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Abstract: Web phishing is a form of cybercrime aimed at tricking people into visiting malicious
URLs to exfiltrate sensitive data. Since the structure of a malicious URL evolves over time, phishing
detection mechanisms that can adapt to such variations are paramount. Furthermore, web phishing
detection is an unbalanced classification task, as legitimate URLs outnumber malicious ones in
real-life cases. Deep learning (DL) has emerged as a promising technique to minimize concept
drift to enhance web phishing detection. Deep reinforcement learning (DRL) combines DL with
reinforcement learning (RL); that is, a sequential decision-making paradigm in which the problem to
be addressed is expressed as a Markov decision process (MDP). Recent studies have proposed an ad
hoc MDP formulation to tackle unbalanced classification tasks called the imbalanced classification
Markov decision process (ICMDP). In this paper, we exploit the ICMDP to present a double deep
Q-Network (DDQN)-based classifier to address the unbalanced web phishing classification problem.
The proposed algorithm is evaluated on a Mendeley web phishing dataset, from which three different
data imbalance scenarios are generated. Despite a significant training time, it results in better
geometric mean, index of balanced accuracy, F1 score, and area under the ROC curve than other
DL-based classifiers combined with data-level sampling techniques in all test cases.

Keywords: cybersecurity; reinforcement learning on cybersecurity; information security; web
phishing detection; malicious URL; unbalanced classification; deep reinforcement learning; double
deep Q-Network

1. Introduction

Despite the proliferation of alternative communication tools, such as electronic mes-
sages, mobile applications, and social media channels, email remains a popular communi-
cation method. As business-critical email volumes grow, the need for automated malicious
email recognition tools, such as phishing email detectors and filters, increases. The aim of
phishing is to fool users by posing as other subjects to steal confidential data. The concept
drift identifies non-predictable and frequent time-dependent evolution of some streams
of data, resulting in the absence of stationary data models [1]. This is a common scenario
for web data [2], such as phishing URLs, since these are often ephemeral. Therefore, the
detection techniques that are now effective may no longer be suitable in the future. machine
learning (ML) has proven to be beneficial in addressing the phishing URL classification
problem, since an ML-based system is able to generalize, minimizing concept drift, as
observed in [3]. As a subfield of ML, deep learning (DL) involves algorithms inspired by
the structure and functions of the human brain, the so-called deep neural networks (DNNs).
deep reinforcement learning (DRL) belongs to the DL field, since DNNs are used as esti-
mators of the functions involved in complex reinforcement learning (RL) problems [4]. In
the RL paradigm, an agent interacts with an environment in discrete time steps so that t
denotes a single step, following a trial-and-error strategy. Such interactions assume that
the task to be addressed can be modeled as a Markov decision process (MDP), described
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by the tuple 〈S, A, Φ, fR, ζ〉, where: S represents the observation space; A is the action space;
Φ is a state-transition function Φ : S× A× S → [0, 1], which describes the probability of
observing a state st, taking action at and producing a new state st+1; fR is the so-called
reward function, defined in each t as Rt = fR(st, at); 0 ≤ ζ < 1 is the discount factor, which
balances the contribution of immediate and future rewards. During the training phase,
the agent learns a policy π, allowing it to select the next action according to a probability
function Pe, i.e., π : S → A. The goal of all RL agents is to find an optimal policy π∗

that maximizes the expected cumulative discounted reward, i.e., long-term rewards [5]. The
deep Q-network (DQN) [6] is a classical DRL algorithm that addresses the RL problem by
employing two DNNs and a replay buffer to make learning more stable in the case of a large
S× A space. However, it suffers from overestimation [7], which causes maximization bias
during learning. To reduce this phenomenon, the double deep Q-network (DDQN) was
introduced in [8].

Recent studies focus on the application of DRL algorithms, such as DQN or DDQN, to
detect sophisticated cyberthreats, emphasizing the promising results obtained [9–11]. This
motivated Quang Do et al. [12] to include a DRL framework in their systematic literature re-
view on the use of DL for web phishing detection. However, the list of algorithms belonging
to this field appears to be limited only to the contribution proposed in [13], which is a DQN-
based classifier. The benchmark analysis proposed in [9] shows that DDQN can perform
better than DQN over different cyberthreat detection tasks. Furthermore, the web phishing
classification problem is unbalanced, since in real-life cases, the number of legitimate URLs
is far greater than the malicious ones [14]. The adoption of data-level approaches represents
one of the main strategies for handling data imbalance [15]. These employ undersampling
or oversampling algorithms to adjust the sample distribution within different classes. How-
ever, an undersampling technique could remove relevant instances from the majority class
if it is randomly performed [16]. On the other hand, oversampling techniques increase data
complexity, requiring a longer training time [17] for a DL algorithm, which increases with
the effective model complexity, since it is influenced by data complexity [18]. According
to [12], a long training time is a current limitation of DL models when applied to web
phishing detection problems; therefore, the usage of techniques that result in increased
training time must be avoided. Several data sampling algorithms have been employed
to deal with class imbalance in web phishing classification [19,20]. In some cases, hybrid
techniques, which combine both under- and oversampling methods, have been explored to
handle unbalanced classes in web phishing datasets [21]. However, although mitigated,
the aforementioned disadvantages remain.

This paper presents a DDQN-based classifier to address the web phishing detection
task without using prior data-level balancing techniques. The proposed contribution is a
cost-sensitive approach that takes advantage of the MDP formulation presented in [22],
called the imbalanced classification Markov decision process (ICMDP). In this formulation,
the reward function embeds the data balancing ratio, defined as the ratio between the
number of malicious and legitimate URLs. In such a way, the learner can distinguish the
sample distribution within classes according to the absolute reward value in response
to a classification action. In particular, the (in)correct classification will be (less) more
rewarded, with an absolute value that will be higher for minority and lower for majority
class recognition, respectively.

The contribution provided by this paper is three-fold:

1. It extends the current state-of-the-art in DRL algorithms that addresses the web phish-
ing detection task.

2. It extends the algorithm proposed in [13] since:

• The ICMDP formulation is used to tackle class skew in web phishing detection;
• DQN is replaced with DDQN.

3. It shows a benchmark between the proposed DDQN-based classifier and some state-
of-the-art DL algorithms combined with data-level sampling techniques, in which
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metric scores suitable for unbalanced classification problems and algorithm timing
performance are evaluated.

The remainder of this paper is organized as follows. Section 2 provides some DRL
theoretical framework and a literature review on: (i) the use of DRL for intrusion-detection
purposes; (ii) the approaches for dealing with the unbalanced web phishing classifica-
tion task. Section 3 describes the proposed DRL-based classifier. Section 4 shows the
experimental settings, that is, the description of the methods and materials used in this
paper. Section 5 illustrates the experimental results and their critical evaluations. Lastly,
conclusions with the main findings and insights are reported in Section 6.

2. Background and Related Work
2.1. Reinforcement Learning

Reinforcement learning (RL) agents are generally trained in episodes, each consisting
of a certain number of steps. Given an episode, the sequence of states, actions, and rewards
builds the trajectory or rollout of π. Let k be the index assigned to an episode; the cumulative
discounted reward is defined as CR = ∑∞

k=0 ζkRt+k+1. Then, the objective function to be
optimized can be indicated as Q(st, at) = Eπ [CR|st = s, at = a], and the maximization
problem, which the agent tries to solve, aims at finding Q∗(st, at) = maxπ Q(st, at) for all
s ∈ S and a ∈ A [5].

Q-Learning

One of the most popular RL algorithms, belonging to the class of tabular ones, is
Q-learning [23]. It is based on a lookup table (Q-table) that stores the expected rewards
(Q-values) for actions with respect to each state in the environment. The Q-value update
function for state-action pairs, as expressed in [23], is the following:

Q(st, at)← Q(st, at)(1− α) + α[Rt+1 + ζ max
a∈A

Q(st+1, a)] (1)

where 0 < α ≤ 1 represents the learning rate, which determines how the new value influences
the older one. However, in some applications, billions of possible unique states and several
available actions are required. In such a context, the Q-table requires a large amount of
memory to be stored. Therefore, Q-learning becomes unreliable in practice [4]. To solve such
a problem, DNNs have been adopted to approximate the function occurring in RL problems,
thus providing the opportunity to introduce deep reinforcement learning (DRL).

2.2. Deep Reinforcement Learning
2.2.1. Deep Q-Network

Whenever the S× A space is very large, it will be impractical to evaluate Q-values in
closed form, hence function approximations are used. For example, the deep Q-network
(DQN) [6] employs a DNN such that Q∗(st, at) ≈ Q(st, at, θ), where θ represents a vector
containing DNN parameters. This network, called Q-network, takes the current state and
action as inputs and estimates the Q-value. Furthermore, Mnih et al. [6] proposed two
original contributions: (1) the target network Q̂ and (2) the experience replay. Q̂-network is
used for the target value estimation:

yDQN
t = Rt+1 + ζ max

a∈A
Q̂(st+1, a, θ−) (2)

where θ− represents the Q̂-network parameters. This calculation is not dependent on the
Q-function estimation, since Q̂-network shares Q-network model size, but in every τ step,
the operation θ− ← θ is performed. Experience replay uses a first-in first-out (FIFO) queue,
called replay buffer B, to store an experience tuple et = 〈st, at, st+1, fR(st, at), σt〉 for each
t, where the binary indicator σt determines whether st is a terminal state. In such a way,
during the training phase, to reduce correlations due to the sequencing of observations,
a mini-batch b of experience tuples is selected according to the probability function Ps
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from B. Therefore, b is used to update θ, using a gradient descent algorithm to minimize a
differentiable loss function, which in the case of DQN has the form:

LDQN(θ) = E[(yDQN
t −Q(st, at, θ))2] (3)

In (2), the max operator selects and evaluates actions using the same values. Thus, it
is more likely that these values will be overestimated, i.e., will be chosen every time the
action that results in the highest Q-value for a particular state. This phenomenon, known
as overestimation, affects DQN [7] and introduces a maximization bias in learning, causing
a slowdown in convergence. To reduce such a bias, H. van Haselt et al. [8] introduced the
double deep Q-network (DDQN).

