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Abstract: Autism Spectrum Disorder (ASD) is a neurological impairment condition that severely
impairs cognitive, linguistic, object recognition, interpersonal, and communication skills. Its main
cause is genetic, and early treatment and identification can reduce the patient’s expensive medical
costs and lengthy examinations. We developed a machine learning (ML) architecture that is capable
of effectively analysing autistic children’s datasets and accurately classifying and identifying ASD
traits. We considered the ASD screening dataset of toddlers in this study. We utilised the SMOTE
method to balance the dataset, followed by feature transformation and selection methods. Then, we
utilised several classification techniques in conjunction with a hyperparameter optimisation approach.
The AdaBoost method yielded the best results among the classifiers. We employed ML and statistical
approaches to identify the most crucial characteristics for the rapid recognition of ASD patients. We
believe our proposed framework could be useful for early diagnosis and helpful for clinicians.

Keywords: autism spectrum disorder; machine learning; feature transformation; feature selection;
hyper-parameter optimization

1. Introduction

Autism Spectrum Disorder (ASD) is a group of neurological diseases that hinder the
normal progression of the brain [1]. ASD causes social difficulties, sensory issues, repetitive
behaviour, and intellectual incapacity. ASD patients also have psychiatric or neurological
disorders such as hyperactivity, attention deficit, anxiety, sadness, and epilepsy [2].

ASD has been connected to genetics and physiological factors. However, the disorder
is often assessed utilizing non-genetic behavioural criteria. Autism symptoms are more
apparent and easier to recognize in youngsters between 2 and 3 years old. ASD affects
one in 68 children in the United States, according to [2]. Existing statistics indicate that
approximately 1.5% of the global population is autistic, and it is assumed that a large
proportion of autistic people remain unidentified. Consequently, there is a strong need for
rapid diagnosis facilities due to the increased recognition of ASD.

Traditional diagnostic approaches for ASD involve medical practitioners undertaking
a clinical evaluation of the patient’s psychological age during clinical assessment. This
generally acknowledged method is called Clinical Judgment (CJ). Autism Diagnostic
Interview (ADI) and The Autism Diagnostic Observation Schedule (ADOS) are another two
conventional diagnostic techniques [3]. A formal diagnosis of autism spectrum disorder is
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a lengthy procedure since it involves time for learning, undertaking many inquiries, rating,
and agreement coding [4].

Recently, the machine learning (ML) technique has emerged as a viable alternative for
autism spectrum disorder (ASD) diagnosis because it offers various advantages, including
a reduction in diagnostic time, an increase in ASD high detection, and the identification of
influential factors.

In machine learning, neural networks [5] for deductive reasoning can present difficul-
ties, especially if the model makes medical-associated decisions. The input data quality can
have a significant impact on the performance of a neural network. When designing a neural
network to tackle a health-related problem, it is crucial to carefully consider the data’s
quality and characteristics. Our investigation into autism spectrum disorder yielded un-
balanced results. Consequently, we used the Synthetic Minority Oversampling Technique
(SMOTE) to balance our autism dataset.

Several studies have attempted to diagnose and treat ASD employing a variety of
ML techniques. Bala et al. [6] presented a machine learning system to better identify
ASD across age groups. For this, different classification techniques were used on these
datasets. SVM outperformed other classifiers for autism spectrum datasets. Lastly, Shapley
Additive Explanations (SHAPs) were employed to determine the most accurate feature sets.
Hasan et al. [7] demonstrated an effective methodology for evaluating Machine Learning
(ML) strategies for early ASD detection. This system used four Attribute Scaling (AS)
techniques and eight basic but efficient ML algorithms to classify feature-scaled datasets.
AB and LDA identified Autism with the best accuracy of 99.25% and 97.95% for toddlers
and children, and 99.03% and 97.12% for adult and teenage datasets, respectively. In another
work, Rodrigues et al. [8] employed machine learning and functional magnetic resonance
imaging to find potential indicators of ASD prevalence. They utilized the ADOS score as
a measure of severity. By achieving 73.8% accuracy on cingulum regions, their findings
indicate a functional distinction amongst ASD subclasses. A framework was proposed by
Raj et al. [9] in which multiple machine learning algorithms are implemented. The accuracy
of CNN-based predicting models for ASD screening in data for adults, adolescents, and
children was 99.53%, 96.68%, and 98.30%, respectively.

With the objective of improving diagnosis, Hossain et al. [10] attempted to identify
the most important characteristics and automate the early diagnosis employing existing
classification algorithms. Sequential minimum optimization (SMO)-based SVM is supe-
rior to all other ML techniques with regard to accuracy, according to their observations.
They showed that the Relief Qualities method is the most effective at identifying the most
important features in ASD datasets. Akter et al. [11] collected initially identified Autism
datasets pertaining to toddlers, children, adolescents, and adults, and employed a variety
of feature transformation techniques to these datasets. The performance of several classifi-
cation approaches was then evaluated using these altered ASD datasets. SVM performed
best on the toddler dataset, whereas Adaboost performed best on the children dataset,
Glmboost on the teenage dataset, and Adaboost on the adult dataset. They identified
key traits that are highly predictive for ASD and obtained 98.77% accuracy. Furthermore,
Thabtah et al. [4] suggested a new architecture for adult and adolescent autism screening
based on machine learning that includes essential aspects and demonstrates predictive anal-
ysis with logistic regression to uncover key knowledge on autism screening. In addition,
they ran a comprehensive feature investigation on the different datasets using Chi-square
testing (CHI) and Information Gain (IG) to discover the influential characteristics. The
acquired results indicate that the ML technique was able to produce forecasting systems
with satisfactory performance.
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In another work, Petrucci et al. [12] gathered 959 data samples from 8 projects and then
used RF, GBM, and SVM machine learning techniques to predict ASD/healthy controls.
They investigated the significance of gut microbiota in autism spectrum disorder and found
that all three algorithms indicated Parasutterella and Alloprevotella as significant genera.
In addition, Omar et al. [13] proposed an ML-based ASD prediction model and a mobile
app for all ages. This research produced an autism forecasting model and a mobile app by
mixing Random Forest with Classification And Regression Tree and Random Forest with
Iterative Dichotomiser 3. The model was tested with 250 real datasets from autistic and
non-autistic persons. The suggested prediction model outperformed both datasets in evalu-
ation metrics. In another work, Akter et al. [14] proposed a machine-learning technique for
identifying autism subgroups from normal groups and identify the distinguishing char-
acteristics of ASD patients. They integrated autism-related records and utilized k-means
clustering to identify subcategories. The optimal autism dataset was selected using the
Silhouette score. The primary dataset and its balanced subclasses were then classified
using classifiers. Shapely adaptive explanation (SHAP) ranked characteristics and analyzed
discriminatory variables.

