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Abstract: Artificial neural networks are machine learning models widely used in many sciences as
well as in practical applications. The basic element of these models is a vector of parameters; the
values of these parameters should be estimated using some computational method, and this process is
called training. For effective training of the network, computational methods from the field of global
minimization are often used. However, for global minimization techniques to be effective, the bounds
of the objective function should also be clearly defined. In this paper, a two-stage global optimization
technique is presented for efficient training of artificial neural networks. In the first stage, the bounds
for the neural network parameters are estimated using Particle Swarm Optimization and, in the
following phase, the parameters of the network are optimized within the bounds of the first phase
using global optimization techniques. The suggested method was used on a series of well-known
problems in the literature and the experimental results were more than encouraging.

Keywords: global optimization; local optimization; stochastic methods; evolutionary techniques;
termination rules

1. Introduction

Artificial neural networks (ANNs) are parametric machine learning models [1,2]
which have been widely used during the last decades in a series of practical problems from
scientific fields such as physics problems [3–5], chemistry problems [6–8], problems related
to medicine [9,10], economic problems [11–13], etc. In addition, ANNs have recently been
applied to models solving differential equations [14,15], agricultural problems [16,17], facial
expression recognition [18], wind speed prediction [19], the gas consumption problem [20],
intrusion detection [21], etc. Usually, neural networks are defined as a function N(−→x ,−→w ),
provided that the vector −→x is the input pattern to the network and the vector −→w stands for
the weight vector. To estimate the weight vector, the so-called training error is minimized,
which is defined as the sum:

E(−→w ) =
M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the values t
(−→xi , yi

)
, i = 1, . . . , M define the training set for the neural

network. The values yi denote the expected output for the pattern −→xi .
To minimize the quantity in Equation (1), several techniques have been proposed in the

relevant literature such as the Back Propagation method [22,23], the RPROP method [24–26],
Quasi Newton methods [27,28], Simulated Annealing [29,30], genetic algorithms [31,32],
Particle Swarm Optimization [33,34], Differential Optimization methods [35], Evolutionary
Computation [36], the Whale optimization algorithm [37], the Butterfly optimization algo-
rithm [38], etc. In addition, many researchers have focused their attention on techniques
for initializing the parameters of artificial neural networks, such as the usage of decision
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trees to initialize neural networks [39], a method based on Cachy’s inequality [40], usage of
genetic algorithms [41], initialization based on discriminant learning [42], etc. In addition,
many researchers were also concerned with the construction of artificial neural network
architectures, such as the usage of Cross Validation to propose the architecture of neural
networks [43], incorporation of the Grammatical Evolution technique [44] to construct the
architecture of neural networks as well as to estimate the values of the weights [45], evolu-
tion of neural networks using a method based on cellular automata [46], etc. In addition,
since there has been a leap forward in the development of parallel architectures in recent
years, a number of works have been presented that take advantage of such computational
techniques [47,48].

However, in many cases, the training methods of artificial neural networks suffer
from the problem of overfitting, i.e., although they succeed in significantly reducing the
training error of Equation (1), they do not perform similarly on unknown data that were
not present during training. These unknown datasets are commonly called test sets. The
overfitting problem is usually handled using a a variety of methods, such as weight
sharing [49,50], pruning of parameters, i.e., reducing the size of the network [51–53],
the dropout technique [54,55], weight decaying [56,57], the Sarporp method [58], posi-
tive correlation methods [59], etc. The overfitting problem is thoroughly discussed in
Geman et al. [60] and in the article by Hawkins [61].

A key reason why the problem of overtraining in artificial neural networks is present
is that there is no well-defined interval of values in which the network parameters are
initialized and trained by the optimization methods. This, in practice, means that the
values of the parameters are changed indiscriminately in order to reduce the value of
the Equation (1). In this work, it is proposed to use the Particle Swarm Optimization
(PSO) technique [62] for the reliable calculation of the value interval of the parameters of
an artificial neural network. The PSO method was chosen since it is a fairly fast global
optimization method, easily adaptable to any optimization problem, and does not require
many execution parameters to be defined by the user. The PSO method was applied
with success to many difficult problems, such as problems that arise in physics [63,64],
chemistry [65,66], medicine [67,68], economics [69], etc. In the proposed method, the PSO
technique is used to minimize Equation (1), to which a penalty factor has been added, so as
not to allow the parameters of artificial neural networks to vary uncontrollably. After the
minimization of the modified function is done, the parameters of the neural network are
initialized in an interval of values around the optimal value located by the PSO method.
Then, the original form of Equation (1) is minimized without a penalty factor.