2.2.2. Double Deep Q-Network

The double deep Q-network (DDQN) separates action selection and action evaluation
processes according to the theoretical basis behind the original DQN algorithm [24]. Rather
than using the update function expressed by Equation (1), the DDQN strategy is based on
the update functions shown in [23]:

Q(1)(st, at)← Q(1)(st, at)(1− α) + α[Rt+1 + ζ max
a∈A

Q(2)(st+1, a)] (4)

Q(2)(st, at)← Q(2)(st, at)(1− α) + α[Rt+1 + ζ max
a∈A

Q(1)(st+1, a)] (5)

A Q-function (Q(1)) changes its value according to the value of another Q-function
(Q(2)), and both value functions determine the action. DDQN does not add any new
network compared to DQN, since the Q̂-network is a natural candidate to approximate the
second Q-function [5]. In this case, the target value is calculated as follows:

yDDQN
t = Rt+1 + ζQ̂(st+1, arg max

a∈A
Q(st+1, a, θ), θ−) (6)

Therefore, the Q-network selects the action at that results in the maximum Q-value
of the next state, and the target network computes the estimated Q-value according to
the action at previously selected. The usage of B introduced in DQN is still valid. As a
consequence, during the learning process, a mini-batch b ∈ B is used for updating the main
network parameters, minimizing a differentiable loss function, which in the case of DDQN
has the form:

LDDQN(θ) = E[(yDDQN
t −Q(st, at, θ))2] (7)

The yDDQN
t steps, which are different from those of yDQN

t , can be summarized as
follows: Q-network uses the next state st+1 to calculate Q(st+1, a) for each possible action
in A that can occur in st+1. Thus, the action selection process is implemented by the
operation arg maxa∈A applied in Q(st+1, a), which selects the best action a∗ resulting in the
highest Q-value. Finally, the action evaluation process is performed using the Q(st+1, a∗)
value (evaluated by using the Q̂-network) that belongs to the action a∗ (selected by using
the Q-network) to compute yDDQN

t . Note that target value formulas such as (2) and (6), in
the case of a terminal state, i.e., σt = 1, assume a value equal to the current reward Rt.

2.3. Deep Reinforcement Learning for Intrusion Detection

According to [25], current and future research directions should converge toward the
exploration of DRL techniques for intrusion-detection purposes. T.T. Nguyen et al. [10]
evaluated the increased usage of DRL to solve complex cybersecurity problems in differ-
ent application fields such as cyberphysical systems security, game theory for attacking
purposes, and intrusion-detection systems. In [11], a review of the applications of DL-
based algorithms in the cybersecurity domain is provided, listing several DRL-based
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algorithms used for different cybersecurity purposes, such as intrusion and/or malware
detection/prevention. An extended review of several DRL algorithm applications in
the cybersecurity field is provided in [26], focusing on DRL applications for Internet of
things (IoT) and modern networks protection; adversarial attacks on existing ML classifier
generation; network intrusion detection and prevention as a binary classification task.

In this regard, the usage of DRL for intrusion-detection purposes is analyzed in [9]. In
particular, it takes into account four DRL algorithms, such as DQN, DDQN, policy gradient
(PG), and actor critic, and compares them with several ML algorithms on NSL-KDD and
AWID datasets. The obtained classification scores show that DDQN outperforms the other
DRL-based algorithms. In addition, the resulting scores are comparable to those achieved by
support vector machine (SVM) in NSL-KDD and shallow learning algorithms in AWID.

In [27], Y. Liu et al. proposed a deep deterministic policy gradient (DDPG) algorithm
for denial of service (DoS) and distributed denial of service (DDoS) flooding attack miti-
gation on software-defined networks (SDNs). The proposed DDPG has been compared
with common router-throttling methods in a simulated environment, resulting in a better
mitigation effect against DDoS attack.

In [28], the authors address the network intrusion-detection problem through a multi-
agent collaborative reinforcement learning framework, called Major-Minor-RL. It is based
on a DDQN agent combined with several minor agents that support the decision-making
process of the major agent using a different observation space. This framework has been
evaluated on the NSL-KDD dataset, resulting in very promising classification performances
compared to those achieved by traditional ML and DL algorithms.

In [29], the network intrusion-detection task is tackled using a semi-supervised ver-
sion of the DDQN algorithm. In particular, DDQN is combined with two unsupervised
learning algorithms, i.e., autoencoder (AE) and K-means. The method, called SSDDQN,
has been evaluated on the NSL-KDD and AWID datasets, resulting in good classification
metric scores.

In [30], the authors present a DQN-based intrusion-detection system, where the agent
is rewarded positively or negatively for correctly predicting intrusions. Such an approach
has been evaluated using the UNSW-NB15 and NSL-KDD datasets. A preliminary analysis
was performed to correctly tune the agent hyperparameters; then, the optimized DQN was
compared with several ML and DL algorithms, achieving better classification performances.
The same datasets are used by Y.F. Hsu in [31], where a DQN-based intrusion-detection system
is proposed in combination with peculiar pre-processing and feature selection strategies. The
DNNs used in DQN are tuned according to the results provided by the Adadelta optimizer.
This approach has been compared with different ML algorithms such as SVM, multi-layer
perceptron (MLP), and random forest (RF). The results obtained show that DQN achieves
better accuracy and precision scores than other classifiers.

In [32], a DQN-based classifier has been evaluated on the NSL-KDD dataset, obtaining
better true positive rate results than baseline classifiers, such as RF, MLP, and SVM. As a
consequence, the DQN-based solution results in a better dependability property.

Caminero G. et al. [33] used DQN both as an environment and as an agent classifier
to propose the so-called adversarial environment RL (AE-RL). The first agent selects the
sample, i.e., the observation that will be used during the next training step, while the
second one classifies the current observation. AE-RL has been tested on NSL-KDD and
AWID datasets, outperforming the compared classifiers.

In [34], the DQN is combined with a convolutional neural network (CNN) to realize
a novel network intrusion-detection framework at the packet level. One of two different
kinds of CNN is used as a feature learning layer to transform network packets into images;
then, the output is passed to the DQN classifier that estimates Q-values to compare with
an anomaly threshold. The combination between CNN and DQN outperforms RF, SVM,
Adaboost, CNN, and the combination between CNN and PG, among the tests performed
using the CICDDoS2019 dataset.
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Alavizadeh H. et al. [35] use a DQN-based classifier for network intrusion-detection
purposes, using hyperparameters optimally tuned to enhance agent learning capabilities.
In this way, the agent can effectively classify anomaly packets within NSL-KDD, achieving
a better accuracy score than the self-organizing map (SOM), SVM, Naïve Bayes SVM, RF,
and bidirectional long short-term memory (BiLSTM) classifiers.

To the best of our knowledge, the only implementation of a DRL-based classifier for
web phishing detection is the one proposed by M. Chatterjee and A.S. Namin [13]. In
particular, a DQN-based classifier is used, such that the agent is encouraged to recognize
malicious URLs by the effect of a greater reward as a consequence of a correct classification.
Otherwise, a null reward is received by the agent. The DQN-based web phishing detector
has been evaluated using the Ebbu2017 Phishing dataset, achieving promising classification
metric scores. However, in [13], the data imbalance has not been taken into account since
the agent is rewarded independently of the class to which the observed sample belongs.
Furthermore, according to [9], a DDQN has to be explored for network intrusion-detection
scopes, such as the one addressed in our work.

2.4. Handle Class Imbalance in Web Phishing Classification

Several cybersecurity problems suffer from class imbalance. In [36], the authors
analyzed different sampling algorithms to tackle class imbalance in cybersecurity datasets.
Bootstrap aggregation (BAGGING), synthetic minority oversampling technique (SMOTE),
random undersampling (RUS), and class balancer were analyzed. These were combined
with several ML classifiers and address the class imbalance present in the UNSW-NB15
dataset. The synthetic minority oversampling technique (SMOTE) results in better average
performances than other sampling techniques.

The investigation proposed in [37] extends the analysis using other techniques such as
adaptive synthetic (ADASYN), Tomek-Link (T-Link), and T-Link with ADASYN combined
with DL models, such as MLP, CNN, and a combination between a CNN and a particular
type of recurrent neural network (RNN), that is, a BiLSTM. Furthermore, the evaluation of
sampling techniques is extended, considering the combination between random undersam-
pling (RUS) and random oversampling (ROS). This analysis is performed using the NSL-KDD
dataset. The results show that the proposed CNN, combined with the aforementioned data-
level sampling techniques, performs better in binary classification tasks, while in multiclass
problems, MLP achieves better performances than other DL models.

