) was conducted on the hyperparameters’ effects. In this study, various feature
extraction techniques, such as BOW and TF-IDF, were not used.

Interestingly, Alayba et al. [9] investigated the advantages of combining CNNs and
LSTMs for improving Arabic Sentiment Analysis accuracy on various datasets. Results
showed improvement in their Arabic Health Services (AHS) dataset to reach 94.2% and
95.7% for the Main-AHS dataset and Sub-AHS dataset, respectively. This study used
character level to help extend the number of features for each tweet. However, no pre-
trained word embeddings were used. The outcomes demonstrated that the character level
was not the model’s optimal choice.

Authors Alayba et al. [30] exhibited their Twitter collection of user reviews of health-
care services. They carried out a number of assessments utilizing DNN and CNN, among
other machine learning methods. The DL techniques experienced encouraging outcomes,
roughly between 85% and 91%. However, the linear support vector machine outperformed
other classifiers, achieving 91.87% accuracy. This study did not use different feature extrac-
tions and did not cover the imbalanced dataset. Instead, it focused on increasing accuracy
by enhancing the generalization of the model. On the other hand, Al-Azani et al. [31]
proposed the CNN and LSTM techniques that use two different Word2Vec-based tech-
niques: CBOW and skip-gram features on Arabic microblogs. The LSTM model showed the
best results compared to CNN, with 87.27% accuracy on the ArTwitter dataset. However,
to have better results, a large corpus was required in this study. In [32], Al-Azani et al.
emphasized the importance of sentiment analysis of dialectical tweets from imbalanced
datasets. They used Word2Vec for word embedding and over-sampled the minority class
for the imbalance dataset by adding synthetic samples using the SMOTE technique.

In related research [32], based on emoji-extracted features, the researchers applied two
types of RNN: LSTM and GRU deep learning, both unidirectional and bidirectional, for
Arabic sentiment in Arabic microblogs. Experimental outcomes showed that the Bi-GRU
model was superior to other models by achieving 78.71% accuracy.

In a different study, LSTM was used on the AraSen Corpus by Al-Laith et al. [33]. In
order to guarantee the advancement of the Arabic sentiment classification, the suggested
system was assessed against two external benchmark datasets. The outcome of the ex-
periment showed that the developed framework outperformed the existing systems by
achieving accuracies of 87.4% and 85.2% for SemEval 2017 and ASTD, respectively, for
binary classification. For three-way classification, the model achieved 69.4% and 68.1%
for the same datasets. However, the study did not use dialects or different pre-trained
vector representations.

Oussous et al. [34] proposed a framework for Arabic Sentiment Analysis (ASA) by
exploiting two DL models: CNN and LSTM models. The outcomes of the experiments
demonstrated that DL models outperformed more traditional techniques such as support
vector machines, naive Bayes classifiers, and maximum entropy. CNN and LSTM achieved
an accuracy of 92.1% and 90%, respectively. Although the study investigated several
aspects of data representation and their effects on the classifier’s accuracy (such as stop
word removal, normalization, and stemming), it did not investigate the effects of classifiers’
accuracy to find the best parameters for LSTM and CNN.

Interestingly, Omara et al. [5] applied a novel application that uses two deep CNNs
for Arabic Sentiment Analysis by using only character-level features. They used large-scale
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datasets from different domains in different Arabic forms (modern standard and dialectal).
Experiments were conducted for different machine learning algorithms such as logistic
regression (LR), SVM, and naïve Bayes (NB). Findings revealed that CNN had the best
accuracy, coming in at 94.3%.

In their study, Dahou et al. [35] presented a framework for CNN based on the differen-
tial evolution (DE) method. The experiments generated two DE-CNN models that were
evaluated. The outcomes demonstrated that the proposed approaches outperformed the
state-of-the-art models and had higher accuracy and a lower computational cost. For in-
stance, for the ArTwitter dataset, DE-CNN with five cross-validations obtained an accuracy
of 93.28% in comparison to a previous study that achieved 87.27% on the same dataset that
combined LSTM. However, the study found that training a deep neural network usually
relies on randomness to perform better, and that may affect the stability and repeatability
of the obtained results on different evaluation techniques.

A different study by Altaher [36] applied a hybrid approach based on deep learn-
ing with feature weighting algorithms, information gain, and chi-square to analyze the
sentiment of Arabic tweets. The research’s findings revealed that the proposed approach
surpassed other SVMs, DTs, and NNs in terms of accuracy and precision, achieving 90%
and 93.7%, respectively. However, the semantics of the text in the Arabic tweets were not
considered for this study.

This part sheds light on previous studies in which HARD and LABR datasets with
deep learning techniques were used. As far as the authors are aware, few attempts have
been made using various Arabic datasets with different setups, including binary and multi-
classification for balance and imbalance datasets. Most of the previous studies that used
HARD and LABR used classical machine learning techniques instead of deep learning.