This work aimed to present an ML framework that analysis autism in toddlers during
early life and investigates their particular attributes properly. We collected ASD data from
the Kaggle data repository for this study. Next, we applied a data balancing approach,
and four feature transformation (FT) techniques were used to turn these datasets into an
appropriate format for this work. Ten classification algorithms were then used for these
altered datasets, and the best-performing machine learning algorithms were selected. In
addition, we investigated how data modification can boost classifier performance. Then,
multiple feature selection techniques (FST) were employed on these altered datasets to
identify which classification methods provided the highest outcome for prioritizing autism
risk attributes in toddlers. Finally, we used the hyperparameter optimization technique to
achieve the optimum output.

2. Materials and Methods

We applied statistical and machine-learning techniques to an ASD dataset. In the
preprocessing step, we converted categorical data to numeric data and utilized the SMOTE
technique to balance the dataset. Following this, we utilized Standard Scalar Transforma-
tion, Unit Vector Transformation, Robust Scalar Transformation, and Yeo-Johnson Trans-
formation feature transformation models to determine which data was most suitable for
machine learning algorithms. Then, we adopted the Recursive Feature Elimination, Pearson
Correlation Coefficient, Mutual Information Gain, and Boruta models for feature selection
to detect autism spectrum disorder at an early stage. We used Decision tree, Extreme
gradient boosting, AdaBoost, Support vector machine, K-Nearest Neighbor, Multilayer
perceptron, Gradient boosting, Naive Bayes, Random Forest, and Logistic Regression to
identify ASD during the classification step. The grid search method was then used to
optimize hyperparameters for optimal performance. Lastly, ML algorithms and Chi-square
test were used to determine the most important factor responsible for ASD. Figure 1 depicts
a graphical representation of this task.
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Figure 1. The workflow of the proposed framework to early stage detection of ASD.

2.1. Dataset

This data collection covers Autism screening results for toddlers (ages 12 to 36 months).
The dataset has been obtained from Kaggle [15] and there are 506 samples in the data set,
346 of which are autistic and 160 of which are normal. Using an online questionnaire
in Google Forms, data is collected. The questionnaire consists of Q-CHAT-10 questions
in addition to age, gender, area, and family history of autism spectrum disorder (ASD).
For question number A1 and A7, the possible responses are leveled as 1 for always, 2 for
usually, 3 for sometimes, 4 for rarely, and 5 for never. In contrast, for question number A2,
the possible responses are very easy, quite easy, quite difficult, very difficult, and impossible.
Many times per day, a few times per day, a few times per week, less than once per week, or
never were the possible responses for questions A3, A4, A5, A6, A9, and A10. For question
A8, the responses were very typical, quite typical, slightly unusual, and extremely unusual,
and my child does not communicate. If the answer to a question from A1 to A9 is the third,
fourth, or fifth response, the number 1 is submitted. For A10, the first, second, or third
place answer receives the value 1. If the child scores 3 or more on each of the 10 questions,
the child may have ASD; otherwise, the child does not have ASD. The details of the dataset
are displayed in Table 1. The correlation of each feature is shown in Figure 2. Since there is
a strong association with the Screening Score trait, we eliminate this feature.
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Table 1. Dataset Description.

Feature Type Values/Count/Statistics Description

1 Does your child look at you
when youcall his/her name (A1)? Categorical Yes = 285

No = 221 Yes, No

2 How easy is it for you to get
eye contact with your child (A2)? Categorical Yes = 247

No = 259 Yes, No

3 Does your child point to indicate
that s/he wants something (A3)? Categorical Yes = 259

No = 247 Yes, No

4 Does your child point to share
interest with you (A4)? Categorical Yes = 266

No = 240 Yes, No

5
Does your child pretend (A5)?
(e.g., care for dolls‚ talk on a
toy phone)

Categorical Yes = 283
No = 223 Yes, No

6 Does your child follow where
you’re looking (A6)? Categorical Yes = 278

No = 228 Yes, No

7
If you or someone else in the family
is visibly upset‚ does your child show
signs of wanting to comfort them (A7)?

Categorical Yes = 280
No = 226 Yes, No

8 Would you describe your child’s
first words as (A8): Categorical Yes = 291

No = 215 Yes, No

9 Does your child use simple
gestures (A9)? (e.g., wave goodbye) Categorical Yes = 275

No = 231 Yes, No

10 Does your child stare at nothing
with no apparent purpose (A10)? Categorical Yes = 314

No = 192 Yes, No

11 Region Categorical

Al Baha = 7
Najran = 9,
Tabuk = 18
Jizan = 19
Makkah = 217
Northern Borders = 15
Aseer = 13
Riyadh = 85
Ha’il = 16
Madinah = 23
Eastern = 50
Al Jawf = 12
Qassim = 22

List of regions

12 Age Number Mean = 24.445,
Standard deviation = 8.35 Toddlers (Months)

13 Gender Categorical Female = 349
Male = 157 Male or Female

14 Screening Score Number Mean = 5.49,
Standard deviation = 3.18 From 1 to 10

15 Family member with ASD history Boolean Yes = 122
No = 384

Family members has
ASD traits or not

16 Who is completing test Categorical Family member = 414
Other = 92 Parents or other

17 Class Boolean ASD = 346
No ASD = 160

No ASD traits
or ASD traits
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Figure 2. The correlation of each feature using Pearson correlation technique.