Web phishing classification is one of the main cybersecurity problems suffering from
data imbalance [14]. Several ML classifiers, such as decision tree (C5.0), SVM and naïve
Bayes have been evaluated in different imbalance data scenarios in [38]. Each of them
is obtained by varying the imbalance factor, defined as the ratio between the number of
samples within the minority class with respect to the number of samples within the majority
class. The proposed investigation regards the evaluation of the area under receiving
operating characteristic (AUC) for different imbalance ratio values. The results show that
the compared classifiers achieved higher AUC when the imbalance ratio is equal to 0.25 for
C.50 and naïve Bayes.

In [20], three different data-level techniques are used, i.e., RUS, ROS, and SMOTE,
combined with several ML algorithms, to conduct an extended comparison on unbalanced
web phishing classification. The evaluated classifiers are: (i) logistic regression, (ii) SVM,
(iii) decision tree, (iv) RF, and (v) stochastic gradient descent (SGD). The benchmark
performed on the Kaggle website dataset shows that RF outperforms the other classifiers
when combined with ROS.

In [39], the unbalanced dataset is divided into phishing and legitimate categories.
Then, the training dataset is obtained using 90% of the phishing samples and the same
quantity of legitimate samples. In particular, the number of samples within the majority
class is reduced using the RUS technique. The remaining data are used as a test set for
evaluating RF, SVM, logistic regression, naïve Bayes, and Adaboost. Among the classifiers
compared, RF achieved the best accuracy and detection rate values.
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In [40], a semi-automated feature generation for phishing classification (SAFE-PC), which
is a classifier based on ensemble learning capable of handling the unbalanced nature of web
phishing, is proposed. In particular, the classifier used is a RUS-Boost algorithm, which is
preferred to a SMOTE-Boost, since the adoption of SMOTE results in a higher number of
training samples and, consequently, in a higher training time. Furthermore, SMOTE is more
computationally expansive than RUS, which handles data imbalance randomly.

In [19], the authors address the web phishing classification task employing Salp Swarm
and Emperor Penguin metaheuristic optimization algorithms to tune a DNN classifier. This
approach has been evaluated using the Mendeley web phishing dataset, which is initially
processed to reduce the number of features, and the data imbalance level through principal
component analysis (PCA) and SMOTE, respectively. Performance evaluation focuses
on reducing training time with respect to a neural network that does not employ any
hyperparameter optimization. The classification performance has been evaluated using the
accuracy metric, which is the same for all approaches compared.

In [41], the SMOTE technique is used to adjust the distribution of data within the UCI
web phishing dataset, resulting in an overall improvement in classification performance for
SVM, RF, and XGBoost.

S. Priya et al. [42] combined ADASYN with an Adadelta optimizer-based DNN to
present a DL-based algorithm for handling the concept drift due to data imbalances in web
phishing classification tasks. The algorithm has been evaluated on three different datasets,
showing better performance as a web phishing classifier than several ML models, such as
K-nearest neighbor (K-NN), naïve Bayes, etc.

In [21], SMOTE as an oversampler and one-sided selection (OSS) as an undersampler
and their combination as a hybrid technique are employed to handle data imbalances in web
phishing classification. The dataset used is the UCI Websites, and the algorithms evaluated
are SVM, MLP, decision tree (C4.5), and K-NN. MLP combined with OSS-SMOTE achieves
the best accuracy and geometric mean scores.

In [43], SMOTE is applied to address the UCI dataset class skew. Then, several
classifiers were evaluated using both balanced and unbalanced dataset versions. As a result
of the SMOTE application, a marginal improvement was observed for some algorithms.

In [44], a cost-sensitive variant of XGBoost is presented to address the unbalanced
classification problem of malicious URLs. This is realized by introducing a cost-sensitive
factor into the classifier loss function to weight misclassification cases. Such an approach
has been compared with the classical XGBoost and with the XGBoost combined with
SMOTE, resulting in better problem-specific metric scores. A novel approach to detect
malicious URLs, mitigating the concept drift, is presented in [45]. In this case, the class
imbalance is tackled using the RUS technique.

In [46], the problem of class imbalance is addressed through a two-module framework.
The so-called combining module is delegated to tackle the class skew as it embeds a cost-
sensitive DNN metaclassifier. This framework has been compared with CART and ensemble
learning methods, resulting in a better F1 score for different class imbalance ratio values.

In [47], a novel malicious URLs detector, based on a combination of a deep AE (DAE)
and a CNN, is presented. First, the DAE defines the URL template, considering only
legitimate URLs to cope with the class imbalance. According to such a template, an
abnormal score is defined, and then, the CNN uses it to improve the phishing URLs
detection rate. This approach has been evaluated using three different datasets with
different values of balancing ratio, resulting in promising classification scores.

In [48], the imbalance data problem is addressed using a generative adversarial network
(GAN) to synthesize new samples for the minority class. Furthermore, a CNN is combined
with a multi-head self-attention mechanism to realize the malicious URLs classifier. In several
tests performed, GAN results in better classification metrics compared to those obtained using
the SMOTE technique. A GAN is also used in [49] to adjust the distribution of unbalanced
malicious URLs. Furthermore, since GAN can create many synthetic samples of the minority
class, the K-means algorithm is used to select the most representative.
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Naim O. et al. [50] address the identification of malicious websites at page-level
design. Therefore, starting from a URL, it is classified as malicious or legitimate according
to the features of the website to which it points. Two classification algorithms have been
evaluated for such a purpose, i.e., DNN and ensemble learning. The class imbalance is
addressed by employing the RUS technique. This strategy has been preferred to the use
of data augmentation of samples within the minority class, since the latter results in an
active manipulation of the original data distribution. Such an operation alters the accurate
representation of a real-life scenario.

3. Combining ICMDP with DDQN for Unbalanced Web Phishing Classification

To address the problem of detecting phishing websites, this paper proposes a DRL-
based classifier. The employed paradigm requires that each URL must be pre-processed to
transform the categorical data into a numerical vector. Therefore, given a collection of URLs
U , it must be represented as a matrix V ∈ R|U |×n. In particular, a function fT : U → V
transforms each u ∈ U into an integer vector v ∈ V, composed of n features extracted from
the original URL. As a result, the vectorized collection V can be used as an experience by
ML algorithms to perform classification tasks.

3.1. ICMDP Environment Setting

To model the RL environment, each element of the MDP tuple is set according to the
ICMDP formulation [22] as follows:

• The observation space S is given by the training set, i.e., S ⊂ V. As a consequence,
each training sample represents an observation st on a given t. In our model, positive
samples are the phishing URLs and represent the minority class denoted with SP. On
the other hand, the negative class comprises legitimate URLs representing the majority
class SN . Hence, S = SP ∪ SN .

• The action space A consists of the set of predictable class labels. In particular, A = {0, 1},
where 0 and 1 are the negative and positive sample labels, respectively. Therefore,
π : S→ A guides the agent classification actions according to Pe.

• The reward function fR gives feedback on the quality of classification actions performed
by the agent during its learning phase. In particular, the agent is positively rewarded if
it correctly classifies a sample belonging to SP, i.e., if the action performed results in a
true positive (TP). On the contrary, the agent is negatively rewarded if the classification
action performed on a sample belonging to SN results in a false positive (FP). The
classification actions related to samples belonging to the majority classes are rewarded
based on the actual balancing ratio ρ = |SP |

|SN |
∈ [0, 1]. In particular, −ρ corresponds to

a misclassification of a sample belonging to SP, i.e., a false negative (FN); otherwise, ρ
is assigned to a correct classification of a sample belonging to SN , i.e., a true negative
(TN). Since Rt of the minority class is higher (in absolute value) than that of the
majority class, the agent will be more sensitive in classifying samples belonging to SP.
Finally, Rt can be expressed as:

Rt = fR(st, at, lt) =


1, at = lt and st ∈ SP

ρ, at = lt and st ∈ SN

−1, at 6= lt and st ∈ SP

−ρ, at 6= lt and st ∈ SN

(8)

where lt ∈ {0, 1} refers to the true value of the class to which the observed sample
st belongs. Furthermore, ρ = 1 ⇐⇒ |SP| = |SN |, and under such a hypothesis, the
reward changes in a formulation as well as in the same expression used in [13].

• Following the definition of S, the states-transition probability function Φ is determinis-
tic, since the agent moves from st to st+1 according to the order in which the samples
appear in S.
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Hence, for each t, the agent analyzes a training sample st and then predicts the class to
which it belongs. Given Rt in (8), the CR is maximized if the agent correctly classifies the
samples. Finally, a generic training episode ends when one of these two events occurs:

• All the samples within S are classified.
• The agent classification action results in a FP.

Therefore, a training episode has length N , which is 1 ≤ N ≤ |S|.