Other tasks in a similar direction include, for example, the work of Hwang and
Ding [70], which suggests prediction intervals for the weights of neural networks; the work
of Kasiviswanathan et al. [71], which constructs prediction intervals for neural networks
applied on rainfall runoff models; the work of Sodhi and Chandra [72], which proposes
an interval based method for weight initialization of neural networks, etc. In addition, a
review for weight initialization strategies can be found in the paper of Narkhede et al. [73].

The following sections are organized as follows: in Section 2, the suggested technique
is fully analyzed and discussed; in Section 3, the experimental datasets as well as the
experimental results are described and discussed; and in Section 4, the conclusions from
the application of current work are discussed.

2. The Proposed Method
2.1. Preliminaries

Suppose a neural network with a hidden processing layer is available that uses the
so—called sigmoid function as activation function. The sigmoid function is defined as

σ(x) =
1

1 + exp(−x)
(2)
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The equation for every hidden node of the neural network is defined as

oi(x) = σ
(

pT
i x + θi

)
, (3)

The vector pi represents the weight vector and the value θi denotes the bias of node i.
Hence, the total equation for a neural network with H hidden has as follows:

N(x) =
H

∑
i=1

vioi(x), (4)

The value vi denotes the output weight for node i. Therefore, writing the overall
equation by using one vector to hold both the weights pi, vi and the biases θi of the
networks and using the previous equations Equations (3) and (4) has as follows:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(5)

The value d stands for the dimension of the input vector −→x . Observing Equation (5), it
is obvious that in many cases, the sigmoid function is driven to 1 or 0 and as a consequence
that the training error of the neural network can get trapped in local minima. In this case,
the neural network will lose its generalization abilities. Therefore, a technique in which the
values of the sigmoid will be restricted to some interval of values should be devised. In
the present work, the limitation of the neural network parameters to a range of values is
carried out using the Particle Swarm Optimization method.

2.2. The Bounding Algorithm

In the case of the sigmoid function of Equation (2), if the parameter x is large, the
function will very quickly tend to 1. If it is very small, it will very quickly tend to 0. This
means that the function will very quickly lose any generalizing abilities it has. Therefore,
the parameter x should somehow be in some interval of values such that there are no
generalization problems. For this reason, the quantity B(L) is estimated, where L is a
limit for the absolute value of the parameter x of the sigmoid function. The steps for this
calculation are shown in Algorithm 1. This function will eventually return the average of
the overruns made for the x parameter of the sigmoid function. The higher this average
is, the more likely it is that the artificial neural network will not be able to generalize
satisfactorily.

2.3. The PSO Algorithm

The Particle Swarm Optimization method is based on a swarm of vectors that are
commonly called particles. These particles can also be considered potential values of the
total minimum of the objective function. Each particle is associated with two vectors: the
current position denoted as −→p and the corresponding speed −→u at which they are moving
towards the global minimum. In addition, each particle maintains, in the vector pi,b, the
best position in which it has been so far. The total population, maintains in the vector
pbest, the best position that any of the particles have found in the past. The purpose of the
method is to move the total population toward the global minimum through a series of
iterations. In each iteration, the velocity of each particle is calculated based on its current
position, its best position in the past, and the best located position of the population.
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Algorithm 1 A function in pseudocode to calculate the quantity B(L) for a given parameter
L. The parameter M represents the number of patterns for the neural network N(x, w).

1. Function B(L)
2. Define v = 0
3. For i = 1 . . . H Do

(a) For j = 1 . . . M Do

i. If
∣∣∣∑d

k=1

(
w(d+2)i−(d+i)+kxjk

)
+ w(d+2)i

∣∣∣ > L then v = v + 1

(b) EndFor
4. EndFor
5. Return v

H?M
6. End Function

In this work, the PSO technique is used to train artificial neural networks by minimiz-
ing the error function as defined in Equation (3), along with a penalty factor depending
on the function B(L) defined in Section 2.2. Hence, the PSO technique will minimize the
equation:

ET(N(x, w), L) =
M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 × (1 + αB(L)) (6)

where α is a penalty factor with α > 1. Hence, the main steps of a PSO algorithm are shown
in Algorithm 2.