2.2. Dataset Balancing Technique

Because of its simplicity, SMOTE was utilized to address the issue of class label
imbalance and it may be viewed as an improved kind of resampling. It adjusts the minority
class by generating additional synthetic samples of the same quality as the class label,
hence balancing the category trait. This raises the size of the sample, yet balances the class,
providing a resampled range of data for the study. Employing Python’s imblearn module,
we finally generated the dynamically resampled data set [16].

2.3. Feature Transformation Method

Feature transformation uses a mathematical formula to change data in a column
(feature) for further investigation. It improves prediction accuracy. There are several
sorts of feature transformation techniques, such as standard Scalar Transformation (SST),
Unit Vector Transformation (UVT), Robust Scalar Transformation (RS), and Yeo-Johnson
Transformation (YJT).

Standard Scalar Transformation is employed when input dataset characteristics have
vast ranges or are measured in multiple units like Height, Weight, Meters, Miles, etc.
We normalize all characteristics so that the mean is 0 and the standard deviation is 1. It
subtracts attribute values by their average and divides by standard deviation, resulting in
standard normal distribution [17].

In Unit Vector Scalar/Normalizer, the process of normalization involves scaling the
values of the individual samples so that they have a unit norm [18]. The most intriguing
aspect is that, in contrast to the other scalers, which operate on the values of each particular
column, the Normalizer operates on the rows. Each row of the data frame that has at least
one non-zero component is separately rescaled to ensure that its norm is equal to one after
the rescaling process.
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The robust scalar method [18] is another feature transformation method. When we
perform the scaling process with constant values (mean, maximum value, etc.), the proce-
dure becomes susceptible to outlier values. When there are several extreme values present
in the data, scaling across the interquartile range (IQR) can produce a distribution that is
more reliable. The data are normalized based on a median of 0 and are scaled accordingly.

When there is heteroskedasticity, which is a problem with linear connections, power
transformation is a technique that may be utilized. It indicates that the standard deviation
of the residuals is not a fixed value. The data become more Gaussian after undergoing
power transformation. These techniques make use of data known as lambda as a parameter.
This parameter contributes to lowering the skewness and maintaining the variance of the
data. If the data in the power transformation technique contains zero or negative values, it
is called Yeo-Johnson Transformation [19].

2.4. Feature Selection Method

It is essential to recognize key characteristics in order to diagnose ASD. In our research,
we have employed four feature selection strategies. The recursive feature elimination
technique is the most effective among them.

• Recursive Feature Elimination: Recursive feature elimination [20], often known as RFE,
is a method for selecting features that fits a model and removing the weakest feature
(or features) one by one until the necessary number of features has been attained.

• Pearson Correlation Coefficient: A value between −1 and 1 known as a Pearson
correlation [21] describes the degree to which two variables are linearly connected. The
“product-moment correlation coefficient” (PMCC) or simply “correlation” are other
names for the Pearson correlation. Only metric variables are appropriate for Pearson
correlations. Values for the correlation coefficient range from −1 to 1. A number that
is nearer 0 indicates a weaker association (exact 0 implying no correlation). Values
closer to 1 indicate a stronger positive association. A number nearer to −1 denotes a
more significant negative correlation metric parameter.

• Mutual Information Gain: Evaluation of the information gain contributed by each
variable in relation to the target variable is one method for using information gain
in the context of feature selection [22]. When used in this context, the calculation is
referred to as the mutual information between the two random variables.

• Boruta: The random forest classification method is the core of the Boruta feature
selection algorithm, which is a wrapper constructed around it [23]. It makes an effort
to identify all of the significant and intriguing characteristics that our dataset may
include in relation to a certain outcome variable. First, it will make a copy of the
dataset and then it will randomly reorder the numbers in each column.

2.5. Statistical Analysis

The Chi-square test uses the p value to measure the importance of a feature connected
to the predictor variables. If the p value is above 0.05, then the category characteristics do
not correlate with the dependent variable of interest. The existence of a correlation between
the category features and the dependent variable can be inferred if the p-value is below
0.05. Then, we pick the best characteristics to use in our ASD detection algorithm [24,25].

2.6. Machine Learning Model

In our research, we utilized Decision Tree, Extreme Gradient Boosting, Ada Boosting,
Support Vector Machine, K-Nearest Neighbor, Multilayer Perceptron, Gradient Boosting,
Naive Bayes, Random Forest, and Logistic Regression machine learning techniques. In
our dataset, we have tabular labelled data, so supervised machine learning algorithms are
suitable for analysis. We have used clinically applicable supervised ML algorithms with
model tuning, feature selection, and various optimizations to achieve better evaluation
scores. Their descriptions are provided below.
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A decision tree (DT) is a classifier model used to identify the category to which a test
sample belongs. The DT grows its nodes by optimizing information acquisition at each
stage. A single tree is prone to overfitting while having good interpretability. In order to
address the overfitting problem of the decision tree [26] algorithm, RF built a number of
simple trees to train a dataset of random features on a random subset of observations. The
majority of these trees’ decisions will be used to classify a test sample.

Extreme Gradient Boosting (XGBoost) is a well-known technique of supervised learn-
ing that is conceivable for huge datasets for the purposes of regression and classification.
XGBoost [27] is an integrated model that makes use of a gradient boost framework and is
based on the scalable tree boosting system. Its primary goals are to enhance performance
and speed.

AdaBoost (AB) is a classifier using ensemble boosting which was proposed by Yoav
Freund and Robert Schapire in 1996. A boosted classifier has the following form

AT(x) =
T

∑
t=1

at(x) (1)

where each at is a weak learner that accepts an object x as input and returns a value
indicating the object’s class. It improves the accuracy of the classifiers by combining
multiple weak classifiers. In order to create a powerful classifier with high accuracy, the
AdaBoost classifier [28] combines several weak classifiers. AdaBoost should adhere to
two requirements: On varied weighted training instances, the classifier should be trained
interactively. It makes an effort to minimize training errors with each iteration in order to
offer a perfect match for these samples.