3.2. Reward-Sensitive DDQN Training Phase

According to [9], the adoption of a DDQN is proposed in this paper to avoid the
overestimation problem that occurs by using a DQN. Thus, the goal of the agent is to
achieve an optimal classification policy, say π∗, such that:

π∗(a|s) =
{

1, if a = arg maxa Q∗(s, a)
0, otherwise

(9)

As discussed in Section 2.2, this is achieved by optimizing (7), i.e., updating the
Q-network parameters by computing the partial derivative as follows:

∂LDDQN(θk)

∂θk
= −2× ∑

e∈B
(yDDQN −Q(s, a, θk))×

∂Q(s, a, θk)

∂θk
(10)

It is essential to observe how Rt formulation (8) influences the learning process, as
shown in [22]. Therefore, the yDDQN defined in (6) changes as follows:

yT
P = 1 + (1− σt)ζQ̂(st+1, arg maxa∈A Q(st+1, a)), target for TP

yT
N = ρ + (1− σt)ζQ̂(st+1, arg maxa∈A Q(st+1, a)), target for TN

yF
P = −1 + (1− σt)ζQ̂(st+1, arg maxa∈A Q(st+1, a)), target for FP

yF
N = −ρ + (1− σt)ζQ̂(st+1, arg maxa∈A Q(st+1, a)), target for FN

(11)

To simplify the notation, an indicator function I(at, lt) is introduced, grouping all
target expressions in (11) per class. Furthermore, derivative (10) can be expressed as the
sum of the derivatives of the loss functions associated with samples belonging to minority
and majority classes, respectively. Therefore, the resulting equation is composed of three
terms, namely T1, T2, and T3:

∂LDDQN(θk)

∂θk
= −2× (T1 + T2 + T3) (12)

where:

T1 =
|S|

∑
m=1

((1− σm)ζQ̂(sm+1, arg max
a∈A

Q(sm+1, a, θk−1))−Q(sm, am, θk))×
∂Q(sm, am, θk)

∂θk
(13)

T2 =
|SP |

∑
p=1

(−1)1−I(ap=lp) ×
∂Q(sp, ap, θk)

∂θk
(14)

T3 = ρ×
|SN |

∑
n=1

(−1)1−I(an=ln) × ∂Q(sn, an, θk)

∂θk
(15)

Here, T2 = T3 ⇐⇒ ρ = 1. In the case of an unbalanced problem, T3 does not
dominate T2 due to the ρ effect. Thus, introducing ρ into Rt results in minimizing the
impact of T3 on LDDQN(θ) in the case that samples from the majority class outnumber
those of the minority. As a result, the bias due to class skew is avoided.
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4. Experimental Setup

This section reports the methods and materials used during the algorithm performance
evaluation. First, the selected dataset and metrics are described. Then, the implementation
details of the proposed DDQN-based classifier and the benchmark algorithms are discussed.

4.1. Web Phishing Dataset Description

In this paper, the Mendeley dataset [51,52] is used. According to [53], it represents a
state-of-the-art dataset for the web phishing detection problem. In addition, it has been
selected since it consists of nearly twice as many samples from the majority class as from
the minority class. In Table 1, the Mendeley dataset main characteristics are reported.

Table 1. Mendeley main characteristics.

No. Phishing URLs No. Legitimate URLs No. Features

30,647 58,000 111

The selected dataset is a collection of vectorized URLs and consists of a set of numerical
features, allowing for the implementation of a cross-language model. Furthermore, some
lexical features are independent of any particular web application with a very long lifetime,
in contrast to malicious URLs that are often ephemeral. In detail, Mendeley features are
based on the decomposition of the original URL into four parts: (i) domain, (ii) directory,
(iii) file, and (iv) parameters. For each URL segment, a series of numerical or boolean
features are taken into account. In particular, some of them are (a) the domain length,
(b) the length of URL query, (c) the number of characters in the form of special characters
or letters found in the URL, (d) a boolean value to check the existence of HTTPS, etc.
Furthermore, there are some statistical features that determine whether the URL is indexed
in search engines such as Whois or Google, or that rank the popularity and importance of
the web page on the Internet.

In this work, the dataset has been split into training and test sets using a holdout
strategy. In particular, 75% is considered training data, and the remaining 25% represents
the test data. Then, the samples within SP are randomly removed to generate two new test
cases; thus, three different data imbalance scenarios are obtained as shown in Table 2.

Table 2. Different test cases for different ρ values.

|SP| |SN | ρ

23,012 43,473 0.529

13,012 ↑ * 0.299

6506 ↑ 0.149
* The symbol ↑ assigns to the current cell the same value of the above one.

4.2. Metrics Used to Evaluate Classification Performance

For evaluation purposes, we select some conventional classification metrics, such as
precision, recall (or true positive rate) (TPR), F1 score, defined in Equations (16)–(18), and
area under the receiver operating characteristic curve (AUC).

Precision =
TP

TP + FP
(16)

TPR =
TP

TP + FN
(17)

F1 Score = 2× TPR× Precision
TPR + Precision

(18)
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According to [54], a high AUC value results in a model robust against class imbalance.
Furthermore, the F1 score can work well when data are unbalanced since it represents the
harmonic mean of precision and TPR. However, since the positive class is the minority
one, the class skew can influence both Equations (16) and (17). As a consequence, to better
analyze the unbalanced scenario, the evaluation has been extended by considering the
following problem-specific metrics.

• Geometric mean: In binary classification problems, the geometric mean (G-Mean) is
calculated as the square root of the product between the TPR and the true negative
rate (TNR), where TNR = TN

TN+FP . It measures the balance between classification
performances in both minority and majority classes in terms of TPR and TNR, respec-
tively. A very high value of TPR (TNR) can be due to a biased classification that cannot
handle data imbalance. This scenario will not result in an acceptable G-Mean value.

G-Mean =
√

TPR× TNR (19)

• Index of balanced accuracy: Introduced in [55], it measures the degree of balance be-
tween two scores. This is achieved using the so-called dominance Υ, which is computed
as the difference between TPR and TNR. Since TPR, TNR ∈ [0, 1]→ Υ ∈ [−1, 1]. As a
consequence, both rates are balanced if Υ is close to 0. The correlation of the G-Mean (for
simplicity, the authors suggest the use of G-Mean2) and the Υ results in a curve, namely
balanced accuracy graph (BAG). The index of balanced accuracy (IBA) is defined as
the area of the rectangle obtained considering the following series of points in the BAG:
{(−1, 0), (−1, g), (a, g), (a, 0)}, where the point (a, g) represents the trade-off between
G-Mean2 and Υ. The highest IBA value corresponds to (a, g) = (0, 1). The weighting
factor 0 ≤ γ ≤ 1 is introduced to make the influence of Υ more stable. In our experiments
γ = 0.1, according to the default value of the Imbalanced-learn library [56].

IBA = (1 + γ× Υ)× (G-Mean)2 (20)

4.3. DDQN-Based Classifier Implementation Details and Hyperparameter Settings

To implement the model, we take advantage of the source code provided in [57],
containing a Python 3.8 implementation of a custom environment for the binary classifi-
cation of unbalanced datasets and a DDQN agent. Figure 1 shows the implementation
workflow providing the main function blocks. Furthermore, the following main libraries
have been used: (i) Pandas [58] and Numpy [59] to process input data; (ii) OpenAI Gym [60]
to implement the ICMDP environment; (iii) Tensorflow [61] to develop the DDQN Agent;
(iv) Scikit-learn [62] and Imbalanced-learn [56] to compute metrics.

According to one of the hyperparameter configurations suggested in the original
implementation, the discount rate is set to ζ = 0.1. The update Q̂−network parameters
(θ− ← θ) period τ consists of 800 steps. From the model size perspective, two hidden layers
for each involved DNN (Q and Q̂) are used, with 256 neurons each. Each node is activated
by a rectified linear unit (RELU) function. The agent exploration is performed according
to the well-known decayed-ε-greedy, with a decaying period set to 104 and εmin = 0.5.
Furthermore, Ps is given by a random uniform strategy to sample b from B, where for each
episode |B| = 2× 103. The hyperparameters adopted to update the Q-network parameters
by minimizing LDDQN(θ) are reported in Table 3.

Table 3. DDQN-based classifier hyperparameter configuration for loss optimization.

No. Training
Episodes Optimizer α * b **

105 Adam 2.5× 10−4 128
* α represents the learning rate. ** b represents the size of the mini-batch sampled from the replay buffer B.
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Figure 1. Proposed classifier workflow. In this figure, π∗ represents the optimal classification policy
learned by the agent.

4.4. Deep Learning Classifiers and Data Sampling Techniques Selected for Benchmark

This section describes each algorithm compared with the DDQN-based classifier.
Since the proposed model extends the systematic review on DL for web phishing detection
proposed in [12], several DL classifiers for benchmark purposes are selected according to
the literature review discussed in Section 2.4. Moreover, these are combined with several
data-level sampling techniques.

4.4.1. Deep Learning Classifiers

As shown in the literature, the following DL algorithms have been combined with
data-level sampling techniques to address unbalanced classification tasks, such as web
phishing detection. Note that to perform a preliminary comparison, the hyperparameters
of the selected DL classifiers are set to obtain a reasonable trade-off between short training
time and a good G-Mean score. The G-Mean trend, during the training phase, is monitored,
since it influences IBA and achieves a score very close to AUC.

• Deep neural network (DNN): This is a conventional feed-forward neural network
having two hidden layers with 256 nodes, with each node having a RELU activation
function. The data are then forwarded to the classification layer, which has a unique
node with a sigmoid activation function.