Algorithm 2 The base PSO algorithm executed in one processing unit.

1. Initialization Step .

(a) Set k = 0, as the iteration number.
(b) Set H the hidden nodes for the neural network.
(c) Set m as the total number of particles. Each particle corresponds to a randomly

selected set of parameters for the neural network
(d) Set kmax as the maximum number of iterations allowed.
(e) Initialize velocities u1, u2, . . . , um randomly.
(f) For i = 1 . . . m do pi,b = pi. The vector pi,b corresponds to the best located

position of particle i.
(g) Set pbest = arg mini∈1...m f (pi)

2. If k ≥ kmax, then terminate.
3. For i = 1 . . . m Do

(a) Compute the velocity ui using the vectors ui, pi.b and pbest
(b) Set the new position pi = pi + ui
(c) Calculate the f (pi) for particle pi using the Equation (6) as f (pi) =

ET(N(x, pi), L)
(d) If f (pi) ≤ f (pi,b) then pi,b = xi

4. End For
5. Set pbest = arg mini∈1...m f (pi)

6. Set k = k + 1.
7. Goto Step 2

The velocity of every particle pi usually is calculated as

ui = ωui + r1c1(pi − xi) + r2c2
(

pbest − xi
)

(7)

where
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1. The variables r1, r2 are numbers defined randomly in [0, 1].
2. The constants c1, c2 are defined in [1, 2].
3. The variable ω is called inertia, proposed in [74].

For the proposed algorithm, the inertia calculation used in [75–77] is used and is
defined as

ωk =
kmax − k

kmax

(
ωmax −ωmin

)
+ ωmin (8)

where ωmin and ωmax are the minimum and the maximum value for inertia respectively.

2.4. Application of Local Optimization

After the Particle Swarm Optimization is completed, the vector pbest stores the optimal
set of parameters for the artificial neural network. From this set, a local optimization
method can be started in order to achieve an even lower value for the neural network
error. In addition, the optimal set of weights can be used to calculate an interval for the
parameters of the neural network. The error function of Equation (3) will be minimized
inside this interval. The interval [LW, RW] for the parameter vector w of the neural network
is calculated through the next steps:

1. For i = 1 . . . n do

(a) Set LWi = −F×
∣∣∣pbest,i

∣∣∣
(b) Set RWi = F×

∣∣∣pbest,i

∣∣∣
2. EndFor

The value F will be called margin factor with F > 1. In the proposed algorithm, a
BFGS version of Powell [78] was used as the local search procedure; this is a version of the
BFGS method [79] that utilizes bounds for the objective function.

3. Experiments

The efficiency of the suggested method was measured using a set of well-known
problems from the relevant literature. The experimental results from the application of the
proposed method was compared with other artificial neural network training techniques.
In addition, experiments were carried out to show the dependence of the method on its
basic parameters. The classification datasets incorporated in the relevant experiments can
be found at

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on 16
April 2023)

2. Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 16 April 2023) [80].

The majority of regression datasets was found in the Statlib URL ftp://lib.stat.cmu.
edu/datasets/index.html (accessed on 14 April 2023) .

3.1. Experimental Datasets

The dataset used as classification problems are the following:

1. Appendictis a medical dataset, found in [81].
2. Australian dataset [82]. It is a dataset related to bank applications.
3. Balance dataset [83], a cognitive dataset.
4. Cleveland dataset, a medical datasets found in a variety of papers [84,85].
5. Bands dataset, a dataset related to printing problems.
6. Dermatology dataset [86], a medical dataset.
7. Heart dataset [87], a dataset about heart diseases.
8. Hayes roth dataset. [88].
9. HouseVotes dataset [89].
10. Ionosphere dataset, this dataset has been thoroughly studied in many papers [90,91].
11. Liverdisorder dataset [92], a medical dataset.