A Support Vector Machine (SVM) is one of the supervised learning models, which
takes as input a set of labelled training samples and outputs an ideal hyperplane in n-
dimensional space [29]. In support vector machines, a training set is needed to understand
the distinctions between the two groups, and a test set is also needed to assess how well
the classification performed on previously unexplored data. SVM may be utilized in
either a linear or nonlinear fashion in order to distinguish the data that can be separated.
Non-linearly separable instances in the input space that could be separated from the
right mapping onto a higher-dimensional function space are the ones that are utilized to
determine which kernel strategies should be used.

In the field of image processing, the K-Nearest Neighbor (K-NN) algorithm [30] may
be used in a range of situations. The three most important aspects of this algorithm are
a list of training examples that have been labelled, and a measurement that establishes a
distance between the test set and the training set’s example. The value of k is the number
of examples that are the test set’s nearest neighbours. These are the three most important
aspects. We define test set instances from the two classes that may be mathematically stated
as using metrics such as Euclidean distance (ED), Riemannian distance (RD), and others.

ED =

√√√√( 4

∑
i=1

(ai − bi)
2

)
(2)

RD =
∥∥∥log a−1

i bi

∥∥∥ (3)

The multilayer perceptron, often known as MLP, is a kind of artificial neural network
that uses feedforward connections and translates input data sets to outputs that are more
suitable. A Multi-layered Perceptron (MLP) [31] consists of numerous levels, each of which
is completely related to the layer that comes after it. With the exception of the nodes that
make up the input layer, the neurons that make up the nodes of the layers have nonlinear
activation functions. It is possible that there are one or more nonlinear hidden layers
located between the input layer and the output layer. The capability to learn non-linear
models is the advantage of MLP. The disadvantage of MLP is that its hidden layers have a
non-convex loss function where there exists more than one local minimum. A variety of
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hyperparameters, including the number of hidden neurons, layers, and iterations, must be
tuned for MLP.

There is a type of machine learning algorithm known as a Gradient Boosting (GB)
classifier. These classifiers take several less capable learning models and integrate them
into one robust prediction model. In the practice of gradient boosting, decision trees are
frequently utilized. GB [32] provides a prediction model in the form of a collection of
decision trees-like weak prediction models. GB trees are the name of the resultant method
when a decision tree acts as the weak learner.

The Naive Bayes (NB) [13] method provides a test sample that is determined by the
likelihood of the highest class. It is almost immune to the effects of artificial oversampling,
and the greatest results are achieved when the method is not used (oversampling of
0%). Within the context of this investigation, we advocated for the application of kernel
density estimation in order to get more accurate estimations of the pdf properties. The
findings, on the other hand, were only somewhat less favourable than they would have
been with the standard Gaussian assumption. Regarding achieving a consistent model of
categorization, the Naive Bayes algorithm obtained one of the best outcomes. In addition
to this, the goal is to get the best possible AUC. It is important to note that even though
there was no need for oversampling when the whole feature selection was performed, the
ideal scenario after feature selection was still able to be attained following artificial ASD
instance multiplication.

Random Forest (RF) is one kind of decision tree in which the output class of the
ensemble is the decision trees’ separate output classes’ style of operation [33]. It is a method
that uses an ensemble of models and focuses on the variation in the overall error term. The
fundamental concept underlying RF is to bring down the variance term while maintaining
the bias’s consistency and bringing the overall error of the ensemble down to a lower
value. The classifiers that have a significant use of a decision tree are multiplied in order
to attain this goal of minimizing the variance. The comparison of the DT is an effective
method for reducing or eliminating mistakes, and the more sophisticated or uncorrelated
the trees are, the more effective this method is. The use of unnamed data is accomplished
by the use of data processing, which involves the construction of decision trees. Each tree is
trained using a copy of the bootstrap data, which was produced using a random sampling
procedure and original data replacement.

Logistic Regression (LR) is a form of supervised learning in which the likelihood of
a target variable is predicted. Due to the fact that the goal or purpose of the dependent
variable is dichotomous, there are two alternative groupings. The dependent variable
may be thought of as a binary variable, with the data being recorded as either 1 (which
represents success/yes) or 0 (which represents failure/no) [34].

2.7. Hyperparameter Optimization Technique

Grid Search (GS) is a commonly used hyperparameter optimization technique. GS
is capable of adjusting the features in accordance with the scale factor inside the defined
range of parameters [35]. To determine the attribute with the maximum accuracy, the
classifier is trained using the changed parameters. This whole procedure is a cycle, and the
comparisons are repeated within the cycle.

2.8. Performance Evaluation Metrics

The effectiveness of all suggested frameworks on ASD datasets were measured math-
ematically. The following equations are used to figure out the Accuracy (A) [36], Kappa
Statistics (KS) [37], Precision (P) [38], Recall (R) [39], AUROC [40], F1-score (F1) [36], and
Log loss (LL) [41]:

A = (TP + TN)/n (4)
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KS =
1− (1− p0)

1− pe
(5)

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

F1 = 2
R ∗ P
R + P

(8)

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + FN
(10)

LL = −1.0 ∗
(
y log

(
y′
))

+ (1− y) ∗ log
(
1− y′

)
(11)

Here, True Positive (TP) indicates that an ASD sample was appropriately identified as
having ASD. True Negative (TN) denotes a non-ASD sample that was accurately predicted
to be non-ASD. False Positive (FP) indicates that ASD data was incorrectly identified as
Non-ASD data. False Negative (FN) samples are non-ASD samples that were incorrectly
classified as ASD samples. The sum of all samples is n. The real value is y and the
anticipated possibility is y′. In the Kappa-Statistics p0 is among the raters agreement of
relative observation, and pe is the chance agreement for hypothetical probability.

3. Results

In our work, we implemented a variety of machine-learning classifiers, including
DT, NB, KNN, RF, GB, XGB, MLP, SVM, AB, and LR. The experimental work was done at
Google Colaboratory using sci-kit-learn in Python. A 10-fold cross-validation approach [42]
is applied in this study to develop prediction models. The datasets are arbitrarily split
into equivalent 10-fold using the 10-fold cross-validation method. At the time of model
construction, nine folds are employed for training, and one is utilized for testing. This
technique is repeated 10 times, and the outcomes are then averaged. To validate the
experiment results, various assessment metrics, such as accuracy, kappa statistics, precision,
recall, AUROC, F1-score, and log loss are analyzed.