• Convolutional neural network (CNN): This model combines convolutional and pool-
ing layers. The first aims at detecting local conjunctions between features, while
the second tries to merge semantically similar features into a single one. Therefore,
the convolutional layer extracts the relevant features, and the pooling layer reduces
their dimensions. Finally, a fully connected layer is used to perform the classification.
Datasets that present one-dimensional data, i.e., vector structure, can be processed
using a one-dimensional CNN (CONV1D) [63] layer. In particular, the model employs
a CONV1D layer with 128 filters, 3 as the kernel size, and a hyperbolic tangent activa-
tion function. The data are then forwarded through a flatten layer to a classification
node that has a sigmoid activation function.

• Long short-term memory: This is a model belonging to the class of RNN. Unlike a
classical feed-forward neural network, an RNN can create cycles. The architecture of
long short-term memory (LSTM) introduced in [64] consists of three gates in its hidden
layers, namely an input gate, an output gate, and a forget gate. These entities form the
so-called cell, which controls the information flow necessary for prediction purposes.
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The LSTM used in our experiments has 128 units (size of hidden cells) connected to a
final layer, which is a classification layer having a sigmoid activation function.

• Bidirectional long short-term memory (BiLSTM): This differs from the above men-
tioned for the adoption of a bidirectional layer, which can improve prediction accuracy
by pulling future data in addition to the previous data captured as input [65].

Finally, Table 4 shows the hyperparameters involved for loss optimization purposes.

Table 4. Configuration of benchmark algorithm hyperparameters for loss optimization.

Algorithm No. Training
Epochs Optimizer α * Batch Size

DNN 100 Adam 10−4 512

CNN 40 ↑ ** ↑ 256

LSTM 20 ↑ 5× 10−4 128

BiLSTM ↑ ↑ ↑ ↑
* α represents the learning rate. ** The symbol ↑ assigns to the current cell the same value of the above one.

For the sake of clarity, DL models can achieve optimal performance through optimal
hyperparameter tuning, as can be seen in [14]. Since this work is focused on a preliminary
comparison, rigorous hyperparameter optimization for both the DDQN-based classifier
and all the compared algorithms is out-of-scope.

4.4.2. Data Sampling Techniques

The selected data-level balancing strategies are:

• Oversampling:

– Random oversampling (ROS): This technique is the simplest since it randomly
duplicates samples within SP to obtain |SP| = |SN |.

– Synthetic minority oversampling technique (SMOTE) [66]: This balancing tech-
nique initially finds the K-NNs for each sample x within SP by computing the
Euclidean distance between it and all other samples in SP. Then, according to
the actual ρ value, a sampling rate λ is established, and for each sample in SP, λ
elements are randomly selected from its K-NNs, to build a new set SPλ1

, such that
|SPλ1

| = λ. Finally, a new synthetic sample is created for each sample xj ∈ SPλ1
,

with j = 1, ..., λ, using the following formula: xNEW = x + fRAND(0, 1)× |x− xj|,
where the function fRAND(0, 1) randomly selects a number between 0 and 1.

– Adaptive synthetic (ADASYN) [67]: This strategy initially computes ρ and the
number of synthetic data to be generated, which is given by G = |SN − SP| × β,
where β ∈ [0, 1] indicates the ρ value to achieve after applying the balancing
algorithm. In our experiment, β = 1 is considered. For each sample within SP, the
algorithm finds the K-NNs based on the Euclidean distance calculated according
to the feature space and computes the coefficient ri = ∆i

K , where ∆i defines the
dominance of the majority class in each specific neighborhood, since it is equal to
the number of samples belonging to the majority class within the nearest K. Since
ri ∈ [0, 1], such a value is normalized using the sum of all coefficients (r̂i =

ri
∑i ri

),
resulting in the density distribution ∑i r̂i = 1. Finally, the number of total synthetic
samples generated for each neighborhood is calculated as Gi = r̂i × G.

• Undersampling:

– Random undersampling (RUS): This technique randomly selects the samples to
be removed from SN until |SN | = |SP| is obtained.

– Tomek-Links (T-Link) [68]: This technique is applied considering the following
strategy. Let x, y be two samples, respectively, in SP and SN . The Euclidean
distance δxy in the feature space is then computed. This δxy value represents a
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T-Link if, for any sample z, one of the following inequality δxy < δxz, δxy < δyz,
holds. In such a case, y will be removed.

– One-sided selection (OSS) [69]: This technique first employs T-Link; thus, the
condensed closest-neighbor rule is applied to remove the consistent subsets. A
subset C ⊂ D is consistent if using a K-NN |K=1, C correctly classifies D.

• Hybrid:

– OSS with SMOTE [21];
– T-Link with RUS [68];
– ROS with RUS [70,71]: To balance the actions of both sampling techniques, the

first is applied until ρ← 1−ρ
2 + ρ.

4.5. Hardware Settings Used in the Experimental Phase

Each test was run using a refurbished Dell R620 Ubuntu-OS virtual machine from our
laboratory with the following hardware settings: Intel Xeon(R) E5-2620 v3 CPU @ 2.40 GHz,
16 GB RAM. Both LSTM and BiLSTM require at least 24 GB RAM.

5. Performance Evaluation

This section highlights the performance achieved by the DDQN-based classifier and
all benchmark algorithms. In particular, the training and testing times are shown in
Figures 2 and 3, respectively. The results obtained for all test cases listed in Table 2
are reported in Tables 5–7 and are summarized in Figure 4. Based on these results, the
effectiveness of the proposed classifier is highlighted through the discussion of Figures 5–7.

5.1. Timing Performance
5.1.1. Training Time

Since our algorithm represents a state-of-the-art extension in DL solutions for web
phishing detection, it is essential to perform a training time analysis according to [12], as
this metric represents the bottleneck of several DL classifiers. Figure 2 shows the training
time required by each algorithm compared with different ρ values. Furthermore, the
influence of the approach used to handle class skew on training time is pointed out, since
such a choice affects |S|.

The use of data-level balancing techniques appears to have a significant effect on the
required training time. As expected, it increases or decreases by adopting data oversam-
pling or undersampling strategies, respectively. For LSTM and BiLSTM algorithms, the
usage of oversampling techniques is very disadvantageous, as a significant increase in
training time is found. Furthermore, it is inversely proportional to the actual ρ value. Since
training time is very high even in the absence of supporting techniques, oversampling
is a very expansive approach. On the other hand, undersampling reduces the required
training time proportionally to the actual ρ value. Therefore, the training time of these
algorithms is greatly influenced by the amount of data available during the training phase.
This trend is expected, since the effective complexity of some DL models also increases
with data complexity [18]. This trend is similar for CNN. However, combining CNN
with data-balancing techniques is not as disadvantageous as for LSTM and BiLSTM, since
the first algorithm requires considerably less training time. The algorithm that takes the
shortest training time is DNN. The overall training time required by the combination of
DNN with data-level oversampling techniques is the lowest; thus, this approach performs
best when considering this aspect.

The training time required by the algorithm proposed in this paper is affected by data
availability as it decreases with ρ. This trend is expected, as the number of steps in the
generic training episode is at most equal to |S|. In general, the DDQN-based classifier
training time performances are advantageous compared to those required by LSTM and
BiLSTM, but disadvantageous compared to those required by CNN or DNN, even if these
were trained on a larger number of samples. In detail, the DDQN-based classifier requires
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a training time that is about six times higher than DNN combined with oversampling
techniques, i.e., despite being trained on a lower number of samples. However, the training
time is affected by several factors, such as the choice of hyperparameters, as these affect the
effective complexity of a generic DL model [18]. As a consequence, the results obtained in
Figure 2 should also refer to the hyperparameter tuning discussed in Sections 4.3 and 4.4.1.
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Figure 2. Training time (in seconds) required by the algorithms compared for different test cases.

5.1.2. Testing Time

To complete the timing performance analysis, Figure 3 reports the testing time required by
each algorithm compared with different ρ values. Note that the testing time is not affected by
the data-level sampling procedure used, as the latter only updates |S|. This figure highlights
the following main points: (i) the worst testing time is achieved by LSTM and BiLSTM,
which in some cases is greater than 40 s; (ii) the testing time achieved by CNN can reach
a maximum of 7.628 s; (iii) the best testing time is achieved by DNN and the proposed
algorithm. Therefore, the proposed DDQN-based classifier can provide quicker feedback than
widespread DL classifiers, such as CNN, LSTM and BiLSTM.
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Figure 3. Testing time (in seconds) required by the algorithms compared for different test cases.

The overall timing performance analysis includes both training and testing time
achieved by the compared algorithms. In this regard, DNN is the most advantageous. The
testing time achieved by the proposed DDQN-based classifier makes it the second most
advantageous classifier with CNN. Finally, LSTM and BiLSTM do not achieve acceptable
results in both cases.

5.2. Classification Performance

The classification performances achieved by each algorithm for different ρ values are
reported in Tables 5–7. In particular, the best score per evaluated metric is highlighted.
According to the problem addressed, it is paramount to focus the analysis on unbalanced
classification metric scores, i.e., G-Mean, IBA, F1 score, and AUC, taking into account that each
table identifies a different ρ value, i.e., a different problem complexity, in terms of handling
class skew. Note that the lower the ρ value, the higher the complexity of the problem.
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Table 5. Classification metric scores achieved by algorithms on the Mendeley dataset for ρ = 0.529.