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html
ftp://lib.stat.cmu.edu/datasets/index.html
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12. Mammographic dataset [93], a medical dataset.
13. Page Blocks dataset [94], related to documents.
14. Parkinsons dataset [95], a dataset related to Parkinson’s decease.
15. Pima dataset [96], a medical dataset.
16. Popfailures dataset [97], a dataset related to climate.
17. Regions2 dataset, a medical dataset used in liver biopsy images of patients with

hepatitis C [98].
18. Saheart dataset [99], a medical dataset about heart disease.
19. Segment dataset [100].
20. Wdbc dataset [101], a dataset about breast tumors.
21. Wine dataset, a dataset about chemical analysis for wines [102,103].
22. Eeg datasets [17], medical datasets about EEG signals. The three distinct cases used

here are named Z_F_S, ZO_NF_S and ZONF_S, respectively.
23. Zoo dataset [104].

The regression datasets used in the conducted experiments were as follows:

1. Abalone dataset, for the predictioon of age of abalone [105].
2. Airfoil dataset, a dataset provided by NASA [106].
3. Baseball dataset, a dataset used to calculate the salary of baseball players.
4. BK dataset [107], used for prediction of points in a basketball game.
5. BL dataset, used in machine problems.
6. MB dataset [107].
7. Concrete dataset [108], a civil engineering dataset.
8. Dee dataset, used to estimate the price of the electricity.
9. Diabetes dataset, a medical dataset.
10. Housing dataset [109].
11. FA dataset, used to fit body fat to other measurements.
12. MORTGAGE dataset, holding economic data from USA.
13. PY dataset, (Pyrimidines problem) [110].
14. Quake dataset, used to approximate the strength of a earthquake.
15. Treasure dataset, which contains economic data information of USA.
16. Wankara dataset, a weather dataset.

3.2. Experimental Results

To make a reliable estimate of the efficiency of the method, the ten-fold validation
method was used and 30 experiments were conducted. In every experiment, different
random values were used. The neural network used in the experiments has 1 hidden
layer with 10 neurons. The selected activation function was the sigmoid function. The
average classification or regression error on the test set is reported in the experimental
tables. The parameters used in the experiments are shown in Table 1. The proposed method
is compared against some other methods from the relevant literature:

1. A simple genetic algorithm using m chromosomes, denoted by GENETIC in the
experimental tables. In addition, in order to achieve a better solution, the local
optimization method BFGS is applied to the best chromosome of the population when
the genetic algorithm terminates.

2. The Radial Basis Function (RBF) neural network [111], where the number of weights
was set to 10.

3. The optimization method Adam [112] as provided by the OptimLib. This library can be
downloaded freely from https://github.com/kthohr/optim (accessed on 4 April 2023).

4. The Rprop method [24]. This method was found in the freely available FCNN pro-
gramming package [113].

5. The NEAT method (NeuroEvolution of Augmenting Topologies) [114]. The method
is implemented in the EvolutionNet programming package downloaded from https:
//github.com/BiagioFesta/EvolutionNet (accessed on 4 April 2023).

https://github.com/kthohr/optim
https://github.com/BiagioFesta/EvolutionNet
https://github.com/BiagioFesta/EvolutionNet


Computers 2023, 12, 82 7 of 17

The experimental parameters for the methods Adam, Rprop, and NEAT are proposed
in the corresponding software. The experimental results for the classification data are shown
in the Table 2 and the corresponding results for the regression datasets are shown in Table 3.
In both tables, the last row, denoted as AVERAGE, indicates the average classification
or regression error for the associated datasets. All the experiments were conducted on
AMD Epyc 7552 equipped with 32 GB of RAM. The operating system was the Ubuntu
20.04 operating system. For the conducted experiments, the Optimus programming library,
available from https://github.com/itsoulos/OPTIMUS (accessed on 4 April 2023), was
used. In Table 2, the column NCLASS denotes the number of classes for every dataset.
In Table 3, the regression error is shown, with the column RANGE denoting the range of
targets for every dataset.

Table 1. This table presents the values of the parameters used during the execution of the experiments.

Parameter Meaning Value

m Number of particles or chromosomes 200

kmax Maximum number of iterations 200

ωmin Minimum value for inertia 0.4

ωmax Maximum value for inertia 0.9

H Number of weights 10

α Penalty factor 100.0

L The limit for the function B(L) 10.0

F The margin factor 5.0

Table 2. Average classification error for the classification datasets for all mentioned methods.

