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Abstract: Several malware variants have attacked systems and data over time. Ransomware is among
the most harmful malware since it causes huge losses. In order to get a ransom, ransomware is
software that locks the victim’s machine or encrypts his personal information. Numerous research
has been conducted to stop and quickly recognize ransomware attacks. For proactive forecasting,
artificial intelligence (AI) techniques are used. Traditional machine learning/deep learning (ML/DL)
techniques, however, take a lot of time and decrease the accuracy and latency performance of network
monitoring. In this study, we utilized the Hoeffding trees classifier as one of the stream data mining
classification techniques to detect and prevent ransomware attacks. Three Hoeffding trees classifier
algorithms are selected to be applied to the Resilient Information Systems Security (RISS) research
group dataset. After configuration, Massive Online Analysis (MOA) software is utilized as a testing
framework. The results of Hoeffding tree classifier algorithms are then assessed to choose the
enhanced model with the highest accuracy and latency performance. In conclusion, the 99.41%
classification accuracy was the highest result achieved by the EFDT algorithm in 66 ms.

Keywords: ransomware attacks; cyber threat hunting; proactive approach; Hoeffding trees classifier;
classification accuracy; classification latency

1. Introduction

The rapid growth and widespread internet use have transformed the business land-
scape, providing numerous benefits to businesses operating in various sectors. Utilizing
the Internet as a remote digital business environment offers services such as resource man-
agement, operations analysis, information retrieval, and business forecasting [1]. However,
alongside these advantages, there is an ever-increasing concern within the Internet security
research community regarding the security of online business environments.

Cybercriminals continuously evolve their tactics and develop new forms of malicious
software to target and exploit legitimate businesses. Ransomware stands out among the
various cyber threats because of the severe consequences it causes for its victims. Ran-
somware assaults can wreck an association’s assets, prompting huge financial misfortunes
and reputational harm. Ransomware’s global spread and the development of “Ransomware
as a Service” (RaaS) have increased the risks associated with these attacks even further [1].

In recent years, ransomware attacks have stood out due to their troublesome nature
and their difficulties in recuperation. Most of the time, ransomware locks a victim’s
computer and encrypts their sensitive data, with the attackers requesting a ransom in
exchange for the decryption key [1]. Therefore, ransomware can be isolated into two
primary classifications: locker ransomware, which locks the setback’s framework, and
crypto-ransomware, which scrambles their data. Crypto ransomware has become especially
famous due to the challenges in recuperating encoded information [1].

Researchers have explored how to utilize encryption to shield delicate information
from ransomware attacks and make it safer. One choice is a mixture encryption framework
joining symmetric and asymmetric encryption. The casualty’s information is scrambled
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utilizing vigorous block symmetric encryption strategies, while the symmetric key utilized
for encryption is itself encrypted utilizing the beneficiary’s public key. Only the associated
private key can be used to decrypt the encrypted data [1].

More than 64% of ransomware attacks originate from electronic mail, making it the
most common infection source. Attackers often send phishing emails containing malicious
attachments or links to unsuspecting victims. The ransomware is activated when the
victim interacts with these emails and unknowingly provides their system details to the
Command and Control (C & C) server to obtain the encryption key. The victim’s files are
then encrypted and presented with on-screen messages demanding a ransom payment in
cryptocurrencies such as Bitcoin [1].

Researchers have conducted numerous investigations to proactively identify remedies
for detecting and preventing ransomware attacks. Proactive monitoring using artificial
intelligence (AI) techniques has emerged as an effective approach for proactive forecasting
and timely recognition of ransomware attacks [2]. However, traditional machine learning
(ML) algorithms used for feature extraction can be time-consuming and hamper the proac-
tivity of network monitoring [3]. This has led to a limited exploration of deep learning (DL)
techniques, despite their potential to improve accuracy and latency performance [4].

To achieve the highest levels of accuracy and latency performance in proactive network
monitoring, novel strategies need to be developed [4]. Stream data mining techniques
provide a promising avenue for efficiently processing massive amounts of data. Unlike
batch processing, stream data mining requires only a single pass of the data, enabling real-
time processing and storage of statistical information in main memory [5]. Data streams
can be classified into offline streams, which arrive in periodic bulks, and online streams,
which are processed one at a time and include real-time data from sensors and online
monitoring systems.

This study focuses on utilizing stream data mining techniques to detect and prevent
ransomware attacks. Specifically, we employ the Hoeffding trees classifier as one of the
tree-based classification techniques for stream data mining. We test three Hoeffding trees
classifier algorithms: the VFDT algorithm, the random Hoeffding trees algorithm, and the
EFDT algorithm.