DL Classifier Data-Level
Sampling Precision Recall G-Mean IBA F1 Score AUC

DNN

None 0.917 0.795 0.874 0.752 0.852 0.878
ADASYN 0.930 0.802 0.881 0.763 0.861 0.885

ROS 0.784 0.960 0.907 0.832 0.863 0.909
SMOTE 0.831 0.947 0.924 0.858 0.886 0.924

RUS 0.926 0.608 0.770 0.571 0.734 0.791
T-Link with

RUS 0.868 0.887 0.908 0.821 0.877 0.908

ROS with
RUS 0.747 0.973 0.895 0.814 0.845 0.898

OSS with
SMOTE 0.864 0.914 0.919 0.844 0.888 0.919

CNN

None 0.725 0.977 * 0.886 0.799 0.832 0.890
ADASYN 0.724 0.977 0.888 0.803 0.832 0.892

ROS 0.723 0.974 0.885 0.797 0.830 0.889
SMOTE 0.727 0.976 0.886 0.799 0.834 0.890

RUS 0.724 0.973 0.883 0.794 0.830 0.888
T-Link with

RUS 0.733 0.976 0.889 0.803 0.838 0.893

ROS with
RUS 0.728 0.977 0.888 0.803 0.834 0.892

OSS with
SMOTE 0.723 0.974 0.885 0.797 0.830 0.889

LSTM

None 0.728 0.974 0.887 0.801 0.833 0.891
ADASYN 0.730 0.972 0.887 0.800 0.834 0.891

ROS 0.723 0.976 0.886 0.799 0.831 0.890
SMOTE 0.732 0.976 0.889 0.804 0.837 0.894

RUS 0.984 0.016 0.129 0.015 0.032 0.508
T-Link with

RUS 0.730 0.974 0.888 0.801 0.835 0.891

ROS with
RUS 0.721 0.973 0.885 0.796 0.828 0.889

OSS with
SMOTE 0.733 0.977 0.891 0.807 0.838 0.894

BiLSTM

None 0.732 0.975 0.886 0.799 0.836 0.890
ADASYN 0.730 0.975 0.888 0.802 0.835 0.892

ROS 0.725 0.974 0.885 0.797 0.831 0.889
SMOTE 0.727 0.972 0.887 0.800 0.832 0.891

RUS 0.733 0.974 0.888 0.802 0.837 0.892
T-Link and

RUS 0.725 0.976 0.887 0.800 0.832 0.891

ROS with
RUS 0.731 0.974 0.889 0.804 0.835 0.893

OSS with
SMOTE 0.731 0.976 0.888 0.803 0.836 0.892

Proposed None 0.875 0.951 0.939 0.884 0.911 0.939

* The underline and bold highlights the best score per metric.

Table 5 reports the classification metric scores for ρ = 0.529, identifying the lowest
data imbalance. The main findings can be summarized as follows.

• The CNN, LSTM, and BiLSTM algorithms share the same overall trend in the results
obtained. In particular, we can observe that these algorithms are able to minimize the
FN (i.e., high recall) score, but they result in many FPs (i.e., low precision) in each case.
As a consequence of the low precision value, the maximum F1 score does not reach 84%
for any of them. In some cases, CNN and LSTM achieve the best recall score (∼98%)
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among all algorithms compared. This results in G-Mean and AUC close to 89% and
IBA∼0.8. The highest precision score (∼98.5%) is obtained by the LSTM combined
with RUS. However, in this case, other metrics show that LSTM becomes a random
guessing classifier. Therefore, data imbalance affects the performance achieved by the
minority class. Furthermore, the combination with data-level balancing techniques
does not improve classification performance. G-Mean and AUC are influenced by a
high recall value, while the low IBA reflects that these algorithms are not suitable in
any case for dealing with the unbalanced classification problem.

• The DNN algorithm shows good performance, especially when combined with SMOTE
or OSS-SMOTE. In these two cases, the high-recall-low-precision trend is less evident
since a higher precision value is shown than that achieved by LSTM, BiLSTM and CNN
trio. The good trade-off between precision and recall results in an F1 score close to 89%.
Furthermore, the high recall score results in a high G-Mean (both in the range of 92%)
and AUC. Finally, an IBA equal to ∼0.86 and ∼0.845 is reached, respectively. Moreover,
DNN achieves the best recall score when combined with ROS. However, in this case, the
precision score obtained (high value of FP) penalizes the overall unbalanced classification
performances. DNN combined with ADASYN works similarly to DNN without prior
data-level sampling techniques. Finally, RUS usage leads to worse overall performance
unless used in hybrid approaches. For example, T-Link with RUS results in classification
metrics very close to those achieved by OSS with SMOTE.

• The proposed DDQN-based classifier outperforms the compared algorithms in terms
of G-Mean, IBA, F1 score, and AUC. The highest value of F1 score (91.1%) denotes the
best trade-off between precision and recall, equal to 87.5% and 95.1%, respectively. The
TNR equal to 92.7% results in a very high G-Mean value (∼94%) due to the TPR-TNR
balance and the dominance Υ very close to 0. As a consequence of high Υ, a very high
IBA value (∼0.885) is obtained. Finally, the AUC is very close to 0.94.

Table 6. Classification metric scores achieved by algorithms on the Mendeley dataset for ρ = 0.299.

DL Classifier Data-Level
Sampling Precision Recall G-Mean IBA F1 Score AUC

DNN

None 0.959 0.505 0.707 0.475 0.662 0.747
ADASYN 0.786 0.965 0.911 0.840 0.867 0.913

ROS 0.883 0.903 0.919 0.843 0.893 0.919
SMOTE 0.744 0.972 0.893 0.810 0.843 0.896

RUS 0.741 0.966 0.891 0.805 0.839 0.894
T-Link with

RUS 0.928 0.632 0.784 0.594 0.752 0.803

ROS with
RUS 0.912 0.822 0.887 0.776 0.865 0.889

OSS with
SMOTE 0.948 0.576 0.753 0.544 0.717 0.780

CNN

None 0.733 0.978 0.889 0.804 0.838 0.893
ADASYN 0.730 0.975 0.888 0.802 0.835 0.892

ROS 0.728 0.977 0.889 0.803 0.835 0.893
SMOTE 0.723 0.979 0.886 0.799 0.832 0.890

RUS 0.728 0.974 0.887 0.800 0.833 0.891
T-Link with

RUS 0.724 0.978 0.888 0.802 0.834 0.892

ROS with
RUS 0.728 0.973 0.887 0.800 0.833 0.891

OSS with
SMOTE 0.731 0.975 0.887 0.800 0.836 0.891
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Table 6. Cont.

DL Classifier Data-Level
Sampling Precision Recall G-Mean IBA F1 Score AUC

LSTM

None 0.729 0.978 0.890 0.806 0.835 0.894
ADASYN 0.721 0.975 0.884 0.796 0.829 0.889

ROS 0.730 0.976 0.887 0.801 0.835 0.891
SMOTE 0.724 0.973 0.883 0.793 0.830 0.887

RUS 0.340 0.988 0.011 0.001 0.505 0.494
T-Link with

RUS 0.348 0.999 * 0.049 0.002 0.516 0.501

ROS with
RUS 0.990 0.016 0.128 0.014 0.032 0.508

OSS with
SMOTE 0.724 0.975 0.886 0.799 0.831 0.890

BiLSTM

None 0.696 0.801 0.795 0.619 0.745 0.802
ADASYN 0.732 0.976 0.886 0.800 0.837 0.891

ROS 0.724 0.975 0.884 0.796 0.831 0.888
SMOTE 0.732 0.976 0.888 0.802 0.837 0.892

RUS 0.717 0.975 0.883 0.794 0.827 0.888
T-Link with

RUS 0.347 0.999 0.001 0.001 0.515 0.500

ROS with
RUS 0.726 0.972 0.886 0.798 0.831 0.890

OSS with
SMOTE 0.726 0.975 0.886 0.800 0.832 0.890

Proposed None 0.867 0.945 0.934 0.875 0.904 0.934

* The underline and bold highlights the best score per metric.

For all test cases, Table 6 shows the classification metric scores for the mean unbalanced
scenario (ρ = 0.299). A summary of the main findings is given below.

• The results obtained using CNN, LSTM and BiLSTM show the same low-precision-
high-recall of Table 5. In this case, LSTM achieves the best precision score (99%) when
combined with ROS-RUS hybrid technique, while the highest recall value (99%) is
obtained by LSTM and BiLSTM combined with T-Link-RUS. However, these results
are misleading, since other classification metric scores are very poor and denote
random guessing classifications performed by all three algorithms. In this case, an F1
score that does not reach 84.5% is obtained, and again G-Mean and AUC are positively
influenced by the high recall. Finally, IBA the trend is worse than those achieved by
the same algorithms as evaluated in the previous test (ρ = 0.529).

• DNN does not result in acceptable scores if not combined with data-level sampling
techniques. Despite achieving a high precision, the recall score is very low, denot-
ing several FNs. Therefore, in such an experiment, DNN requires using data-level
sampling techniques. Performances improve significantly when DNN is combined
with ROS, resulting in an F1 score close to 90%, a G-Mean∼92%, and an AUC∼0.92.
The IBA score is in the range of 0.845, which is similar to the one achieved by com-
bining DNN with ADASYN. However, the latter is disadvantageous due to a high
FP (i.e., low precision score). On the other hand, the usage of ROS and RUS tech-
niques increased FN, while SMOTE and RUS led DNN to results comparable to the
low-precision-high-recall trend of CNN, LSTM and BiLSTM. Finally, combining OSS-
SMOTE with DNN does not improve performances better than the case in which no
data-level balancing technique is adopted.