For the HARD dataset, many studies were conducted based on classical machine
learning [37,38]. For instance, a triple combination of N-gram features with PCA and LDA
was used for feature selection [37]. Furthermore, several supervised classifiers were tested,
such as DT, RF, bagging, NN, NB, boosting, and logistic regression (LR). The experiments
were conducted for binary and multi-class classifications. As for deep learning, a study by
Muaad et al. [39] developed a novel deep learning Arabic text computer-aided recognition
(ArCAR) for character level instead of sentence level. The proposed model was based on
CNN with six layers and two fully connected layers. The experiments were conducted on
various datasets, including the HARD binary classification with balanced data and three
classifications with imbalanced data. The accuracy for the two datasets was 93.58% and
93.23%, respectively.

A study by Mhamed et al. [40] developed a five-layer CNN architecture with an
innovative mean max average (MMA) pooling layer to extract the best features. Three
datasets, the 2-Class Sudanese Sentiment Dataset (SudSenti2), the 3-Class Sudanese Senti-
ment Dataset (SudSenti3), and HARD, were tested for binary classification with imbalanced
data. The experiments were conducted for different deep learning models and included
the baseline CNN, RNN, CNN/LSTM, and the proposed model. The developed model
surpassed other deep learning models by obtaining 90.01% accuracy for the HARD dataset.

A comparison was obtained between the shallow learning and DLs models for Arabic
Sentiment Analysis tested for two datasets, including HARD 2-imbalance conducted by
Nassif et al. [41]. The DL models used were CNN, GRU, Bi-LSTM, and different hybrid
techniques. The study used an araBERT transformer for the embedding layer. The best
results were obtained by the hybrid Bi-LSTM+CNN which achieved 94.2% accuracy for the
HARD dataset.

For the LABR dataset, the literature showed that many studies focused on classical
machine learning, but only a few worked [42–47] on deep learning. A study was conducted
using deep learning techniques [48], in which three models were implemented: CNN,
LSTM, and a hybrid CNN-LSTM model. The experiments were conducted using the
original LABR dataset with five classes of imbalance, in which the hybrid model achieved
the best results with 86.88% accuracy.



Computers 2023, 12, 126 6 of 21

Another study by Abu Kwaik et al. [49] applied a hybrid CNN with LSTM and Aravec
for the first layer, which are pre-trained word embeddings in Arabic. The binary balanced
and unbalanced subsets of LABR, together with the three-way classification subsets, had
been employed in the evaluations. The accuracies obtained for the three subsets were
81.14%, 80.2%, and 66.42%, respectively.

In another study, the authors developed a model applying the typical 1-D CNN model
and tested it with the original LABR subset with five classes imbalanced [50]. It examined
the Word2Vec-CBOW, Word2Vec-SG, and fastText Arabic word embedding models. The
best results were obtained when fastText word embedding was used, accomplishing 87.73%
accuracy. In an interesting study [51], integration between a simple recurrent unit and
an attention mechanism that mainly concentrates on an input text was done. DL mod-
els have been surpassed by the demonstrated model, which achieved 94.53% accuracy
with two classes of the imbalanced dataset. LSTM was used in a remarkable work by
Al-Bayati et al. [3]. The model was trained using a deep neural network, and word embed-
ding was used as the initial stage of hidden layer feature extraction. The experiments were
carried out on two classes of imbalanced data. An accuracy of about 82% was achieved by
using this model.

2.2. Other Languages

Naqvi et al. [52] presented an approach for determining polarity for Urdu datasets col-
lected from different resources and domains by observing various deep learning methods
combined with different word embeddings. Attention-based bi-directional LSTM (BiLSTM-
ATT) surpassed other DL models by achieving 77.9% accuracy. Dashtipour et al. [10] pre-
sented a novel deep learning framework for Persian movie reviews using two deep learning
algorithms, CNN, and LSTM. Simulation findings revealed that LSTM was superior to
other DL models by accomplishing an accuracy of up to 95.61%.

A comparison study [53] for the Lithuanian language was carried out to compare
traditional machine learning (support vector machines and nave Bayes) and deep learning
methods (LSTM and CNN). The study used two-word embedding (Word2Vec/CBOW)
with negative sampling and FastText to solve the sentiment analysis task. The experiments
were performed on the Lithuanian Internet comment dataset. The results obtained showed
that classical machine learning methods were superior compared with DL techniques.
Traditional machine learning approaches obtained 73.5% accuracy, compared to 70.6%
accuracy obtained by deep learning methods. The study used the morphological analyzer-
lemmatizer tool, Lemuoklis, which could not process non-normative words.