Dataset Nclass Genetic RBF ADAM RPROP NEAT Proposed

Appendicitis 2 18.10% 12.23% 16.50% 16.30% 17.20% 16.97%

Australian 2 32.21% 34.89% 35.65% 36.12% 31.98% 26.96%

Balance 3 8.97% 33.42% 7.87% 8.81% 23.14% 7.52%

Bands 2 35.75% 37.22% 36.25% 36.32% 34.30% 35.77%

Cleveland 5 51.60% 67.10% 67.55% 61.41% 53.44% 48.40%

Dermatology 6 30.58% 62.34% 26.14% 15.12% 32.43% 14.30%

Hayes Roth 3 56.18% 64.36% 59.70% 37.46% 50.15% 36.33%

Heart 2 28.34% 31.20% 38.53% 30.51% 39.27% 18.99%

HouseVotes 2 6.62% 6.13% 7.48% 6.04% 10.89% 7.10%

Ionosphere 2 15.14% 16.22% 16.64% 13.65% 19.67% 13.15%

Liverdisorder 2 31.11% 30.84% 41.53% 40.26% 30.67% 32.07%

Lymography 4 23.26% 25.31% 29.26% 24.67% 33.70% 27.05%

Mammographic 2 19.88% 21.38% 46.25% 18.46% 22.85% 17.37%

PageBlocks 5 8.06% 10.09% 7.93% 7.82% 10.22% 6.47%

Parkinsons 2 18.05% 17.42% 24.06% 22.28% 18.56% 14.60%

Pima 2 32.19% 25.78% 34.85% 34.27% 34.51% 26.34%

Popfailures 2 5.94% 7.04% 5.18% 4.81% 7.05% 5.27%

https://github.com/itsoulos/OPTIMUS
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Table 2. Cont.

Dataset Nclass Genetic RBF ADAM RPROP NEAT Proposed

Regions2 5 29.39% 38.29% 29.85% 27.53% 33.23% 26.29%

Saheart 2 34.86% 32.19% 34.04% 34.90% 34.51% 32.49%

Segment 7 57.72% 59.68% 49.75% 52.14% 66.72% 18.99%

Wdbc 2 8.56% 7.27% 35.35% 21.57% 12.88% 6.01%

Wine 3 19.20% 31.41% 29.40% 30.73% 25.43% 10.92%

Z_F_S 3 10.73% 13.16% 47.81% 29.28% 38.41% 8.55%

ZO_NF_S 3 8.41% 9.02% 47.43% 6.43% 43.75% 7.11%

ZONF_S 2 2.60% 4.03% 11.99% 27.27% 5.44% 2.61%

ZOO 7 16.67% 21.93% 14.13% 15.47% 20.27% 5.80%

AVERAGE 23.47% 27.69% 30.81% 25.37% 28.87% 18.21%

Table 3. Average regression error for all mentioned methods and regression datasets.