• In this case, the proposed DDQN-based classifier achieves better G-Mean, IBA, F1 score,
and AUC scores than other benchmark algorithms. The F1 score is ∼90.5% due to the
trade-off between precision (86.7%) and recall (94.5%). Both TPR and TNR achieved high
results (92.3%). Therefore, the high G-Mean score (93.4%) denotes the balance between
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TPR and TNR. Furthermore, IBA is equal to 0.875 due to superb dominance Υ, which is
equal to 0.022. Finally, the achieved AUC is 0.934. The overall performances are very
similar to those obtained for the experiment reported in Table 5 i.e., ρ = 0.529.

Table 7. Classification metric scores achieved by algorithms on the Mendeley dataset for ρ = 0.149.

DL Classifier Data-Level
Sampling Precision Recall G-Mean IBA F1 Score AUC

DNN

None 0.951 0.631 0.787 0.599 0.759 0.807
ADASYN 0.699 0.977 0.873 0.777 0.815 0.878

ROS 0.666 0.983 * 0.854 0.747 0.794 0.862
SMOTE 0.923 0.822 0.890 0.781 0.870 0.892

RUS 0.816 0.929 0.908 0.829 0.869 0.908
T-Link with

RUS 0.869 0.673 0.798 0.620 0.759 0.809

ROS with
RUS 0.942 0.599 0.766 0.565 0.733 0.790

OSS with
SMOTE 0.894 0.745 0.843 0.696 0.813 0.849

CNN

None 0.896 0.291 0.535 0.266 0.439 0.636
ADASYN 0.727 0.975 0.884 0.796 0.833 0.889

ROS 0.727 0.976 0.886 0.799 0.834 0.890
SMOTE 0.727 0.974 0.886 0.799 0.833 0.890

RUS 0.729 0.978 0.889 0.804 0.836 0.893
T-Link with

RUS 0.728 0.974 0.887 0.800 0.833 0.891

ROS with
RUS 0.722 0.975 0.885 0.798 0.829 0.890

OSS with
SMOTE 0.722 0.972 0.884 0.796 0.829 0.888

LSTM

None 0.901 0.290 0.534 0.265 0.439 0.636
ADASYN 0.721 0.972 0.883 0.793 0.828 0.887

ROS 0.731 0.977 0.889 0.803 0.836 0.892
SMOTE 0.723 0.976 0.886 0.789 0.830 0.890

RUS 0.961 0.016 0.126 0.014 0.031 0.507
T-Link with

RUS 0.727 0.977 0.888 0.802 0.833 0.892

ROS with
RUS 0.729 0.977 0.886 0.800 0.835 0.891

OSS with
SMOTE 0.738 0.976 0.890 0.805 0.841 0.894

BiLSTM

None 0.904 0.315 0.556 0.289 0.467 0.648
ADASYN 0.730 0.974 0.887 0.801 0.834 0.891

ROS 0.725 0.976 0.887 0.801 0.832 0.891
SMOTE 0.729 0.974 0.885 0.797 0.834 0.889

RUS 0.983 0.016 0.126 0.014 0.031 0.507
T-Link with

RUS 0.852 0.016 0.128 0.014 0.032 0.507

ROS with
RUS 0.727 0.976 0.890 0.805 0.834 0.893

OSS with
SMOTE 0.726 0.976 0.887 0.801 0.833 0.891

Proposed None 0.871 0.926 0.927 0.859 0.898 0.928

* The underline and bold highlights the best score per metric.

Table 7 shows the classification metric test scores obtained using each algorithm for
the highest unbalanced scenario (i.e., ρ = 0.149).
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• CNN, LSTM, and BiLSTM confirm the low-precision-high-recall trend already ob-
served in both the above-discussed tests. In this case, BiLSTM achieves the best
precision (98.3%) when combined with RUS. However, other classification metric
scores reveal that it is a random guess classifier. None of these algorithms achieve a
G-Mean equal to 90% and an IBA greater than 0.8. The maximum F1 score (83.6%) is
achieved by combining CNN with RUS and LSTM with ROS, respectively.

• DNN shows good performance in handling class imbalances when combined with
SMOTE or RUS. In the first case, a low number of FPs is highlighted by a high
precision score (92.3%), which combined with a recall equal to 82.2% results in an
F1 score equal to 87%. DNN with RUS outperforms DNN with SMOTE in terms of
G-Mean, IBA, and AUC due to a high recall (∼93%). Combining DNN with ROS
results in the best recall score (98.3%) achieved by all algorithms for this experiment.
However, many FPs (precision ∼67%) affect the overall classifier performances. This
trend is very similar to the one observed by using ADASYN instead of ROS as an
oversampling technique. DNN combined with ROS-RUS or T-Link-RUS results in
high FN. Finally, using OSS-SMOTE as a data-level sampling strategy achieves good
performances, but a very low IBA value (∼0.7) is obtained.

• The proposed algorithm achieved better results in terms of G-Mean, IBA, F1 score, and
AUC compared with other DL algorithms. Despite the limited availability of minority
class samples, the proposed DDQN-based classifier is capable of balancing perfor-
mance in both classes. It achieves Υ = −0.002 since recall = 92.6% and TNR = 92.8%.
As a consequence, G-Mean is the average mean between these two values, i.e., 92.7%.
The IBA of ∼0.86 follows. A very good precision value (87%) positively influences the
F1 score, which is close to 90%. Finally, AUC denotes good performance thanks to an
overall score of 0.928.

Effectiveness of the Proposed Unbalanced Classifier

The classification performances discussed thus far are summarized using the parallel
coordinate plot shown in Figure 4.
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Figure 4. Overview of the overall classification performance achieved by each compared algorithm.
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Such a graph consists of seven lines. The first line defines the experiment, identified
by the ρ value. The remaining six lines represent the classification metric scores achieved
by the algorithms tested. As can be seen, the proposed algorithm reached the highest scores
for G-Mean, IBA, F1 score, and AUC lines. Furthermore, Figure 4 highlights that although
the problem becomes more difficult, i.e., with a lower ρ value, the proposed DDQN-based
classifier achieves better problem-specific metric scores than those achieved by the other
algorithms when tackling a simpler problem, i.e., with a higher ρ value. This trend is
recorded for none of the 32 algorithms compared, denoting the robustness of our algorithm,
i.e., its ability to continue operating despite |SP| decreasing. In this regard, the original
dataset is not manipulated by the proposed algorithm, i.e., no synthetic or duplicated data
are added to SP, and no data are removed from SN . This is a relevant result that can be
achieved using the proposed DDQN-based classifier, since each data manipulation is in
contrast with the goal of accurately modeling real-life scenarios.

To better outline the effectiveness of the proposed classifier, we perform two analyses
with the aim of pointing out:

1. The algorithmic robustness of the best performers for each algorithmic framework,
i.e., for each different DL classifier involved (Figure 5). In such an analysis, in the cases
where two classifiers belonging to the same framework (same classifier and a different
data-level sampling strategy) achieve the same metric score, and the algorithm that
appears most frequently in the top performers is selected.

2. The comparison between algorithms that outperform the proposed one in precision
(Figure 6) and recall (Figure 7) scores, respectively.

Moreover, Figure 4 identifies all classifiers achieving an AUC value close to 0.5 so that
the classifier cannot distinguish between malicious and legitimate URLs. Therefore, these
are discarded since these cases represent random or constant class predictors. This filtering
method helps to reduce the total number of algorithms compared to 24, since this condition
is verified for: (i) LSTM combined with RUS for ρ = 0.529; (ii) LSTM combined with
RUS (T-Link-RUS, and ROS-RUS) and BiLSTM combined with T-Link-RUS for ρ = 0.299;
(iii) LSTM combined with RUS and BiLSTM combined with RUS (T-Link-RUS) for ρ = 0.149.

Figure 5 shows the robustness analysis of the five top performers in each metric
evaluated per different DL framework.
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Figure 5. Robustness analysis of the five best DL classifiers per different DL framework for each test case.

This figure highlights that the proposed algorithm is robust to variations in the number
of samples within the minority class, i.e., |SP|. This can be appreciated in the constant
presence of the proposed DDQN-based classifier in the different metric rankings shown.
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This is not valid for other top performers that result in performance degradation as ρ
varies. Such an analysis can be summarized as follows:

• The DNN combined with ROS is the second-best performer in terms of problem-specific
metrics achieved for ρ = 0.299. However, in the other experiments, it achieves only the
best recall score for ρ = 0.149. DNN combined with RUS is the second-best performer in
terms of G-Mean, IBA, and AUC only for ρ = 0.149. In the same experiment, the same
DL classifier achieves the second-best F1 score when combined with SMOTE. However,
DNN combined with SMOTE shows an irregular trend, as it alternates good results
for different experiments in different metrics. In particular, it achieves the second-best
G-Mean, IBA, and AUC for ρ = 0.529 and the fourth-best recall value for ρ = 0.299.
DNN combined with OSS-SMOTE achieves only the best F1 score score for ρ = 0.529.
DNN without data-level sampling techniques only obtains the best precision scores
for ρ = 0.299 and ρ = 0.149, respectively. Similarly, DNN combined with ADASYN
achieves only the best precision for ρ = 0.529. Finally, DNN combined with ROS-RUS is
the fourth-best performer in the recall ranking for ρ = 0.529.