A study [54] analyzed the tweets using hybrid deep learning (HDL) techniques on
the SemEVAL-2017 dataset. The outcomes revealed the efficiency of ANN (achieving
92% accuracy) as compared to other classifiers such as random forest, naive Bayes, and
decision tree classifiers. Another study [55] conducted different approaches for sentiment
analysis in Albanian, including traditional machine learning techniques such as logistic
regression, naïve Bayes, decision tree, multi-layer perceptron, SVM networks, and random
forest. Sentiment lexicon-based techniques and hybrid approaches from CNN and LSTM
deep learning approaches were also used. The research was conducted on a large tweet
dataset in Albanian. For data pre-processing, the study used several feature extraction
methods, including bag-of-words, TF-IDF, Word2Vec, and glove. Experiments showed that
LSTM with glove as feature extraction outperformed other models with 79.2% accuracy.

A list of the deep learning-related research presented in this study is presented in
Table 1.

Although Table 1 shows the most recent research work that used various deep learning
techniques for sentiment analysis, only a few studies investigated the impact of using
different setups of the same dataset, such as binary or multiclassification and balance or
imbalance. In this study, different datasets with different setups were applied to different
models. The study also investigated the impact of using various word embeddings on the
model’s accuracy.
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Table 1. Summary of deep learning-related works.

Ref. Extractor Deep Learning Dataset Accuracy (%)

[4] FastText CNN/LSTM Multi-domain
sentiment corpus 90.75%

[24] AraVec CNN/LSTM ASTD 65.05%

[25] Word2Vec LSTM/Bi-LSTM Arabic tweets 94%

Baly et al. (2017) [26] ARSENTB RNTN Arabic Corpus 81%

[27] BOW
DNN/DBN/Deep

Auto
Encoders

LDC ATB 74.3%

[28] ArSenL The recursive
deeplearning model

ATB/Tweets
/QALB

86.5%/79.2%
/76.9%

[29] GloVe LSTM/Bi-LSTM Restaurant
reviews

95.76% binary
/64.03% multi

[9] 5-g CNN LSTM

Main-AHS
/Sub-AHS
/Ar-Twitter

/ASTD

94.2%
/95.7%
/88.1%
/77.6%

[30] Word2Vec DNN CNN Health Tweets 91.87%

[31] Word2Vec/CBOW;
Word2Vec/SG CNN/LSTM ASTD/

ArTwitter
81.63%/
87.27%

[32] Several types LSTM/Bi-LSTM
GRU/Bi-GRU Various datasets 78.71%

[33] FastText LSTM SemEval 2017;
ASTD 87.4%/85.2%

[34] Unigrams CNN
LSTM Arabic tweets 92.1%/90%

[5] TF
TF-IDF CNN Constructed dataset 94.33%

[35] Word2Vec CNN Various datasets 93.28%

[36] TF-IDF H2O Deep
Learning model Arabic tweets 90%

Language: Urdu

Naqvi et al. (2021) [52]
SAMAR/
FastText/

coNLL

LSTM/BiLSTM-
ATT/CNN/C-

LSTM
Constructed dataset 77.9%

Language: Persian

Dashtipour et al.
(2021) [10] fastText CNN/LSTM Movies review 95.61%

Language: Lithuanian

Kapovciute et al.
(2019) [53]

Word2Vec/
fastText CNN/LSTM Lithuanian Internet

comments 70.6%

Language: English

Divyapushpalakshmi
et al. (2021) [54]

semantic and syntactic
functions ANN SemEVAL-2017 92.0%

Language: Albanian

Vasili et al. (2021) [55] BOW/TF-ID/
Word2Vec/Glove LSTM/CNN Tweets in Albanian 79.2%
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3. Materials and Methods

In this section, two word embedding models, Word2Vec and fastText, are discussed.
Moreover, three DL techniques, CNN, LSTM, and CNN-LSTM, used in this study are presented.

In this section, the primary system parts are also represented. First, the Arabic sen-
tences were passed through a pre-processing and cleaning phase to delete unwanted
symbols and tokens. Then, in order to prepare the dataset to be fed into selected deep
neural networks, the cleaned data was prepared for the word embedding step by convert-
ing texts to vectors by applying one of the word embedding methods, and finally for the
training phase. Various machine learning models were trained: the CNN model, an RNN
with LSTM layers model, and the CNN-LSTM hybrid model. The models classified the
sentiment of the input sentence as either positive, negative, or neutral, if any. Figure 1
shows the proposed structure and specifics in the next sections.
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malized, and lemmatized. The cleaned Arabic sentences were entered into the word embeddings,
Word2Vec, and fastText used in this study. To determine the polarity, the data vectors were fed into
the deep architecture and sentiment classification. Finally, one of the three labels will be assigned to
the polarity. whether positive, negative, or neutral, if any.

3.1. Dataset Details

In this study, two datasets were used in the experiments: the Large-Scale Arabic Book
Reviews (LABR) dataset and the Hotel Arabic-Reviews Dataset (HARD) [22], with different
setups including balance, imbalance, binary, and multi-classification datasets.

3.1.1. Large-Scale Arabic Book Reviews (LABR) Dataset

Aly et al. [23] manually harvested the largest sentiment analysis dataset for Arabic
from the website Goodreads.com in March 2013. The dataset contained over 63,000 book
reviews in Arabic, rated from 1 to 5. Some operations and data preparations were performed
on the dataset, as presented in the data preprocessing and cleanings section.