Banks, government agencies, and industrial factories are examples of entities that
stand to gain the most from improved ransomware detection and prevention models.
These organizations often handle sensitive and critical data, making them prime targets
for ransomware attacks. Therefore, implementing proactive monitoring systems that can
protect user data and enhance system security is paramount.

In particular, the research contribution can be listed in the following points:

• Analyzing six articles that involve proactive monitoring models to detect and prevent
ransomware attacks;

• Determining Hoeffding trees classifier as one of the tree-based classification stream
data mining techniques;

• Applying three Hoeffding trees classifier algorithms to the RISS research group ran-
somware dataset using MOA software as a testing framework;

• EFDT algorithm achieves 99.41% classification accuracy as the highest result at the
highest latency performance of 66 ms.

The organization of this article is as follows: in Section 2, the research gap in the field is
discovered by analyzing recent efforts to develop proactive ransomware detection methods.
The research methodology, which includes the general model block diagram, is described
in Section 3. In Section 4, along with a description of the testing environment, the proposed
model for the Hoeffding trees classifier as one of the stream data mining classification
techniques is presented. After acquiring the model’s testing results, a discussion is offered
in Section 5 to further compare current methods with the suggested model. In Section 6, the
paper is summarized along with some recommendations for future research. Appendix A
shows the screenshots of the testing phase of the Hoeffding trees classifier used including
configuration and results using MOA tool.
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2. Related Work

Network monitoring is one solution that is crucial to intrusion detection in general.
System administrators should continue to monitor network activity for unusual activity.
The goal of passive attacks is to secretly gather the system information of the victim in order
to carry out an active attack with more damage. Network monitoring does, however, help
in both passive and active attack prevention. Numerous connection factors, such as but
not limited to geographical data, connection time, and connection count, are tracked and
compared with the values predicted for those factors. A series of proactive preventative
instructions are carried out if it is discovered [2].

Since network edge computing uses network edge rather than conventional remote
servers, it increases the I/O operations rate between network users and resources. Devices
used for edge computing, however, have security flaws. Ransomware is one of the most
common forms of malware in the concepts of network edge computing and IoT. Without
the requirement for the feature extraction procedure, Abdulsalam et al. [3] suggested a deep
neural network model with an autoencoder to monitor the behaviors of the ransomware.
942 benign samples and 582 ransomware samples are used from an open-source dataset.
MATLAB software is employed as a simulation tool. The proposed model’s true positive
rate is 99.7%. De-noising autoencoder based on dropout training will be implemented as
an alternative training method in future work to improve the model’s accuracy to detect
more than ransomware attacks.

Detecting encrypted ransomware attacks through secure socket layer/transport layer
security (SSL/TLS) protocol is a crucial task. Zhang et al. in [6] proposed a system based
on dual generative adversarial networks (GAN) for encrypted ransomware detection. The
system is named a transferred-generating adversarial network intrusion detection system
(TGAN-IDS). Deep convolutional GAN (DCGAN) and transferred GAN (TGAN) are the
two primary parts of TGAN-IDS. DCGAN is based on a convolutional neural network
(CNN) deep learning algorithm. DCGAN optimizes the performance of its generator
(GD) while TGAN is used to optimize its discriminator (DT) performance. TGAN is the
core component of the system since its discriminator (DT) reacts as the final detector of
anomaly behavior. Three websites—Malware Traffic Analysis.net, PacketTotal, and Interac-
tive Online Malware Analysis Sandbox—are used to gather 8175 ransomware instances
from seven different families that are all encrypted with the TLS protocol. A random
sample of 20,000 normal instances is chosen from the CIC-IDS2017 dataset. A computer
running the Ubuntu 18.04 operating system and Python 2.7 as a software development
tool are utilized as the testing environment. According to tests, TGAN-IDS increases clas-
sification accuracy for all seven families of ransomware by an average of 93.8% in 2.44 s.
Improvement to the system is considered in the future to detect more malicious attacks
with enhanced performance.

As a novel idea, Homayoun et al. [7] put out the deep ransomware threat hunting and
intelligence system (DRTHIS) to quickly and effectively identify and hunt the ransomware
threat. After examining the application activities, the long short-term memory (LSTM)
concept and convolutional neural network (CNN) are utilized as the system’s primary
classifiers. Within the first 10 s of the application’s operation, DRTHIS can identify the
ransomware and its family. The suggested model is tested using a dataset of 204 good-ware
samples and 660 ransomware samples. Results indicate that the true positive rate for
DRTHIS is 97.2%. A wide range of deep learning training techniques is being considered
for use in the future to hunt various infections.