Dataset Range Genetic RBF ADAM RPROP NEAT Proposed

ABALONE 19.0 7.17 7.37 4.30 4.55 9.88 4.34

AIRFOIL 0.41 0.003 0.27 0.005 0.002 0.067 0.002

BASEBALL 42.50 103.60 93.02 77.90 92.05 100.39 58.78

BK 0.32 0.027 0.02 0.03 1.599 0.15 0.03

BL 0.68 5.74 0.01 0.28 4.38 0.05 0.02

CONCRETE 0.77 0.0099 0.011 0.078 0.0086 0.081 0.003

DEE 4.12 1.013 0.17 0.63 0.608 1.512 0.23

DIABETES 0.90 19.86 0.49 3.03 1.11 4.25 0.65

HOUSING 43.0 43.26 57.68 80.20 74.38 56.49 21.85

FA 0.51 1.95 0.02 0.11 0.14 0.19 0.02

MB 0.10 3.39 2.16 0.06 0.055 0.061 0.051

MORTGAGE 12.74 2.41 1.45 9.24 9.19 14.11 0.31

PY 0.84 105.41 0.02 0.09 0.039 0.075 0.08

QUAKE 0.60 0.04 0.071 0.06 0.041 0.298 0.044

TREASURY 15.54 2.929 2.02 11.16 10.88 15.52 0.34

WANKARA 0.605 0.012 0.001 0.02 0.0003 0.005 0.0002

AVERAGE 18.55 10.30 11.70 12.44 12.70 5.42

The proposed two-phase technique is shown to outperform the others in both clas-
sification and regression problems in terms of accuracy on the test set. In many datasets,
the difference in accuracy provided by the proposed technique can reach or even exceed
70%. This is more evident in regression dataset, where the average gain from the next
best method is 54%. In the case of the classification data, the most effective method before
the proposed one appears to be the genetic algorithm; the difference in accuracy between
them is on the order of 23%. On the other hand, for the regression datasets, the radial basis
network is the next most effective after the proposed technique; the average difference
in accuracy between them is on the order of 47%. In addition, a comparison in terms of
precision and recall between the proposed method and the genetic algorithm is shown in
Table 4 for a series of select classification datasets. In this table, the proposed technique
shows higher accuracy than the genetic algorithm method.
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Table 4. Comparison for precision and recall between the proposed method and the genetic algorithm
for a series of classification datasets.

Precision Recall

Dataset Genetic Proposed Genetic Proposed

PARKINSONS 0.77 0.82 0.68 0.77

WINE 0.75 0.90 0.79 0.89

HEART 0.73 0.81 0.72 0.80

Furthermore, scatter plots that indicate the performance of all mentioned methods are
shown in Figures 1 and 2.

Figure 1. The scatter plot provides a clear overview of the performance of the proposed algorithm
compared to the other six algorithms across the 26 datasets. It allows for visual identification of
patterns, trends, and potential outliers in the classification errors. The plot serves as a concise visual
summary of the comparative performance of the algorithms, providing insights into the effectiveness
of the proposed algorithm in relation to the other algorithms in a variety of datasets.

Figure 2. The scatter plot visually represents the performance of the regression classification algo-
rithms in terms of classification errors. Each point on the plot represents the regression error of a
particular algorithm in a specific dataset. The x-axis represents the regression algorithms, while the
y-axis represents the regression error. Different datasets are denoted by different colors for clarity.



Computers 2023, 12, 82 10 of 17

In addition, the effectiveness of the usage of the BFGS local search method is measured
in an additional experiment, where the local search method for the proposed technique is
replaced by the ADAM optimizer. The results for the classification datasets are shown in
Table 5 and the corresponding results for the regression datasets in Table 6. In both
tables, the column PROPOSED_BFGS denotes the application of the proposed method
using the BFGS local search as the procedure of the second phase, and the column PRO-
POSED_ADAM denotes the incorporation of the ADAM optimizer during the second
phase instead of the BFGS.

Table 5. Experimental results for the classification datasets using the BFGS and the Adam local
optimization methods during the second phase. The numbers in tables represent average classification
error as measured in the test set for every dataset.

Dataset ADAM PROPOSED_BFGS PROPOSED_ADAM

Appendicitis 16.50% 16.97% 16.03%

Australian 35.65% 26.96% 32.45%

Balance 7.87% 7.52% 7.59%

Bands 36.25% 35.77% 35.72%

Cleveland 67.55% 48.40% 47.62%

Dermatology 26.14% 14.30% 19.78%

Hayes Roth 59.70% 36.33% 36.87%

Heart 38.53% 18.99% 18.86%

HouseVotes 7.48% 7.10% 4.20%

Ionosphere 16.64% 13.15% 9.32%

Liverdisorder 41.53% 32.07% 32.24%

Lymography 29.26% 27.05% 27.64%

Mammographic 46.25% 17.37% 21.38%

PageBlocks 7.93% 6.47% 7.33%

Parkinsons 24.06% 14.60% 16.77%

Pima 34.85% 26.34% 30.19%

Popfailures 5.18% 5.27% 4.56%

Regions2 29.85% 26.29% 26.14%

Saheart 34.04% 32.49% 32.55%

Segment 49.75% 18.99% 37.51%

Wdbc 35.35% 6.01% 7.40%

Wine 29.40% 10.92% 12.80%

Z_F_S 47.81% 8.55% 9.76%

ZO_NF_S 47.43% 7.11% 8.87%

ZONF_S 11.99% 2.61% 2.68%

ZOO 14.13% 5.80% 6.47%

AVERAGE 30.81% 18.21% 19.72%

The experimental results demonstrate that the proposed methodology can give ex-
cellent results in learning categories or in learning functions, even if the Adam method is
used as a local minimization method. However, the Adam method requires a much longer
execution time than the BFGS method, and this is shown graphically in Figure 3.
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Table 6. Experimental results for the regression datasets using the BFGS and the Adam local opti-
mization methods during the second phase. The numbers in tables represent average regression error
as measured in the test set for every dataset.