3.1.2. Hotel Arabic-Reviews Dataset (HARD)

Elnagar et al. [22] manually built a labeled sentiment analysis dataset from the Book-
ing.com website during June–July 2016. The initial dataset had 981,143 reviews in modern
standard Arabic as well as dialectal Arabic, rated from 1 to 5. Each review had positive
and negative parts that were combined into one review, resulting in 492,907 reviews. After
cleaning, 373,772 reviews remained after reduction, which made up the full unbalanced
HARD dataset. The balanced dataset consisted of 94,052 reviews, with 46,968 positive and
47,084 negative reviews. Table 2 shows the number of samples utilized in the present study
for each dataset setup.



Computers 2023, 12, 126 9 of 21

Table 2. Arabic Reviews Dataset versions.

Data Set Positive Negative Neutral Total

LABR/2classes/imbalance 42,832 8224 None 63,257
LABR/3classes/imbalance 42,832 8224 12,201 63,257
HARD/2classes/Balance 52,849 52,849 None 105,698

HARD/2classes/imbalance 276,387 52,849 None 409,562
HARD/3classes/imbalance 276,387 52,849 80,326 409,562

3.2. Data Pre-Processing and Cleaning

Datasets usually contain optional dross characters and symbols that may affect the
accuracy and quality of the learning models. In this regard, a clean dataset is recom-
mended in a controlled way to avoid missing important data and make the learning process
more effective. In order to prepare the two datasets for the cleaning phase, the following
procedures were carried out on them:

3.2.1. LABR Preparation

The LABR dataset was used to map ratings 1 and 2 to the negative class, ratings 4 and
5 to the positive class, and rating 3 to neutral. The numbers of negative, positive, and
neutral reviews were 8224, 42,832, and 12,201, respectively, giving a total of 63,257 reviews.
Another version of LABR with two classes was used by omitting Rating 3.

3.2.2. HARD Preparation

For hotel reviews, the balanced dataset was used with two classes that mapped ratings
1 and 2 to negative, ratings 4 and 5 were mapped to positive, and there were no neutral
reviews. The experiments’ dataset, which was employed, had a size of approximately
52,849 for each positive and negative class. Another version of hotel reviews used two
imbalance classes, mapping ratings 1 and 2 to negative and ratings 4 and 5 to positive,
with no neutral reviews. The last version had three imbalance classes that conducted the
same operations for positive and negative and converted rating 3 to neutral. The data
pre-processing and cleaning steps required for the two Arabic datasets are described below:

1. Remove the NAN values.
2. Removing non-required columns by excluding any columns that are not “sentiment“

or “polarity”.
3. Remove any duplicate entries.
4. Map any “positive”, “negative”, or “neutral” values into numbers.
5. Tokenize the text column into separate lists using sent_tokenise from NLTK (https:

//www.nltk.org/, (accessed on 1 January 2022)).
6. Clean the text column using the following steps:

• Remove the English and Arabic punctuation, e.g., <>, _, (), *, &, . . . etc.
• Perform Arabic character normalization, as in [56]. This step is widely used in

Arabic NLP as it aims to unify the letters that can appear in different forms. e.g.,

convert any [ @
�
@


@ @


] to “ @”, “ø” to “ø



”, “ 


ð” to “Z”, “ 
ø” to ”Z”, “ �
è” to “ è” and “À”

to “¼”

• Remove the diacritic “tashkeel”

e.g.,
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• Remove the non-Arabic character by using regular expressions to filter out
languages that use other alphabets.

• Remove any digit, such as 1234.

7. Convert the lists into tokens using word_tokenize from NLTK
8. Stemming the tokens using ISRIStemmer from NLTK, e.g., 	

­J

	

¢
	
�will be 	

­
	

¢
	
�

9. Split the data into training and testing

3.3. Preparing Data for Word Embedding/Text Representation

For converting text into vectors, embedding methods have recently outperformed
traditional text-feature extraction methods, such as bag of words, especially when using a
deep learning model [58]. With word embedding, related words have similar encodings in
an effective dense vector of floating-point value representation. The embedding parameters:
some parameters are possible to specify as the vector’s length, and some parameters are
trainable as weights. In the training phase, weights are learned by the model and for the
dense layer too. The resulting embedded vectors contain similar categories of words that
are closer in proximity [3].

There are several models available for learning word embeddings from raw text, such
as hot vector, Word2Vec developed by Google [59], Glove developed by Stanford [60],
fastText developed by Facebook [61], and Bidirectional Encoder Representations from
Transformers (BERT) developed by Google [62]. A word set of various lengths composed of
each review. Each word in the review was transformed during the data preparation stage
to its corresponding word embedding from a pre-trained distributed word representation.
In this work, two popular neural models used for learning word embedding [63] were
Word2Vec/CBOW and fastText/SG. Table 3 states the setup for both Word2Vec and fastText.