3.1. Finding Significantly Associative Features Using Statistical Methods

We applied the Chi-square test to the ASD dataset in order to detect the most influential
causes of autism disorder. Our result is depicted in Figure 3. We find that A6, A9, A2, A8,
and A4 are the most important qualities, whereas Gender, Age, A10, FM ASD, and Region
are the least important ones.
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Figure 3. The association of the features of Autism Spectrum Disorder. Larger bubble and lighter
color is highly associative.

3.2. Analysis of Accuracy

The result of accuracy for each classifier is shown in Tables 2–5. AB calculated the maxi-
mum accuracy for the main and balanced datasets (99.41% and 99.56%, respectively). When
we investigated the FS approach, the MLP, AB, and LR in recursive feature elimination
technique and the AB and LR in the mutual information gain method produced the results
with the highest accuracy (99.56%). The maximum accuracy (99.85%) was calculated by AB
in both standard scalar and robust scalar FT methods. After hyperparameter adjustment
for each classifier, MLP, SVM, AB, and LR produced the most accurate results, 99.85%.

In this study, we also observed that AB provided the best results among all classifiers
for the mutual information gain and recursive feature elimination FS methods, the standard
scalar and robust scalar FT methods, and the hyperparameter optimization methodology.

Table 2. Performance Analysis of Different Classifiers in the Main and Balanced Dataset.

EM Dataset DT NB KNN RF GB XGB MLP SVM AB LR

Accuracy Main 0.9407 0.9506 0.8992 0.9585 0.9664 0.9743 0.9704 0.8854 0.9941 0.9901
Balanced 0.9545 0.9428 0.9223 0.9633 0.9707 0.978 0.9692 0.937 0.9956 0.9912

Kapa Stat. Main 0.8643 0.886 0.778 0.9051 0.9232 0.9415 0.9329 0.7342 0.9866 0.9777
Balanced 0.9091 0.8856 0.8446 0.9267 0.9413 0.956 0.9384 0.8739 0.9912 0.9824

Precision Main 0.9507 0.9514 0.9531 0.9651 0.9709 0.9795 0.9822 0.9008 1.000 1.000
Balanced 0.9613 0.9016 0.9706 0.954 0.9679 0.9766 0.9678 0.9776 1.000 1.000

Recall Main 0.9619 0.9765 0.8944 0.9736 0.9795 0.9824 0.9736 0.9326 0.9912 0.9853
Balanced 0.9472 0.9941 0.871 0.9736 0.9736 0.9795 0.9707 0.8944 0.9912 0.9824

AUC-ROC Main 0.9294 0.9368 0.9018 0.9504 0.9594 0.97 0.9686 0.8602 0.9956 0.9927
Balanced 0.9545 0.9428 0.9223 0.9633 0.9707 0.978 0.9692 0.937 0.9956 0.9912

F1 score Main 0.9563 0.9638 0.9228 0.9693 0.9752 0.981 0.9779 0.9164 0.9956 0.9926
Balanced 0.9542 0.9456 0.9181 0.9637 0.9708 0.978 0.9693 0.9342 0.9956 0.9911

Log loss Main 2.0478 1.7065 3.4812 1.4334 1.1604 0.8874 1.0239 3.959 0.2048 0.3413
Balanced 1.57 1.9751 2.6841 1.2661 1.0129 0.7597 1.0635 2.1777 0.1519 0.3039

The bold text indicates the highest values.
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Table 3. Analysis of the Performance of Different Classifiers Based on Varied Feature Transformation
Techniques.

EM Dataset DT NB KNN RF GB XGB MLP SVM AB LR

Accuracy

Standard Scalar 0.9589 0.9428 0.9663 0.9663 0.9765 0.9809 0.9941 0.9795 0.9985 0.9956
Unit Vector 0.9428 0.9267 0.9575 0.9663 0.9677 0.9736 0.9428 0.9238 0.9897 0.8314
Yeo-Johnson 0.9604 0.9428 0.9663 0.9736 0.9721 0.978 0.9941 0.9824 0.9941 0.9956
Robust Scalar 0.9633 0.9428 0.9575 0.9692 0.9736 0.9809 0.9927 0.9795 0.9985 0.9941

Kapa Stat.

Standard Scalar 0.9179 0.8856 0.9326 0.9326 0.9531 0.9619 0.9883 0.9589 0.9971 0.9912
Unit Vector 0.8856 0.8534 0.915 0.9326 0.9355 0.9472 0.8856 0.8475 0.9795 0.6628
Yeo-Johnson 0.9208 0.8856 0.9326 0.9472 0.9443 0.956 0.9883 0.9648 0.9883 0.9912
Robust scalar 0.9267 0.8856 0.915 0.9384 0.9472 0.9619 0.9853 0.9589 0.9971 0.9883

Precision

Standard Scalar 0.9672 0.9016 0.9877 0.9543 0.971 0.9795 1.0000 0.9712 1.0000 1.0000
Unit Vector 0.9415 0.9076 0.9588 0.9543 0.9544 0.9681 0.9415 0.9446 0.9912 0.8717
Yeo-Johnson 0.9673 0.9016 0.9969 0.9654 0.9708 0.9766 0.9971 0.9768 1.0000 1.0000
Robust scalar 0.9731 0.9016 0.9937 0.9598 0.9681 0.9795 0.9941 0.9767 1.0000 1.0000

Recall

Standard Scalar 0.9501 0.9941 0.9443 0.9795 0.9824 0.9824 0.9883 0.9883 0.9971 0.9912
Unit Vector 0.9443 0.9501 0.956 0.9795 0.9824 0.9795 0.9443 0.9003 0.9883 0.7771
Yeo-Johnson 0.9531 0.9941 0.9355 0.9824 0.9736 0.9795 0.9912 0.9883 0.9883 0.9912
Robust scalar 0.9531 0.9941 0.9208 0.9795 0.9795 0.9824 0.9912 0.9824 0.9971 0.9883