A deep learning model based on a neural network algorithm was proposed by
Berrueta et al. [8] as an additional effort. In a client-server architecture, all crucial files
are saved on the servers, and the client only has access to them via a networked file-sharing
service. However, if a crypto ransomware attack was to target only one client accessing
the shared file server, it might infect all the workgroup files. The suggested model tracks
file-sharing traffic to look for unusual actions taken by a crypto ransomware attack, like
reading files, writing the encrypted version of files, and deleting files. A dataset is created
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using 70 samples of crypto ransomware and 50 h of benign applications from users who
accessed file-sharing servers during 2528 working hours. 80% of the formed dataset is used
for training and the remaining 20% is used for testing. Ten additional undiscovered crypto
ransomware samples are exclusively utilized for validation. Among the three algorithms
that were looked at—decision trees, ensemble trees, and artificial neural networks—a
neural network algorithm with three hidden layers was chosen. According to the results,
the model has a false positive rate of 0.004% with more than 2400 h of user working traffic.
99.9% of crypto-ransomware attacks can be detected in an average of 30.2 s. Only Microsoft
Windows desktop and laptop operating systems are considered client computers in this
study; operating systems for mobile phones are not. Since the current version of the model
exclusively addresses crypto ransomware threats, an adaptive version is needed to expand
the model’s usability.

Using ML algorithms, Adamu and Awan [9] analyze the ransomware behaviour
across 5 chosen features out of 30,000 features. The ransomware dataset from the Resilient
Information Systems Security (RISS) research group, which includes 942 examples of good-
ware and 582 examples of ransomware from 11 different families, is used. As a result,
the support vector machine (SVM) algorithm achieves an accuracy of 88.2%. The next
improvement step is believed to be network behavior prediction utilizing machine learning
and agent-based approaches.

Homayoun et al. [10] offer a model with a sequence pattern mining (SPM) technique
to identify crypto ransomware activities in the network. As a dataset, 1624 examples of
ransomware from three different families and 220 typical applications were employed. The
model is trained using the J48, random forest, bagging, and MLP algorithms. The accuracy
of the results in distinguishing between good-ware and ransomware is 99%. For further
research, taking into account stream data mining techniques might be a great option. This
model’s application to the detection of ransomware, IoT platforms, and mobile malware
are all worthwhile research topics.

The authors of [11] conduct a comparison study between batch data mining algorithms
(decision tree (J48) and projective adaptive resonance theory (PART)) and stream data min-
ing algorithms (Hoeffding tree (HT) and OzaBagAdwin (OBA)). The dataset UNSW-NB15,
which includes examples of normal activity and nine different kinds of intrusion network
attacks, is used. The objective is to evaluate the algorithms’ performance for problems
involving binary class and multiclass classification. Streaming algorithms outperform batch
data algorithms in the binary classification problem (HT gets 98.38%, OBA gets 99.67%, J48
gets 94.70%, and PART gets 92.83%), where the algorithms classify the instance as normal
or attack. In terms of latency, HT’s result of 0.91 s is preferred to OBA’s result of 4.08 s.

According to the recently studied literature, current proactive monitoring analysis
approach models [3,6–9] get significantly efficient results in terms of accuracy with imple-
mented techniques, new techniques are still required to provide the best performance in
terms of accuracy and latency. Therefore, these models are facing the ransomware attacks’
rapid evolution. In addition to maintaining high accuracy levels, stream data mining
techniques [10,11] can minimize model latency.

3. Methodology

After examining recent studies in the literature, it is demonstrated that existing ran-
somware analysis approaches lake of an optimum solution with high accuracy and latency
performance, where the model can quickly differentiate ransomware from good-ware.
Therefore, a three-phase methodology is proposed to be used in order to accomplish
our objectives.

3.1. Preparing the Ransomware Dataset

Based on the high latency performance characteristics, three stream data mining
classification algorithms will be selected to be applied to the same dataset used in [3,9]. The
Resilient Information Systems Security (RISS) research group dataset [12] is consisting of
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942 good-ware and 582 ransomware from 11 different families. Data must be organized
in a reliable way for the testing environment to produce correct findings. Monitoring and
analysis of network traffic activity are done to proactively identify and prevent ransomware
attacks. The dataset is preprocessed using Microsoft Excel and the Waikato Environment
for Knowledge Analysis (WEKA) software.

3.2. Configuring Massive Online Analysis (MOA) Software

In this study, MOA software released on 07.2021 will be used as a testing framework.
MOA can analyze on time a massive amount of data with limited memory and time re-
sources. Thus, MOA will help in lowering the latency of network traffic analysis compared
to traditional ML/DL algorithms [13]. However, MOA must be adjusted properly to obtain
proper results. The results of Hoeffding trees classifier algorithms are then assessed to
choose the enhanced model with the highest accuracy and latency performance.