Table 3. Word embedding setup.

Word
Embedding Size Min Count Window Workers SG

Word2Vec 300 1 5 4 0
FastText 300 1 40 4 1

3.3.1. Word to Vector Embedding Model (Word2Vec)

Word2Vec is a neural network model that converts the semantic information for a
given corpus by evaluating the cosine resemblance between the word vectors to understand
the semantic similarity and categorize words as similar or dissimilar vectors. It is used in
different applications, such as sentiment classification, named-entity recognition (NER),
POS-tagging, and document analysis. Word2Vec has two techniques: skip gram (SG) and
continuous bag of words (CBOW) [64]. In this study, CBOW was used after conducting
exhaust experiments, which concluded that CBOW outperformed the SG. SG was trained
to predict the context (surrounding words) of a given word, whereas CBOW was trained to
predict the present word using its context (provided words) [65]. For this work, each review
was represented as a 2D vector with n × 300 dimensions, where n is the number of words in
the review and 300 is the length of the vector’s dimension for each word. This was executed
to ensure that all the reviews were of the same size, and each review’s representation was
padded by zeros to make its length consistent throughout the dataset. This study follows
the same approach used for Twitter sentiment analysis with CNNs and LSTMs [66].

3.3.2. FastText Embedding Model

FastText is an efficient, fast, and open-source architecture developed by Facebook
for text classification [67] in 2016. It operates on the Word2Vec and n-grams principles,
utilizing the information in the sub-words. In fastText, the words are divided into subwords
(n-grams) and then fed into the neural network for learning the embedding. As a result,
words that do not exist in the vocabulary can be constructed using their constitutive
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n-grams, allowing fastText to outperform Word2Vec and Glove in situations where a non-
vocal word cannot be obtained after training [67]. FastText has two techniques: skip gram
(SG) and continuous bag of words (CBOW). In this study, the experiments showed that SG
yields better results and outperforms CBOW.

This study adopted the same approach as [17]. Each review was represented as a 2D
vector with n × 300 dimensions, where n is the number of words in the review and 300 is
the length of the vector’s dimension for each word. This was performed to ensure that all
reviews were of the same size, and each review’s representation was padded by zeros to
keep its length consistent throughout the dataset. Table 3 shows the word embedding setup.

3.4. Deep Learning Models

Implementing a proper model design for deep learning networks such as CNN and
LSTM is like a black box because it depends on the problem and the corresponding datasets,
which require different pre-processing steps and adjustments. Consequently, the perfor-
mance is affected by the architecture [54,55]. Many structural hyperparameters (such as
the number of filters, the depth of the number of convolutional and fully connected layers,
and the number of units in fully connected layers) should be carefully tuned according
to a given dataset. However, this is a challenging process since it is unpredictable how
these hyperparameters interact to determine how well the developed model performs [68].
The handcrafted design is one methodical approach to developing CNN network architec-
ture; however, it requires much human experience and work to manually adjust the CNN
architecture’s hyperparameters and use a variety of trial-and-error techniques [69].

The incoming part illustrates the implementation of the three proposed models using
CNN, LSTM, and the hybrid CNN/LSTM. In this work, the design phase for all proposed
models was handcrafted to explore more model generalization.

3.4.1. The Proposed Arabic Sentiment Analysis Using CNN

In this section, the implementation of the proposed Arabic Sentiment Analysis model
using the CNN architecture has been illustrated. In the proposed CNN architecture,
Figure 2 shows the parts of the two key stages of the proposed system, feature extraction
and classification.
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Figure 2. The proposed CNN architecture for Arabic Sentiment Analysis.

The CNN model generally starts with an embedding layer to represent words as dense
vector representations. Then, after that, there are blocks of convolution, normalization,
max-pooling, and dropout layers that follow each other. Finally, followed by a connected
layer producing output results [70]. CNN is motivated by biological research on biological
vision mechanisms [71], which necessitates less training data [72]. Initially, it was designed
for image recognition. However, the CNN model has been effectively used in NLP tasks
such as text classification [73]. It is a convolution-based feed-forward neural network. The
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convolutional layer is utilized as a feature extraction layer that is composed of multiple
filters to extract local feature vectors inside a multi-dimensional field [74]. Then, the output
features from the convolutional layer are usually pooled or sub-sampled to smaller dimen-
sions to reduce the computational complexity. Finally, the output is entirely represented by
the last layer in CNN [75].

In this research, the CNN sequential model has been developed by using 18 building
blocks, including one embedding layer as an input to the proposed model, one output layer,
and two stacked one-dimensional (1D) convolutional layer blocks. The model also includes
two fully connected hidden layers (FCLs) for text classification.