Dataset ADAM PROPOSED_BFGS PROPOSED_ADAM

ABALONE 4.30 4.34 4.49

AIRFOIL 0.005 0.002 0.003

BASEBALL 77.90 58.78 72.43

BK 0.03 0.03 0.02

BL 0.28 0.02 0.01

CONCRETE 0.078 0.003 0.004

DEE 0.63 0.23 0.25

DIABETES 3.03 0.65 0.44

HOUSING 80.20 21.85 34.22

FA 0.11 0.02 0.02

MB 0.06 0.051 0.047

MORTGAGE 9.24 0.31 1.83

PY 0.09 0.08 0.02

QUAKE 0.06 0.044 0.039

TREASURY 11.16 0.34 2.36

WANKARA 0.02 0.0002 0.0002

AVERAGE 11.70 5.42 7.26

Figure 3. Average execution time for the Abalone dataset for three different methods: The simplegGe-
netic method, the proposed method with the incorporation of BFGS, and the proposed method with
the usage of the Adam optimizer during the second phase of execution.

This graph shows the running time for the Abalone dataset, which is a time-consuming
problem. The first column shows the execution time for the simple genetic algorithm; the
second column shows the execution time for the proposed method using the BFGS local
optimization method in the second phase; and the third column shows the execution time
for the proposed method using the Adam method in the second stage. Although, as shown
in the previous tables, the Adam method can have similar levels of success as the BFGS
method, it nevertheless requires significant computing time for its completion.
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In addition, the average regression error for the proposed method when the number
of particles increases from 50 to 400 is graphically outlined in Figure 4.

Figure 4. Average regression error for the proposed method using different numbers of particles in
each experiment.

The proposed technique achieves the best results when the number of particles in the
particle swarm optimization exceeds 100. However, the average error is about the same for
200 and 400 particles, and therefore, choosing 200 particles to run experiments appears to
be more effective, since it will require less computing time.

In addition, in order to see if there is a dependence of the results on the critical
parameters L and F of the proposed method, a series of additional experiments were carried
out in which these parameters were varied. In the first phase, the proposed technique was
applied to the regression datasets for different values of the coefficient L varying from 2.5
to 20.0, and the average regression error is graphically shown in Figure 5.

Figure 5. Experiments with the L parameter for the regression datasets.

From the experimental results, it is clear that the increase in the value of the coefficient
λ positively affects the performance of the method. However, after the value λ = 10, this
effect decreases drastically. For low values of this coefficient, the parameters of the artificial
neural network are limited to low values, and therefore, a lag in the accuracy of the neural
network is expected.
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In addition, corresponding experiments were performed with the value of the coeffi-
cient F increasing from 2 to 15, and these are graphically illustrated in Figure 6.

Figure 6. Experiments with the value of parameter F for the regression datasets.

For the experiments with the coefficient F, one can see that the gain from any variation
of this coefficient is limited, although the lowest values of the average error are achieved
when the coefficient has a value close to five.

4. Conclusions

In this paper, a two-stage technique for efficient training of artificial neural networks
problems found in many scientific fields was presented. During the first phase, a widely
used global optimization technique such as the Particle Swarm Optimization, to which a
penalty factor had been added, was used to minimize the training error of the artificial
neural network. This penalty factor is incorporated to maintain the effectiveness of the
artificial neural network in generalizing to unknown data as well. The calculation of the
penalty factor is based on the observation that the artificial neural network can lose its gen-
eralization abilities when the input values in the sigmoid activation function exceed some
predetermined threshold. After the particle optimization technique is performed in the
second phase, the best particle is used both as an initializer of a local optimization method
and as a basis for calculating bounds on the parameters of the artificial neural network.

The suggested method was applied to a wide range of classification and regression
problems found in the recent literature, and the experimental results were more than
encouraging. In addition, when comparing the proposed technique with other widely used
methods from the relevant literature, it seems that the proposed technique significantly
outperforms them, especially in the case of regression problems. In relevant experiments
carried out regarding the sensitivity of the proposed technique on its critical parameters, it
was found to be quite robust without large error fluctuations.

Future extensions of the technique may include its application to other network cases
such as Radial Basis Function artificial neural networks (RBFs), as well as the use of global
optimization methods in the second stage of the proposed technique or even the creation
of appropriate termination techniques.
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