3.3. Evaluating the Experimented Algorithms Accuracy and Latency

We will consider the classification accuracy and latency to assess the tested algorithms.
Through the usage of MOA software, accuracy and latency are both observed and recorded.
Then, ten tests will be run to ensure the correctness of the outputs from the MOA software
for each stream data mining classification algorithm [14–16]. After that, accuracy and
latency mean and standard deviation are determined. MS Excel is used as a calculation
tool. The means are calculated using the AVERAGE() function, and the standard deviation
is calculated using the STDEV.P() function. The last stage is to compare the experimental
findings of the suggested model to all other findings as well as to previously published
approaches. The study conclusion is then made. The overall model block diagram is
illustrated in Figure 1.
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4. Proposed Solution
4.1. Hoeffding Trees Classifier

Hoeffding trees classifier is incremental decision trees suggested by Domingos and
Hulten [17] to be suitable for extremely large datasets. The name of the classifier comes from
a statistical idea known as the Hoeffding bound. Hoeffding bound ensures the certainty
of a choice to separate new child leaves from old nodes according to a specified amount
of passed data samples [13]. Then, leaves carrying the class label only are transferred
to be internal nodes that carry the Hoeffding bound information for the next level [18].
Equation (1) calculates the statistical value for the Hoeffding bound [18,19].

HB =

√
R2ln 1

δ

2n
(1)
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where:
R: range of possible values of instances (Valuemax—Valuemin).
n: number of passing instances in each time interval.
δ: the error tolerance probability (given by the user).
The resulting tree is subject to change according to incoming Hoeffding bound infor-

mation of data samples. It is a ready-to-use classifier after the first data sample is passed.
The accuracy increased as time passed to examine more data samples using a sliding
window. The Hoeffding tree classifier pseudocode [16] is displayed in Algorithm 1.

Algorithm 1 Hoeffding Tree Classifier Pseudocode

1: Let HT be a tree with a single leaf (the root)
2: for all training examples do
3: Sort example into leaf l using HT
4: Update sufficient statistics in l
5: Increment nl , the number of examples seen at l
6: if nlmod nmin = 0 and examples seen at l not all of same class then

7: Compute
−
Gl(Xl) for each attribute

8: Let Xa be attribute with highest
−
Gl

9: Let Xb be attribute with second-highest
−
Gl

10: Compute Hoeffding bound ε =

√
R2ln 1

δ
2nl

11: if Xa 6= X∅ and (
−
Gl(Xa)−

−
Gl(Xb) > ε or ε < τ) then

12: Replace l with an internal node that splits on Xa
13: for all branches of the split do
14: Add a new leaf with initialized sufficient statistics
15: end for
16: end if
17: end if
18: end for

Using just a root node, Line 1 initially constructs the tree structure. Lines 2–18 represent
a loop that examines every instance. Depending on the statistical information included in
each tree node, each instance will be sorted through the tree until it reaches the appropriate
leaf. The node statistics are updated and the number of passed instances is incremented
with every pass (Lines 4–5). The leaf statistical information is sufficient to decide whether or
not further splitting is required. If the instance is not fit within the leaf, the splitting criterion
function (G), which involves information gain, is calculated for the two top attributes (Lines
6–9). Then, the Hoeffding bound is calculated (Line 10). Then, the difference between
the two top attribute gains is examined and compared to the Hoeffding bound. If the
highest attribute exists and G exceeds the Hoeffding bound, splitting with new child nodes
is carried out (Lines 11–12). Finally, initialize each node with the appropriate statistical
data (Lines 13–14). A tiebreak (τ) is introduced by the user to control the unnecessary tree
growth with a default value of 0.05 [16].

Hoeffding trees classifier is utilized in many algorithms. Very fast decision trees
(VFDT), the first algorithm, was created using a Hoeffding tree classifier. VFDT is a
decision tree learning algorithm based on Hoeffding trees. It acquires all Hoeffding tress
characteristics. It offers extra features when the dataset is tiny, or the stream moves slowly
enough to allow rescanning of the passed data samples in order to retain the highest levels
of accuracy. The random Hoeffding tree is the random decision tree for stream data. In a
random decision tree, the tree is built primally without using the training set of data. The
root node is selected at random from one of the attributes in the supplied dataset. The tree
will continue to grow until it reaches its maximum size. The statistical data for each node is
then updated using the training data [20].
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Recently, Manapragada et al. [21] developed an enhanced version of the VFDT al-
gorithm known as the extremely fast decision trees (EFDT) algorithm. The basic idea is
to split a node as soon as a beneficial split is noticed, and then to replace this split with
a superior one when it is noticed. This is accomplished by comparing the worthiness of
the current split attribute with the worthiness of no split choice rather than just the two
top attributes. On the other hand, the traditional Hoeffding trees classifier seeks to only
split the node whenever a better split is discovered, but without reviewing the splitting
decision onwards. This unintentionally helps in concept-driven solving. Hence, EFDT is
an overall-case scenario rather than the concept-adapting very fast decision tree (CVFDT)
algorithm which is primarily intended for the drifting situation. As a result, EFDT produces
fewer errors and learns faster [21].