AUC-ROC

SST 0.9589 0.9428 0.9663 0.9663 0.9765 0.9809 0.9941 0.9795 0.9985 0.9956
Unit Vector 0.9428 0.9267 0.9575 0.9663 0.9677 0.9736 0.9428 0.9238 0.9897 0.8314
Yeo-Johnson 0.9604 0.9428 0.9663 0.9736 0.9721 0.978 0.9941 0.9824 0.9941 0.9956
Robust scalar 0.9633 0.9428 0.9575 0.9692 0.9736 0.9809 0.9927 0.9795 0.9985 0.9941

F1 score

Standard Scalar 0.9586 0.9456 0.9655 0.9667 0.9767 0.981 0.9941 0.9797 0.9985 0.9956
Unit Vector 0.9429 0.9284 0.9574 0.9667 0.9682 0.9738 0.9429 0.9219 0.9897 0.8217
Yeo-Johnson 0.9601 0.9456 0.9652 0.9738 0.9722 0.978 0.9941 0.9825 0.9941 0.9956
Robust scalar 0.963 0.9456 0.9559 0.9695 0.9738 0.981 0.9927 0.9795 0.9985 0.9941

Log loss

Standard Scalar 1.418 1.9751 1.1648 1.1648 0.8103 0.6584 0.2026 0.709 0.0506 0.1519
Unit Vector 1.9751 2.5322 1.4687 1.1648 1.1142 0.9116 1.9751 2.6335 0.3545 5.824
Yeo-Johnson 1.3674 1.9751 1.1648 0.9116 0.9622 0.7597 0.2026 0.6077 0.2026 0.1519
Robust scalar 1.2661 1.9751 1.4687 1.0635 0.9116 0.6584 0.2532 0.709 0.0506 0.2026

The bold text indicates the highest values.

Table 4. Evaluation of the Performance of Different Classifiers Employing Varied Feature
Selection Methods.

EM Feature Selection Technique DT NB KNN RF GB XGB MLP SVM AB LR

Accuracy

Boruta 0.9604 0.9428 0.9677 0.9648 0.9707 0.9721 0.9765 0.9721 0.9765 0.9765
Pearson Correlation Coefficient 0.9633 0.9501 0.9604 0.9736 0.9707 0.9692 0.9751 0.9677 0.9765 0.9736

Mutual Information Gain 0.9648 0.9531 0.9604 0.9721 0.9824 0.9839 0.9941 0.9927 0.9956 0.9956
Recursive Feature Elimination 0.9721 0.9457 0.9663 0.9736 0.9839 0.9839 0.9956 0.9839 0.9956 0.9956

Kapa Stat.

Boruta 0.9208 0.8856 0.9355 0.9296 0.9413 0.9443 0.9531 0.9443 0.9531 0.9531
Pearson Correlation Coefficient 0.9267 0.9003 0.9208 0.9472 0.9413 0.9384 0.9501 0.9355 0.9531 0.9472

Mutual Information Gain 0.9296 0.9062 0.9208 0.9443 0.9648 0.9677 0.9883 0.9853 0.9912 0.9912
Recursive Feature Elimination 0.9443 0.8915 0.9326 0.9472 0.9677 0.9677 0.9912 0.9677 0.9912 0.9912

Precision

Boruta 0.9701 0.9016 0.9878 0.9621 0.9707 0.9763 0.9794 0.9708 0.9794 0.9765
Pearson Correlation Coefficient 0.9675 0.9183 0.9846 0.9681 0.9707 0.9678 0.9737 0.9623 0.9765 0.9792

Mutual Information Gain 0.9648 0.921 0.9968 0.9653 0.9853 0.9882 1.0000 0.9941 1.0000 1.0000
Recursive Feature Elimination 0.9735 0.9086 0.9938 0.9681 0.9882 0.9853 1.0000 0.9882 1.0000 1.0000

Recall

Boruta 0.9501 0.9941 0.9472 0.9677 0.9707 0.9677 0.9736 0.9736 0.9736 0.9765
Pearson Correlation Coefficient 0.9589 0.9883 0.9355 0.9795 0.9707 0.9707 0.9765 0.9736 0.9765 0.9677

Mutual Information Gain 0.9648 0.9912 0.9238 0.9795 0.9795 0.9795 0.9883 0.9912 0.9912 0.9912
Recursive Feature Elimination 0.9707 0.9912 0.9384 0.9795 0.9795 0.9824 0.9912 0.9795 0.9912 0.9912

AUC-ROC

Boruta 0.9604 0.9428 0.9677 0.9648 0.9707 0.9721 0.9765 0.9721 0.9765 0.9765
Pearson Correlation Coefficient 0.9633 0.9501 0.9604 0.9736 0.9707 0.9692 0.9751 0.9677 0.9765 0.9736

Mutual Information Gain 0.9648 0.9531 0.9604 0.9721 0.9824 0.9839 0.9941 0.9927 0.9956 0.9956
Recursive Feature Elimination 0.9721 0.9457 0.9663 0.9736 0.9839 0.9839 0.9956 0.9839 0.9956 0.9956

F1 score

Boruta 0.96 0.9456 0.9671 0.9649 0.9707 0.972 0.9765 0.9722 0.9765 0.9765
Pearson Correlation Coefficient 0.9632 0.952 0.9594 0.9738 0.9707 0.9693 0.9751 0.9679 0.9765 0.9735

Mutual Information Gain 0.9648 0.9548 0.9589 0.9723 0.9824 0.9838 0.9941 0.9927 0.9956 0.9956
Recursive Feature Elimination 0.9721 0.9481 0.9653 0.9738 0.9838 0.9838 0.9956 0.9838 0.9956 0.9956

Log loss

Boruta 1.3674 1.9751 1.1142 1.2155 1.0129 0.9622 0.8103 0.9622 0.8103 0.8103
Pearson Correlation Coefficient 1.2661 1.7219 1.3674 0.9116 1.0129 1.0635 0.8609 1.1142 0.8103 0.9116

Mutual Information Gain 1.2155 1.6206 1.3674 0.9622 0.6077 0.5571 0.2026 0.2532 0.1519 0.1519
Recursive Feature Elimination 0.9622 1.8738 1.1648 0.9116 0.5571 0.5571 0.1519 0.5571 0.1519 0.1519

The bold text indicates the highest values.
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Table 5. Performance Analysis of Several Classifiers Using Grid Search Technique.