• The CNN without data-level sampling strategies is the fourth-best performer in
terms of problem-specific metrics achieved for ρ = 0.299. Furthermore, in the same
experiment, it appears in the precision top performers, as well as for ρ = 0.149. In
the case of ρ = 0.529, it achieves the best recall score. For the latter experiment,
CNN combined with T-Link-RUS is ranked as the fourth-best performer in terms of
G-Mean, IBA, F1 score, and AUC. The CNN combined with RUS performs similarly
for ρ = 0.149. Moreover, such an algorithm achieves the best recall for ρ = 0.149.
CNN combined with SMOTE achieves only the second-best recall score for ρ = 0.299.

• The LSTM combined with OSS-SMOTE represents the top performer in each metric
evaluated for the DL framework considered in the case of ρ = 0.529. Furthermore, it
achieves the best problem-specific metric scores (again according to the DL framework)
for ρ = 0.149. In the case of ρ = 0.299, LSTM achieves the second-best recall score
without using data-level sampling techniques. The same algorithm results in the best
unbalanced classification metrics for its category in such an experiment.

• The BiLSTM achieves the third-best recall score when combined with T-Link-RUS
for ρ = 0.529. In the same experiment, the fourth-best precision and the fifth-best F1
score metrics are obtained by BiLSTM combined with RUS. A similar ranking level is
recorded for BiLSTM combined with ROS-RUS for G-Mean, IBA, and AUC metrics.
The latter algorithm appears in the same position also in the evaluation of problem-
specific metrics for ρ = 0.149. In the same experiment, it reaches the fourth-best recall
score, while the second-best precision is obtained for the BiLSTM without the support
of data-level sampling techniques. For ρ = 0.249, BiLSTM combined with SMOTE is
the best performer per category in all metrics evaluated.

Among all the algorithms selected for the benchmark, 20 out of 24 alternate as top
performers in all experiments, hence the absence of an alternative robust algorithm to
the proposed one is found. In this regard, the results obtained show that the only viable
alternative, although with worse performance, is the LSTM combined with OSS-SMOTE.
However, it does not appear among the top performers in the second experiment. On the
other hand, the algorithm proposed in this paper fulfills the robustness property, resulting
in the best problem-specific metrics regardless of ρ value. Therefore, the proposed DDQN-
based classifier can effectively continue to operate despite |SP| << |SN |. This makes it an
ideal algorithm to address the unbalanced web phishing classification problem. However,
as shown in Figure 5, the proposed algorithm is clearly not the best performing in terms
of precision and recall. Regarding the precision score, it is the second-best performer for
ρ = 0.529 and ρ = 0.299, respectively. In the case of ρ = 0.149, it performs worse than the
four compared algorithms. On the other hand, it is placed at the fifth position of the recall
ranking. To extend such an evaluation, the following analysis focuses on these two metrics,
taking into account all the algorithms that outperform the proposed one in precision and
recall, respectively. By means of Figures 6 and 7, we want to highlight two main aspects:
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• A compared classifier may be better than the proposed DDQN-based in either precision
or recall, but not in both.

• A classifier that identifies a large portion of malicious samples, avoiding FP (FN), i.e.,
achieving a high precision (recall), is not necessarily satisfactory for addressing the
present research problem, which requires a balanced precision-recall trend.

Both Figures 6 and 7 share the same structure as Figure 4, that is, a seven-line parallel
coordinate plot, where the first line identifies the experiment, while the remaining lines
define the score achieved by a single algorithm in each evaluated metric.
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Figure 6. Comparison between the proposed algorithm and all others achieving a higher preci-
sion score.

The following main findings can be derived by examining Figure 6:

• The algorithms that outperform the proposed one in precision are divided per experi-
ment as follows:

– DNN, DNN with ADASYN, and DNN with RUS for ρ = 0.529;
– DNN, DNN with ROS, DNN with T-Link-RUS, DNN with ROS-RUS, and DNN

with SMOTE for ρ = 0.299;
– DNN, DNN with SMOTE, DNN with ROS-RUS, DNN with OSS-SMOTE, CNN,

LSTM, BiLSTM for ρ = 0.149.

On the other hand, our algorithm scores better on the remaining metrics, including
recall, regardless of ρ.
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• Focusing on classifiers that achieve a higher precision score than the proposed one,
a common triangular pattern can be observed in the middle part of the parallel
coordinate plot, due to similar recall and IBA scores, and a higher G-Mean value.
Therefore, given the triangle built by the trio of points <Recall, G-Mean, IBA>, the
higher its height, the greater the influence of precision on the G-Mean, i.e., low FP
(high precision, high TNR) and high FN (low recall). As a consequence, the classifier
correctly predicts positive samples but is not able to distinguish them from negative
ones in more cases. This is a serious issue in real-life applications because legitimate
URLs outnumber malicious ones.
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Figure 7. Comparison between the proposed algorithm and all others achieving a higher recall score.

Similarly, the main findings derived from Figure 7 can be summarized as follows:

• The algorithms that outperform the proposed one in recall are divided per experiment
as follows:

– CNN combined with one of the selected data-level sampling techniques, LSTM
with ADASYN, LSTM with ROS, LSTM with SMOTE, LSTM with OSS-SMOTE,
and BiLSTM with ADASYN, BiLSTM with ROS, BiLSTM with SMOTE, BiLSTM
with ROS-RUS and BiLSTM with OSS-SMOTE in all the experiments;

– CNN, LSTM, and BiLSTM with RUS for ρ = 0.529 and ρ = 0.299;
– DNN with ROS, LSTM with ROS-RUS, and LSTM with T-Link-RUS for ρ = 0.529

and ρ = 0.149;
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– DNN with ADASYN and DNN with RUS for ρ = 0.299 and ρ = 0.149;
– DNN with ROS-RUS, BiLSTM, BiLSTM with T-Link-RUS for ρ = 0.529;
– DNN with SMOTE for ρ = 0.299.

On the other hand, our algorithm scores better on the remaining metrics, including
precision, regardless of ρ.

• Focusing on classifiers that achieve a higher precision score than the proposed one,
a triangle formed by the trio of points <Precision, Recall, IBA> having a high height
(recall spike very far from precision and IBA) denotes the high influence of the recall
on the G-Mean, i.e., low FN (high recall) and high FP (low precision). In these cases,
the classifier correctly predicts positive samples but classifies the negative samples as
positive in more cases. Such a result is undesired, as in real-life scenarios, navigating
to legitimate URLs must be guaranteed.

As a final remark, the proposed algorithm is an effective web phishing unbalanced
classifier that performs better than the compared best-precision and best-recall performers in
five out of six metrics. Furthermore, the proposed DDQN-based classifier does not result in
unbalanced precision–recall trends in the experiments performed; hence, it can classify samples
of both despite the class skew, resulting in very promising problem-specific metric scores.

6. Conclusions

Web phishing detection is a critical cybersecurity problem targeting many users. In
particular, it can be easily employed as a delivery and weaponization method to exploit
human vulnerability, that is, the lack of adequate web phishing awareness training.

This paper extended the state-of-the-art in DL algorithms to address such a problem,
taking advantage of the not yet explored DRL framework. In particular, it combined
ICMDP to model an unbalanced classification problem, mirroring real-life cases, with a
DDQN agent. The proposed DDQN-based classifier has been evaluated by considering
three different values of the balancing ratio. The results obtained show its effectiveness
in addressing the unbalanced web phishing classification. Despite a significant training
time, the classification metrics obtained are very promising without employing prior data
sampling techniques, which are not always able to support a classifier in dealing with
class skew, as shown by the test results. In addition, the performances obtained are not
significantly affected by the variation in the number of samples within the minority class.
Therefore, the proposed algorithm represents a robust solution to tackle the unbalanced
web phishing classification. Furthermore, a proper hyperparameter optimization procedure
can lead to better timing performance. Although the DRL framework has not yet been
investigated to address the web phishing detection problem, these results indicate that this
field needs to be explored in depth by the scientific community. Among possible future
works, the proposed DDQN-based classifier will be used to address other unbalanced
classification problems in the cybersecurity domain and will be compared to state-of-the-art
shallow learning classifiers combined with data-level sampling techniques.
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Abbreviations

ADASYN ADAptive SYNthetic
AUC Area Under ROC Curve
BAG Balanced Accuracy Graph
BiLSTM Bidirectional Long Short Term Memory
CNN Convolutional Neural Network
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q-Network
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
FN False Negative
FP False Positive
IBA Index of Balanced Accuracy
ICMDP Imbalanced Classification Markov Decision Process
LSTM Long Short-Term Memory
MDP Markov Decision Process
ML Machine Learning
MLP Multi-Layer Perceptron
OSS One Sided Selection
RL Reinforcement Learning
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROS Random Oversampling
RUS Random Undersampling
SDN Software Defined Network
SMOTE Synthetic Minority Oversampling TEchnique
SVM Support Vector Machine
T-Link Tomek-Links
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
URL Uniform Resource Locator
USA United States of America
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