4.2. Tools
4.2.1. Microsoft Excel

Microsoft Excel is spreadsheets manipulation software. It is dependent upon tables
with rows and columns. A dataset is represented as a file with the comma-separated values
extension (.CSV). Rows indicate the sample instances, whereas columns represent the
attributes [22].

4.2.2. Waikato Environment of Knowledge Analysis (WEKA)

WEKA is an open-source software used to train a machine with different machine
learning algorithms. It is one of the most cutting-edge software that is used to apply data
mining concepts to batch data. It addresses the majority of data mining issues, including
attribute selection, clustering, regression, and classification. It offers more services than just
training, among them the preparation of the dataset and input data visualization [23].

4.2.3. Massive Online Analysis (MOA)

MOA is an open-source framework built in JAVA programming language to manipu-
late machine learning models for stream data. It is specialized and expandable software that
allows researchers to change the present code or even add new functionalities depending
on their demands in stream data mining investigations, as described in [24]. In this research,
MOA software will be used as a testing framework. MOA can analyze on time a massive
amount of data with limited memory and time resources [13]. To obtain the most accurate
results, the testbed tool must be configured. MOA offer an extensive list of implemented
algorithms used in various stream data mining techniques. Regression, clustering, and
classification are a few examples.

4.3. Dataset Preparing

In order to compare the research findings with existing ransomware analysis ap-
proaches, the RISS research group ransomware dataset [12] is utilized. The dataset is
open-source consisting of 942 good-ware and 582 ransomware from 11 different families.
The number of feature headings is 16,830 features [9]. Pre-processing is required in order to
get the dataset ready for use with the MOA testing tool. Since the features heading column
is available in separate (.csv) file, the column is transposed using TRANSPOSE() function
in MS Excel from being column to be the first raw in the main (.csv) file. The feature names
are then changed to their serial numbers, such as feature1, feature2, . . . , and feature16380.
Then, following the feature columns, the ransomware family names, and the label columns
are pushed to the end. The delimiter between data cells is then changed from a tap to a
comma. Then, the main (.csv) file is transform into an attribute-relation file (.arff) using
WEKA software.

Furthermore, WEKA software is used to carry out the feature selection process.
Correlation-based Feature Subset (CFS) algorithm was proposed by Hall, M. A. [25]. CFS is
a filter algorithm that sort feature subsets as per the correlation-based evaluation function.
The purpose is to reduce the entire feature set of a dataset to a subset of features that are
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highly correlated with class and not correlated with one another. In other words, the CFS al-
gorithm will accept a feature if its prediction class level exceeds the other examined features
in an instance space. The CFS algorithm fundamental component is the correlation-based
evaluation function. Ms is the calculated merit of feature subset (S) containing (k) features.
Ms is given by Equation (2).

Ms =
k
−

rc f√
k + k(k− 1)

−
r f f

(2)

The mean feature-class correlation
−

rc f and the mean feature-feature inter-correlation
−

r f f are the two parameters that the formula primarily relies on. The correlation between
each feature and each class is represented by the term “feature-class correlation”, which is
included in the equation numerator. The denominator of the equation includes “feature-
feature inter-correlation”, which is the inter-correlation of each feature with each other.
−

rc f and
−

r f f are calculated using one of three attribute quality measures: symmetrical
uncertainty, Relief algorithm, or minimum description length (MDL) [25].

There are 16,380 attributes in the original set. CFS algorithm reduces the number to
26 features. Then, using the WEKA software’s NumericToNominal filter, the attribute’s
type is transformed from numeric to nominal. Means the “0” then becomes “no” while
the “1” becomes “yes”. The ID Column is then removed, and the samples are then ran-
domized using WEKA software’s Randomize filter. For the more, the family number is
changed to names, and the label values “yes” and “no” are changed to “Ransomware” and
“Goodware”, respectively.