For the input layer, two-word embeddings were implemented based on the pre-trained
Word2Vec and fastText models. The second layer was made of two one-dimensional
(1D) convolution layers in which a padding option called “same” was used to keep all
inputs in the same dimensions. Thirty-two feature maps with a kernel size of three were
employed in the second convolutional layer as compared with 16 feature maps with a
kernel size of three for the first convolutional layer. The ReLU activation function was
used for both one-dimensional (1D) convolutional layers. The batch normalization layer
following each convolutional layer was used to avoid the overfitting problem [69]. It
reduced overfitting because of its regularization effect [76]. Moreover, the dimensionality of
the feature maps produced by the convolution layer was minimized using the max pooling
1D layer. A pool size of three and two was used after the first and second convolutions,
respectively. The dropout layer, following the previous layer, was used to reduce overfitting.
It was configured randomly to remove 10% and 15% of the first and second convolution
layers, respectively. The final layer was the dense layer, whereby two dense layers were
used, one in the hidden layer with 1024 neurons and another in the output layer. The
output layer’s number of neurons was configured according to the dataset’s number of
classes (one for binary and three for multi-class). The binary classification for this last layer
was performed using the sigmoid function, and the multi-classification was performed
using the Softmax activation function.

3.4.2. The Proposed Arabic Sentiment Analysis Using LSTM

This paragraph demonstrates the implementation of the proposed Arabic Sentiment
Analysis using the LSTM architecture. It generally starts with an embedding layer to reflect
words as dense vector representations, followed by a feature extraction layer with one
LSTM layer of 16 units. The final classification layers are two fully connected layers: the
first one is in the hidden layer with 1024 neurons, followed by two normalization layers
and a dropout layer. The output layer’s number of neurons is configured according to
the dataset’s number of classes (one for binary and three for multi-class). The proposed
LSTM architecture is shown in Figure 3, which demonstrates the basic parts of the proposed
system’s two key phases: the feature extraction phase and the classification phase.
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3.4.3. The Proposed Arabic Sentiment Analysis Using CNN-LSTM

The proposed Arabic Sentiment Analysis using a hybrid CNN-LSTM architecture is
based on the two previous models discussed in Sections 3.4.1 and 3.4.2. The first part was
the CNN model, followed by the LSTM model. It started with an embedding layer to
represent words as dense vector representations, followed by the feature extraction layers
specified in the CNN model. This was followed by one LSTM model as described in the
LSTM model, and finally, two connected layers to produce the output results. The proposed
CNN-LSTM architecture is shown in Figure 4, which also depicts the components of the
system’s two primary phases: the feature extraction phase and the classification phase.
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The hyperparameters used in the basic models were selected after running several
experiments using the trial-and-error method by experimenting with various hyperparam-
eters. Exhaust experiments were conducted to select the best hyperparameter values; the
hyperparameters that delivered the model’s best outcome are shown in Table 4.

Table 4. Tab: The general hyperparameters of deep learning models.

Hyperparameter Value

Batch size 128
Embedding size 300

Embedding model Word2Vec/CBOW-FastText/SG
Embedding Trainable True

Filters 16,32
Epochs 50

Kernel Size [3]
Pool size [2,3]
Verbose 1

Optimizer RMSprop
Activation function Softmax, Sigmoid

Dropout 0.25, 0.10, 0.15, 0.5
Validation split 0.2

Shuffle True

4. Experimental Results

In this section, the experimental settings, configuration, and evaluation measurements
that were measured in this study are illustrated.

4.1. Experimental Setup

The computer used for the experimental setup had the following features: a Windows
10 operating system, an Intel (R) Core (TM) i7-7700HQ processor clocked at 2.80 GHz,
16 GB of RAM, and an Nvidia GeForce (GTX 1050 Ti) graphics card with 4 GB of RAM that
supported the CUDA version 7.1.4 parallel computing platform. Nvidia is an American
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multinational technology company. Google’s Tensorflow was utilized to conduct the
research. It is an open-source framework for building machine learning models that utilizes
Keras’s higher-level API that is built on top of Tensorflow, their implementation, and
deployment, in addition to the open-sourced DL library for Python.

4.2. Evaluation Criteria

To measure the performance of the proposed approaches, two datasets were used
with different setups. The data was split into trained 80% and tested 20%. The vectorized
training and test datasets were input into the CNN and LSTM classifiers. The parameters
of the LSTM and CNN models are as follows: The word embedding dimensions were
300. The number of epochs, the batch sizes, and other parameters took various setups
depending on the word embedding and the classifier model that was used. The ML
classifiers were trained to determine the polarity of the reviews into either positive, negative,
or neutral, if any. Equations (1)–(4) show the definitions of precision, recall, F-measure,
and accuracy, respectively, that were implemented to evaluate how well the proposed
approaches performed.

Precision =
TP

TP + FP
(1)

Recall
TP

TP + FN
(2)

F_measure = 2 × Precision × Recall
Precision + Recall

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively.