Classifier DT NB KNN RF GB XGB MLP SVM AB LR

Accuracy 0.9941 0.9868 0.9868 0.9897 0.9941 0.9956 0.9985 0.9985 0.9985 0.9985
Kapa Stat. 0.9883 0.9736 0.9736 0.9795 0.9883 0.9912 0.9971 0.9971 0.9971 0.9971
Precision 0.9971 0.997 0.9854 0.9941 0.9971 0.9971 1.000 1.000 1.000 1.000

Recall 0.9912 0.9765 0.9883 0.9853 0.9912 0.9941 0.9971 0.9971 0.9971 0.9971
AUC-ROC 0.9941 0.9868 0.9868 0.9897 0.9941 0.9956 0.9985 0.9985 0.9985 0.9985

F1 Score 0.9941 0.9867 0.9868 0.9897 0.9941 0.9956 0.9985 0.9985 0.9985 0.9985
Log Loss 0.2026 0.4558 0.4558 0.3545 0.2026 0.1519 0.0506 0.0506 0.0506 0.0506

The bold text indicates the highest values.

3.3. Result Analysis of Kappa Statistics

Each classifier’s kappa statistics (KP) values are shown in Tables 2–5. The AB produced
the highest scores for both the main dataset and the balanced dataset, which were 98.66%
and 99.12%, respectively. It has been observed that the balanced dataset performed better
than the main dataset. AB and LR estimated the highest results (99.12%) for the mutual
information gain and recursive feature elimination techniques, whilst MLP evaluated the
best result by using the recursive feature elimination methodology. AB calculated the
maximum outcome for standard scalar and robust scalar approaches in the FT technique.
For the hyperparameter tuning approach, MLP, SVM, AB, and LR determined the highest
possible result, which was 99.71%.

3.4. Analysis of Precision

Tables 2–5 display the precision value of each classifier. AB and LR manipulated the
maximum outcome in the case of main dataset and balanced dataset. When we observed
the FS method, the highest precision value was determined by MLP, AB, and LR for both
mutual information gain and recursive feature elimination methods. The MLP, AB, and
LR calculated the maximum results for standard scalar in the FT method. The LR and AB
evaluated the highest result for both Yeo-Johnson and robust scalar techniques. The highest
result (100%) was generated by MLP, SVM, AB, and LR in the case of parameter tuning.

3.5. Analysis of Recall

The recall results for each classifier are displayed in Tables 2–5, respectively. AB
calculated the highest recall value (99.12%) for the primary dataset, whereas NB produced
the best result (99.41%) for the balanced dataset. When we investigated the FS method,
the NB produced the highest boruta result of 99.41%. AB calculated the maximum recall
(99.71%) using both the standard scalar and robust scalar FT methods. After tuning the
hyperparameters for each classifier, MLP, SVM, AB, and LR provided the highest result,
99.71%. Finally, it is found that, among all classifiers, the AB classifier performed the best.

3.6. Analysis of AUROC

Tables 2–5 display the AUROC values for each classifier. The AB gave the greatest
main dataset and balanced dataset scores, both of which were 99.56%. AB and LR esti-
mated the highest results (99.56%) for the mutual information gain and recursive feature
elimination methods, whereas MLP calculated the same result using the recursive feature
elimination technique. AB calculated the best results for the standard scalar and robust
scalar techniques in the FT methodology. In the case of the hyperparameter tuning method,
MLP, SVM, AB, and LR determined the highest achievable outcome, which was 99.85%.
After hyperparameter adjustment, it is observed that the performance of each classifier
is enhanced.

3.7. Analysis of F1 Score

Tables 2–5 list the F1 score of each classifier. AB manipulated the maximum result
for main dataset and balanced dataset, which was 99.56%. MLP, AB, and LR for recursive
feature elimination methods found the greatest F1 score value when we observed the FS
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method. In contrast, AB and LR calculated the maximum result for mutual information
gain technique. In case of FT techniques, the AB determined that the standard scalar and
robust scalar techniques produced the best results. In terms of parameter tuning, MLP,
SVM, AB, and LR produced the maximum accuracy (99.85%).

3.8. Analysis of Log loss

The log loss results for each classifier are displayed in Tables 2–5. AB estimated
the least amount of log loss for the primary and balanced datasets (20.48% and 15.19%,
respectively). The MLP, AB, and LR in recursive feature elimination technique and the AB
and LR in the mutual information gain method yielded the lowest results (15.19%) when
we examined the FS method. AB calculated the lowest (5.06%) using both the standard
scalar and robust scalar FT methods. After adjusting each classifier’s hyperparameters,
MLP, SVM, AB, and LR yielded the lowest log loss (5.06%) which is shown in Figure 4.
In this investigation, we also found that AB offered the best results among all classifiers
for all feature transformation and selection techniques, as well as the hyperparameter
optimization strategy. The performance of different classifiers using the hyperparameter
optimization technique is demonstrated in Figure 5. Here, we observed that MLP, SVM,
AB, and LR demonstrated the best outcome.

Figure 4. Comparison of Log Loss of Different Classification Techniques.

Figure 5. Performance Analysis of Different Classifiers Using Hyper-parameter Optimization Techniques.

3.9. Feature Ranking Using Machine Learning Technique

We calculated feature importance using the average coefficient value of all used
classifiers. We evaluate attribute significance values for each approach, and then balanced
them using the standard scalar technique so that they fall between 0 and 1. We then
calculated averages across all dimensions. In Table 6, we found that A8 had the greatest
mean coefficient value (0.661) while gender had the lowest mean coefficient value. In
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Figure 6, we analyzed the relevance of autism’s characteristics and identified A8 as the
most prominent. Other critical features are A7, A6, A1, A2, and so on. Gender, FM ASD,
Region, Age, A4, A10, etc. are the least essential traits.