4.4. MOA Software Configuration

Since the RISS research group dataset [12] is labeled, the classification technique is
used. In traditional classification, the holdout set is used with the cross-validation process
in which the time is consumed. The prequential scheme, Evaluate Prequential Delayed
scheme, also known as the interleaved-test-then-train scheme, is a classification mode that
performs testing prior training in level of batches of k instances in stream data. The level
of blocks is used to ensure the speed of classification operation instead of the one-by-one
mode. k indicates the number of instances in a block that the model will evaluate at once.
The accuracy has grown throughout time in which all instances are utilized to get their
maximum potential. Hence, instead of using the traditional holdout set classification mode
where that time is consumed through a dedicated training procedure, this classification
mode will enhance both accuracy and latency performance.

Given that dataset has 1524 instances altogether, the number picked for k is 1000.
Each batch is processed by a sliding window to train the model on the initial window of
100 instances onwards. Every 10 instances are considered as one sample and the memory is
examined. Configuration setting for the classification task in MOA is shown in Table 1.

Table 1. MOA Tool Configuration Setup for Classification Task.

No. Parameter Chosen Value

1 Classification Task Evaluate Prequential Delayed
2 k 1000 instances
3 Initial window 100 instances
4 Training on initial window Enable
5 Training in batches Enable
6 Sample frequency 10 instances
7 Memory check Frequency 10 instances
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5. Results and Discussion
5.1. Results

The study utilized three Hoeffding tree classifier algorithms (EFDT, VFDT, and random
Hoeffding trees) to detect and prevent ransomware attacks. The algorithms were selected
based on the high latency performance characteristics to be applied to the RISS research
group dataset [12] after pre-processing. The testing was performed on a machine with
Windows 7 Home Premium edition, 2.4 GHz i5 Intel CPU, and 6.00 GB RAM. The testing
was conducted using the MOA graphical user interface (GUI).

Figure 2 presents a screenshot of the classification task configuration for the EFDT
algorithm in the MOA software. The configuration steps involved selecting the Evaluate
Prequential Delayed classification mode, choosing the EFDT algorithm as the learner,
selecting the (.arff) file stream generator to input the processed dataset, and using the
Windows Classification Performance Evaluator compatible with the installed Windows OS.
Finally, the configuration process is then continued following Table 1. The default values
are maintained for the remaining fields.
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Once the configuration was completed, the MOA software was ready for testing.
The GUI displayed the task status, including information about the number of instances
evaluated, evaluation time, percentage of instances correctly classified, number of tree
nodes, and number of tree leaves for each classification interval. The GUI also presented
evaluation metrics, such as accuracy and latency, with the current and mean values across
all testing intervals. As it indicates the result after all dataset instances have been evaluated,
the mean value is taken into account.

A ten-time test was conducted using the MOA software to ensure the reliability of the
recorded accuracy and latency metrics [14,15]. Accuracy and latency values were recorded
in an MS Excel sheet for each test. This process was repeated for all three Hoeffding trees
algorithms, with the learner changed accordingly. The remaining screenshots of each
algorithm are accessible in Appendix A.

After obtaining the results from the ten tests for each algorithm, the average and
standard deviation (S) of the accuracy and latency metrics were calculated using the
AVERAGE() and STDEV.P() functions in MS Excel. Table 2 provides a detailed overview of
all the acquired results for the three algorithms.
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Table 2. Results of Hoeffding Trees Classifier Algorithms in RISS dataset.

Test
No.

Hoeffding Trees
(EFDT)

Hoeffding Trees
(VFDT)

Random
Hoeffding Trees

Acc (%) T (ms) Acc (%) T (ms) Acc (%) T (ms)

T1 99.41 60 99.41 70 64.31 40
T2 99.41 80 99.41 70 64.31 30
T3 99.41 70 99.41 90 64.31 30
T4 99.41 60 99.41 60 64.31 30
T5 99.41 40 99.41 70 64.31 30
T6 99.41 90 99.41 60 64.31 20
T7 99.41 40 99.41 70 64.31 10
T8 99.41 60 99.41 60 64.31 10
T9 99.41 80 99.41 60 64.31 10

T10 99.41 80 99.41 70 64.31 10

Avg 99.4 66 99.4 68 64.3 22
S 0 16.2 0 8.7 0 10.8

Acc = Accuracy (%), T = Latency (ms), Avg = Average, S = Standard Deviation.

Based on the results presented in Table 2, the following analysis and interpretation
are made:

1. Accuracy: Both Hoeffding trees classifier algorithms (EFDT, and VFDT) consistently
achieved an accuracy of 99.4% across all ten tests (T1 to T10). This indicates that the
algorithms performed consistently well in accurately classifying instances in the RISS
dataset. On the other hand, the random Hoeffding trees algorithm receives 64.3%
because the starting root node was chosen at random. The Hoeffding tree algorithms
use the Hoeffding bound, a statistical inequality, to make early decisions and avoid
unnecessary computations, making them efficient.