5. Results and Discussions

The two performance measurements, accuracy and precision, are considered the main
factors in assessing the three models for all databases. Therefore, the accuracy measurement
was used for our comparisons. Tables 5–7 show the results obtained by the three models for
different versions of the used datasets. Moreover, Table 8 presents the outcomes obtained
by other studies using the HARD and LABR datasets. To compare the accuracy attained
by the models in this study with other studies that utilized the same dataset versions, a
comparative study was carried out.

Table 5. The proposed CNN Experiment Results.

Data Sets Word Em-
bedding Precision Recall F-Score Accuracy

HARD/2Balance
Word2Vec 90.41% 90.34% 90.37% 90.36%

FastText 90.35% 90.34% 90.34% 90.34%

HARD/2Imbalance
Word2Vec 92.43% 87.43% 89.86% 94.68%

FastText 92.76% 87.08% 89.83% 94.69%

HARD/3Imbalance
Word2Vec 84.00% 75.78% 79.78% 86.37%

FastText 84.24% 76.20% 80.02% 86.46%

LABR/2Imbalance
Word2Vec 80.08% 61.57% 69.61% 86.33%

FastText 76.44% 63.33% 69.27% 86.17%

LABR/3Imbalance
Word2Vec 56.23% 43.71% 49.19% 69.72%

FastText 58.29% 41.34% 48.38% 69.54%
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Table 6. The proposed LSTM Experiment Results.

Data Sets Word Em-
bedding Precision Recall F-Score Accuracy

HARD/2Balance
Word2Vec 90.28% 90.20% 90.24% 90.20%

FastText 90.24% 90.19% 90.22% 90.17%

HARD/2Imbalance
Word2Vec 92.86% 86.56% 89.60% 94.58%

FastText 93.07% 86.58% 89.71% 94.63%

HARD/3Imbalance
Word2Vec 83.68% 76.24% 79.79% 86.33%

FastText 84.44% 76.19% 80.10% 86.56%

LABR/2Imbalance
Word2Vec 77.75% 62.77% 69.46% 85.85%

FastText 79.91% 61.55% 69.54% 86.36%

LABR/3Imbalance
Word2Vec 50.69% 41.12% 45.41% 69.35%

FastText 58.70% 43.71% 50.11% 69.28%

Table 7. The proposed CNN/LSTM Experiment Results.

Data Sets Word Em-
bedding Precision Recall F-Score Accuracy

HARD/2Balance
Word2Vec 90.28% 90.24% 90.26% 90.23%

FastText 90.47% 90.36% 90.42% 90.38%

HARD/2Imbalance
Word2Vec 92.53% 87.07% 89.72% 94.63%

FastText 92.16% 86.93% 89.47% 94.54%

HARD/3Imbalance
Word2Vec 84.52% 76.09% 80.08% 86.61%

FastText 83.82% 76.49% 79.99% 86.50%

LABR/2Imbalance
Word2Vec 78.21% 62.50% 69.48% 86.00%

FastText 77.12% 62.35% 68.95% 86.05%

LABR/3Imbalance
Word2Vec 45.85% 39.84% 42.63% 68.64%

FastText 54.09% 40.92% 46.59% 69.09%

Table 8. Performance evaluations compared with other approaches.

2 Balanced 2 Imbalanced 3 Imbalanced

Ref. Study Our
Result Study Our

Result Study Our
Result

[39] 93.58% 90.38% - - 93.28% 86.61%
HARD [40] - - 90.01% 94.69% - -

[20] - - 94.2% - - -

LABR [49] 81.14% 80.2% 86.36% 66.42% 69.71%
[3] - - 82% - - -

5.1. The Proposed CNN Model Experiments Results

The outcomes of the CNN models are shown in Table 5 for the various dataset setups
and the two-word embeddings. The results show that the best results were obtained for
the HARD/2 imbalance dataset compared to other datasets by accomplishing 94.68% and
94.69% accuracy when using Word2Vec and fastText word embedding, respectively. The
proposed model surpassed the existing best research [40] when using HARD 2-imbalance
with a CNN model by accomplishing a 90.01% accuracy compared to our model, which
achieved a 94.69% accuracy. However, the worst results were obtained for the LABR
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3-imbalance, which achieved 69.71% and 69.54% accuracy when using Word2Vec and
fastText, respectively. For this model, Word2Vec outperformed the fastText word embed-
ding in most cases, as in the case of LABR 3-imbalance. However, in the case of HARD
2-imbalance, fastText outperformed Word2Vec. For LABR 3-imbalance, the proposed
model outperformed the result of a study [49] that used a hybrid model that accomplished
66.42% accuracy as compared to the proposed model’s 69.71% accuracy.