Table 6. Feature Ranking Using Machine Learning Technique based on coefficient values.

Feature DT NB KNN RF GB XGB MLP SVM AB LR Average

A10 0.039 0.000 0.325 0.380 0.319 0.353 0.687 0.101 0.833 0.107 0.314
A9 0.135 0.016 0.662 0.155 0.028 0.073 0.707 0.815 0.833 0.803 0.423
A8 0.036 1.000 0.587 1.000 1.000 1.000 0.867 0.135 0.833 0.148 0.661
A7 0.017 0.674 0.238 0.821 0.521 0.507 0.675 1.000 1.000 1.000 0.645
A6 1.000 0.258 1.000 0.357 0.301 0.484 0.707 0.726 0.667 0.720 0.622
A5 0.050 0.044 0.538 0.004 0.003 0.064 0.663 0.526 0.833 0.507 0.323
A4 0.021 0.052 0.263 0.019 0.018 0.047 0.491 0.542 0.667 0.543 0.266
A3 0.029 0.052 0.238 0.000 0.015 0.000 1.000 0.527 0.833 0.542 0.324
A2 0.280 0.078 0.650 0.159 0.052 0.249 0.809 0.606 0.833 0.590 0.431
A1 0.043 0.721 0.450 0.570 0.267 0.432 0.641 0.431 0.833 0.454 0.484

Region 0.000 0.164 0.000 0.300 0.000 0.043 0.000 0.727 0.167 0.724 0.213
Age 0.011 0.253 0.075 0.526 0.380 0.344 0.203 0.181 0.000 0.178 0.215

Gender 0.026 0.068 0.100 0.013 0.010 0.076 0.110 0.631 0.000 0.657 0.169
FM ASD 0.000 0.661 0.275 0.539 0.165 0.269 0.020 0.000 0.000 0.000 0.193

The bold text indicates highest values of coefficient and most important indicator.

Figure 6. Feature ranking based on coefficient values of ML model. Longer and lighter colored bar
represents greater importance.

4. Discussion

Several studies have been conducted utilizing ASD datasets, although ASD prediction
remains in need of substantial improvement. In our research, we collected ASD datasets
and balanced them using the SMOTE method. Then, we applied Decision Tree, Naive Bayes,
K-Nearest Neighbors, Random Forest, Gradient Boosting, Extreme Gradient Boosting, Mul-
tilayer Perceptron, Support Vector Machine, Ada Boost, and Logistic Regression classifiers
after transforming the features using various feature transformed techniques, including
Standard Scalar, Unit Vector Scalar, Robust Scalar, and Yeo Johnson transformation. All
classifiers performed well utilizing the standard scalar approach, with AB achieving the
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best performance. Subsequently, we applied the feature selection techniques Boruta, Cor-
relation, Mutual Information, and Recursive Feature Elimination, and we achieved good
results using the RFE technique. We decreased execution time and memory requirements
by utilizing FS to locate ASD as rapidly as feasible. Finally, the grid search hyperparameter
optimization technique was implemented. Here, we found that all classifiers improved
their performance, with AB, LR, SVM, and MLP producing the best results.

Our results suggest a variety of critical and pertinent features for early diagnosis of
ASD. The most important features are A6, A9, A2, A8, and A4 dependent on the log-based
relationship. The most important characteristics of an ML model are A8, A7, A6, A1, and
A2. In addition, we found significant indicators such as A6, A2, and A8 that are identical
for both log-based association and ML methods. Our investigation suggests that key
attributes are sufficient for recognizing ASD, which will facilitates the effective application
of ASD diagnosis.

The suggested model is contrasted with relevant prior findings in Table 7. The ma-
jority of previous research utilized version-1 ASD datasets, whereas a few studies utilized
version-2. Akter et al. utilized the technique of feature transformation and obtained the
maximum result accuracy (98.77%), KS (97.1), AUROC (99.98%), and Log Loss (3.01). In a
different study, Bala et al. used the feature selection technique and achieved the top results
for accuracy (97.82%), KS (94.87), AURCO (99.7%), and F1 Score (97.8). Hasan et al. then
performed a feature transformation strategy that yielded the highest accuracy (99.25%),
KS (98.97), precision (99.89%), recall (98.45%), F1 Score (99.1%), and Log Loss (0.0802). In
our suggested framework, however, the application of feature transformation, selection,
and hyperparameter optimization is employed and got the highest accuracy (99.85%), KS
(99.71), precision (1.00%), recall (1.00%), AUROC (99.85%), F1 Score (99.85%), and Log
Loss (0.0506).

Table 7. Comparative analysis of the proposed model with the other prior studies.

Reference Feature Selection Accuracy Kapa Stat. Precision Recall AUROC F1 Score Log Loss

Akter et al. [14] No 98.77 97.1 99.98 3.01
Bala et al. [6] Yes 97.82 94.87 99.7 97.8

Hasan et al. [7] No 99.25 98.97 99.89 98.45 99.1 0.0802
Proposed Model Yes 99.85 99.71 1.00 1.00 99.85 99.85 0.0506

5. Conclusions

In our work, the proposed ML architecture was used to yield more precise and effective
results for the rapid diagnosis of ASD. We applied FT techniques to the ASD samples,
examined the modified dataset using many classifiers, and evaluated their efficacy. Next,
we employed feature extraction strategies to yield fewer characteristics from ASD screening
methodologies while preserving performance consistency. In addition, we utilized the
hyperparameter optimization method to enhance the performance of each classifier. Our
research reveals that the standard scalar feature transformation and RFE feature selection
techniques are superior to others.

Our findings may aid in the identification of ASD characteristics, making it easier for
patients and their families to gain the necessary support to improve their physical, social,
and academic health. This study’s weaknesses include the absence of specific details such
as recordings and images of cases and controls. In the future, we will implement deep
learning algorithms that enable the discovery of novel, non-conventional ASD traits from a
complex set of characteristics. In addition, future research could examine cluster analysis
to identify endophenotypes, evaluate the role of development in facilitating evaluation,
and improve diagnosis and therapy.
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