2. Latency: The latency values varied for each algorithm and across different tests. The
EFDT algorithm had an average latency of 66 ms, VFDT had an average latency of
68 ms, and random Hoeffding trees had the lowest average latency of 22 ms. Latency
refers to the time taken to process and classify each instance. The variations in latency
can be attributed to the different splitting criteria and tree construction strategies
employed by each algorithm. With its lower latency, the random Hoeffding trees
algorithm may have a more efficient decision-making process due to its randomization-
based approach, which allows for faster classification. This proposes that it very well
might be more effective regarding handling time contrasted with EFDT and VFDT. In
any case, further examination is expected to decide whether this distinction in latency
is measurably significant. In addition, the standard deviation (S) values indicate the
variation in latency across the ten tests, with VFDT having the lowest deviation of
8.7 ms and EFDT having the highest deviation of 16.2 ms.

3. Performance Consistency: The high accuracy achieved by EFDT and VFDT algorithms
indicates their consistency in correctly classifying instances in the RISS dataset. The
similar accuracy values obtained across all tests suggest that the algorithms are robust
and perform consistently under varying conditions. This consistency can be attributed
to the adaptive nature of Hoeffding tree algorithms, which can update their models
incrementally and adapt to changes in the data distribution.

4. Stability: The low standard deviation values for latency indicate relatively stable
performance across the tests for each algorithm. This suggests that the algorithms are
relatively sensitive to variations in the dataset or testing conditions.

Overall, the results indicate that EFDT and VFDT Hoeffding trees classifier algorithms
performed well in terms of accuracy on the RISS dataset. The random Hoeffding trees
algorithm showed the lowest latency, indicating potential efficiency advantages.
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5.2. Discussion

Analyzing the currently employed approaches in the literature is advised in order to
compare the proposed model findings. From [9], six ML algorithms are used to classify
ransomware from good-ware in the RISS research group dataset. Support vector machine
(SVM) was the most accurate algorithm with 88.2%. Furthermore, authors in [3] used deep
neural network model with autoencoder that gets an accuracy rate of 99.7%. Published
results are shown in Table 3 and illustrated in Figure 3.

Table 3. Accuracy of ML/DL Algorithms Used in Literature.

No. Algorithms (ML/DL) Accuracy (%)

1 Support Vector Machines (SVM) 88.2
2 Random Forest (RF) 84.0
3 Decision Trees (DT) 81.4
4 Bayesian Network (BN) 52.5
5 Artificial Neural Network (ANN) 86.0
6 Logistic Regression (LR) 65.7

7 Deep Neural Network with
Autoencoder 99.7
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After computing the averages of classification accuracy and latency of experimented al-
gorithms, results of accuracy and latency levels are summarized in Table 4 and respectively
shown in Figures 4 and 5.

Table 4. Hoeffding Trees Classifier Algorithms Accuracy and Latency.

No. Hoeffding Trees Classifier
Algorithms Accuracy (%) Latency (ms)

1 Hoeffding Trees (EFDT) 99.4 66
2 Hoeffding Trees (VFDT) 99.4 68
3 Random Hoeffding Trees 64.3 22
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In terms of classification accuracy, both Hoeffding trees as EFDT and VFDT algorithms
produce the highest accuracy results as of 99.4% of ransomware detection. Somehow the
two algorithms resemble each other quite a bit since the EFDT algorithm is an enhanced
version of VFDT algorithm. They are stream data mining classification algorithms. Hence,
the difference will show up as the steam is huge enough. At this point, the latency will
be the basis of the assessment. For both EFDT and VFDT algorithms, the false alarm
percentage is estimated to be 0.6%.

Furthermore, when compared to ML algorithms utilized in literature, they both simi-
larly achieve the highest accuracy. In traditional classification, the holdout set is utilized
along with the time-consuming cross-validation procedure. Evaluate Prequential Delayed
is a classification mode used in stream data mining classification techniques that performs
testing prior training in batches of k instances to ensure the speed of classification operation
instead of the one-by-one mode. The accuracy has grown throughout time in which all
instances are utilized to get their maximum potential, especially with large stream data.
However, when compared to the DL algorithm that gets 99.7% is higher than our model.
DL techniques that involve several layers can increase accuracy.
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On the other hand, the random Hoeffding trees algorithm receives 64.3% because the
starting root node was chosen at random. Hence, the classification process may not benefit
from this attribute selection randomness. Thus, the false alarm percentage is estimated to
be 35.7%.