5.2. Experiment Results for the Proposed LSTM Model

Table 6 presents the results obtained for the LSTM model using various dataset setups
and two-word embeddings. The outcomes demonstrated that the best outcomes were
obtained for the HARD 2-imbalance dataset, which achieved accuracy of 94.58% and
94.63% for the Word2Vec and fastText word embeddings, respectively. It is possible to
conclude that fastText outperformed Word2Vec. The worst results obtained for the LABR
3-imbalance dataset achieved 69.35% and 69.28% accuracy for Word2Vec and fastText,
respectively. However, for this dataset, Word2Vec outperformed fastText. For this model,
fastText word embedding outperformed Word2Vec in most cases. The proposed model
outperformed the results obtained by Al-Bayati et al. [3] that used the LSTM model and
achieved 82% accuracy for 2imbalance compared with this study’s result of 86.36% accuracy
for the same dataset.

5.3. The Proposed CNN-LSTM Hybrid Model Experimentation Results

Table 7 shows the summary of results for the hybrid model CNN-LSTM using various
datasets and the two-word embedding. The best results were obtained for the HARD
2-imbalance dataset, which achieved accuracy of 94.63% and 94.54% for the Word2Vec and
the fastText, respectively. In general, fastText outperformed Word2Vec in most cases. The
results of this study outperformed the results obtained by Nassif et al. [41] for their hybrid
Bi-LSTM+CNN model and HARD dataset by accomplishing 94.2% accuracy compared to
this study’s accuracy of 94.63%. The worst results were obtained for LABR 3-imbalance.
However, fastText outperformed Word2Vec by accomplishing 69.09% accuracy. The model
outperformed the hybrid model in [49] by achieving 86.36% and 69.71% accuracy on
the LABR 2-imbalance and LABR/3imbalance, respectively, compared to the study that
achieved 80.2% and 66.42% accuracy for the same datasets.

This study’s work surpassed most of the recent works that used the same datasets and
DLs. Table 8 represents some of the previous work’s results compared to this study’s results.

For the HARD 2-imbalance dataset, the proposed models outperformed the results ob-
tained by [40,41] by achieving 90.01% and 94.2%, respectively, compared to the 94.69% achieved
by this study. For the LABR 2-imbalance dataset, the proposed models outperformed the
results obtained by [3,49], by achieving 80.2% and 82%, respectively, compared with this
study’s model, which achieved an accuracy of 86.36%. For LABR 3-imbalance, this study
achieved 69.71% compared to the 66.42% achieved by [49].

In general, the best results were obtained for the HARD 2 - imbalance when using
the CNN model and fastText word embedding. The worst results were obtained for the
LABR 3-imbalance across the three models. Furthermore, the worst results were obtained
when using the CNN-LSTM hybrid model and Word2Vec word embedding. For the
remaining datasets, the obtained outcomes were closed according to the three models and
the word embedding. Figure 5 illustrates the models with word embedding and their
corresponding accuracy.
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6. Conclusions

In this paper, three DL models (CNN, LSTM, and CNN-LSTM) and two-word embed-
dings (Word2Vec and fastText) for sentiment analysis were compared. This paper aimed to
design DL models that are generalized enough to perform on multiple Arabic datasets us-
ing different word embedding techniques. Experiments on HARD and LABR datasets were
conducted with many forms of classification, including binary classes and multi-classes
with balance and imbalance versions. Additionally, in our datasets, incorporating senti-
ment information into word embedding during training produced a beneficial outcome.
In most cases, the fastText embedding outperformed the Word2Vec embeddings. In this
research, word embeddings, feature extraction, and the number of classes were analyzed
to investigate how they affected the classification results. Moreover, the outcomes of the
classification models were reported. Precision, recall, F1 score, and accuracy were merely
some of the performance metrics that were utilized to show how effective the proposed
approach was. The findings of all experiences showed that better accuracy scores were
achieved with the HARD binary classification-imbalance dataset over the three models.
The experiments concluded that fastText word embedding outperformed Word2Vec by
accomplishing 94.69% accuracy as compared to the 94.68% obtained by Word2Vec when
using the CNN model. The worst results were achieved with the LABR 3-imbalance dataset
with the hybrid CNN-LSTM and Word2Vec, which achieved 68.64% accuracy.

For upcoming work, it is intended to utilize several feature extraction techniques to
boost the DL’s performance, such as bag-of-word (BOW), term frequency-inverse document
frequency (TF-IDF), and hybrid techniques. Additionally, it is recommended to investigate
the impact of the hyperparameters, such as word embedding size, hidden unit count,
and feature engineering technique, on overall performance in the sentiment classification
task. DL models with more embeddings must be considered to provide better contextual
information, along with increased and balanced datasets such as the BERT-Transformer [62].
The role of pre-processing methods such as lemmatization and stemming needs to be
investigated by using effective tools, especially for Arabic pre-processing as developed
recently by Obeid Ossama et al. [77]. Moreover, using the character level for sentiment
instead of the sentence level is recommended to enhance the results [39]. Furthermore,
the model used in this paper can be enhanced to recognize more emotions. In that sense,
the model will be more applicable and therefore connected with the multi-model emotion
analysis system and assistive technology [78–81]. Finally, it is recommended to explore
the effects of applying different SMOTE methods to the LABR3 dataset to enhance the
DLs performance.
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