In terms of classification latency, the EFDT and VFDT algorithms produce nearly equal
results at 66 and 68 ms, respectively. Because the used dataset is fairly small. As the dataset
has a huge number of instances, the difference will be visible. In our situation, for instance,
the dataset has 1524 instances, and the difference is 2 ms. Therefore, it is possible to forecast
that the difference will be 2 s if we have a dataset containing a multiple of 1000 times
instances of the present one.

However, the EFDT algorithm is taken a reasonably short amount of time to classify
the ransomware for only 66 ms. Given that the VFDT algorithm waits before splitting a
node and only splits if a better split is found. It differs from the EFDT algorithm in that it
does not further review the splitting decision. In other words, EFDT splits as soon as it is
confident that the new splitting node is more accurate than the current one. This suggests
that the EFDT algorithm will function more effectively as the dataset grows. The random
Hoeffding trees algorithm, on the other hand, has the highest latency performance, taking
only 22 ms to construct the tree by randomly selecting an attribute as the root node.

To the best of our knowledge, the majority of research in the literature that used
ML/DL algorithms for ransomware detection was more concerned with maximizing
accuracy than minimizing latency. Even though the DL algorithm [3] gets higher than
our model in accuracy, DL algorithms require extensive memory and time resources. On
the other hand, recent rapid growth in ransomware development requires the fastest-ever
proactive detection of ransomware. We adopt that idea in this study by examining the
Hoeffding trees algorithms as one of the stream data mining classification techniques.

In the end, we evaluate the tested algorithms by considering both classification accu-
racy and latency. Therefore, it can be claimed that the EFDT algorithm is the best Hoeffding
trees classifier algorithm in terms of classification performance in detecting ransomware
attacks, with a 99.4% accuracy rate and latency of 66 ms.

6. Conclusions and Future Work

In conclusion, this study aimed to proactively protect users’ systems and sensitive
data from ransomware attacks by introducing an enhanced cyber threat hunting technique.
Through analyzing six proactive monitoring model articles, we proposed an optimized
model to overcome the limitations of existing cyber threat-hunting techniques.

Our approach focused on utilizing the Hoeffding trees classifier as a stream data
mining classification technique to enhance the performance of the cyber threat hunting
technique. Specifically, we employed three Hoeffding trees classifier algorithms: VFDT,
random Hoeffding trees, and EFDT. By detecting and preventing ransomware attacks
early, we aimed to achieve high classification accuracy while minimizing latency in behav-
ioral analysis.

To evaluate our model, we utilized the RISS research group ransomware dataset
after preprocessing it using Microsoft Excel and the WEKA software. The MOA software,
configured as the testing framework, provided the platform for observing the classification
accuracy and latency of detecting ransomware attacks. The testing phase was conducted
on a Windows 7 Home Premium edition machine, featuring a 2.4 GHz i5 Intel CPU and
6.00 GB RAM.

The results of Hoeffding tree classifier algorithms are then assessed to choose the
enhanced model with the highest accuracy and latency performance. Our findings indicated
that the EFDT algorithm achieved the highest classification accuracy of 99.41%, with a
latency performance of 66 ms. These results demonstrate the effectiveness of our model in
enhancing the cyber threat hunting technique through accurate and efficient detection of
ransomware attacks.
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Despite the fact that the relatively small dataset used in this study serves as a proof-
of-concept for our model, it provides significant insights and implications for subsequent
research in this field. Moving forward, we prescribe the accompanying activities to reinforce
our discoveries further:

1. Incorporating real-life network traffic datasets from the industry as input streams will
validate and support our model’s effectiveness;

2. Considering classification latency alongside accuracy when evaluating ransomware detec-
tion and prevention models will offer a more comprehensive performance assessment;

3. Exploring the accuracy and latency performance of other stream data mining classification
algorithms, including rule-based, ensemble-based, nearest neighbors, and statistical-based
approaches, will enable a broader comparison and evaluation of techniques;

4. Developing a hybrid model that combines the accuracy levels of the EFDT algorithm
with the rapid response capabilities of the random Hoeffding trees algorithm could
significantly enhance the performance of the cyber threat hunting technique;

5. Utilizing machines with advanced specifications will further optimize the model’s
performance and scalability;

6. Extending the applicability of our model to accurately and promptly identify other
types of cyber attacks beyond ransomware will enhance its versatility and practicality;

7. Implementing our model as standalone software will facilitate its adoption and us-
age by end users, offering a comprehensive solution for protecting systems against
ransomware attacks and preventing data loss.

By addressing these future research directions, the field of cyber threat hunting and
ransomware detection can advance further, leading to more robust and effective solutions
for safeguarding digital systems and data. Our research contributes valuable insights and
establishes a foundation for continued exploration and improvement in this critical area
of cybersecurity.
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