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Abstract: Cyber-physical systems (CPSes) are rapidly evolving in critical infrastructure (CI) domains
such as smart grid, healthcare, the military, and telecommunication. These systems are continually
threatened by malicious software (malware) attacks by adversaries due to their improvised tactics
and attack methods. A minor configuration change in a CPS through malware has devastating effects,
which the world has seen in Stuxnet, BlackEnergy, Industroyer, and Triton. This paper is a compre-
hensive review of malware analysis practices currently being used and their limitations and efficacy
in securing CPSes. Using well-known real-world incidents, we have covered the significant impacts
when a CPS is compromised. In particular, we have prepared exhaustive hypothetical scenarios
to discuss the implications of false positives on CPSes. To improve the security of critical systems,
we believe that nature-inspired metaheuristic algorithms can effectively counter the overwhelming
malware threats geared toward CPSes. However, our detailed review shows that these algorithms
have not been adapted to their full potential to counter malicious software. Finally, the gaps identi-
fied through this research have led us to propose future research directions using nature-inspired
algorithms that would help in bringing optimization by reducing false positives, thereby increasing
the security of such systems.

Keywords: critical infrastructures; cyber-physical systems; malware; metaheuristics; nature-inspired
algorithms; optimization

1. Introduction

Cyber threats have the potential to adversely impact an organization’s operations via
unauthorized access, destruction, disclosure, modification of information, and (distributed)
denial-of-service attacks. These attacks can be physical or virtual, targeting internal or
external components, either directed or non-directed in nature, with direct or indirect
consequences. The increased dependence on technology enablers has transformed the
cyberthreat landscape to be modular and multifaceted in which the adversaries steadily
and successfully develop tools that defy the security controls used in critical infrastructures.
As such, the tactics, techniques, and procedures (commonly known as TTP) [1] need to be
dynamic and demand continuous review. The adoption of a proactive approach against
the ever-growing cyber threat landscape is considered the only possible way for critical
systems to be protected or defended from cyber-attacks.

Critical infrastructure (CI) embraces all the sectors that provide services and utilities in
our daily lives, such as financial systems, healthcare, energy, water, and security. The Aus-
tralian Cyber Security Centre (ACSC) defines CI as those “physical facilities, supply chains,
information technologies and communication networks which if destroyed, degraded or rendered
unavailable for an extended period would significantly impact the social or economic well-being of
the nation, or affect Australia’s ability to conduct national defence and ensure national security” [2].
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In similar terms, the United States through the U.S. Patriot Act of 2001 defines CI as “systems
and assets, whether physical or virtual, so vital to the United States that the incapacity or destruction
of such systems and assets would have a debilitating impact on security, national economic security,
national public health or safety, or any combination of those matters” [3].

The exponential growth of physical devices exchanging data over data networks
during the last decade has enabled such devices to be controlled by computers, either with
minimal or no human interaction. This technological shift is referred to as a cyber-physical
system (CPS), and it redefines contemporary cybersecurity (information technology (IT)
security) (e.g., personal computers, servers, firewalls, smartphones) with the addition of
security aspects of physical resources and machines that process digital data in the physical
world (operational technology (OT) security). Therefore, most, if not all, CIs are now in the
realm of CPS.

Cyber-risks to CPS involve threats from both malicious actors (e.g., malicious software,
distributed denial-of-service attacks) and non-malicious actors (e.g., vulnerabilities inherent
in devices and software). Any success in defying the services provided by a CPS directly
affects the national economy and its defense, thus posing a significant risk to the CI of
any nation. Specific to malware, Stuxnet (2010), BlackEnergy (2015), Industroyer (2016),
Triton (2017), the constant activities of Dragonfly 2.0 on the energy sector in many countries,
the cyber-attack on Kudankulam Nuclear Power Plant, and, more recently, Pipedream
(2022) by Chernovite group, are prime examples of CI compromises.

Artificial intelligence and machine learning have long been used to minimize the
considerable impact caused by soaring numbers of malware attacks. However, with secur-
ing critical infrastructure, malware detection needs to be optimized and time intelligent
as these systems are highly dynamic, complex, and distributed. Nature-inspired meta-
heuristic algorithms hold the potential to fulfil this much-needed requirement as they
can provide effective and fast enough defenses [4]. These algorithms are inspired by the
various phenomenon in nature such as ants, dragonfly, bat, firefly, and cuckoo search and
are considered useful to solve complex problems without compromising the efficiency of
the system being protected [5–7].

The novelty of this survey article is that it focuses on the security aspects of CIs, which
are challenged by the unprecedented rise of malicious software specifically crafted to attack
CIs. To answer the aforesaid research objective, we have comprehensively examined work
from various authors on malware analysis during the last ten years. While reviewing
these papers, we specifically looked at whether the researchers have analyzed CI-specific
malware and whether nature-inspired algorithms were used or not.

The flow of the rest of the paper is as follows: The critical infrastructures and cyber-
physical systems section cover details about CIs and draws its relationship with CPSes,
discusses a typical CPS framework, threats, and attacks on CPSes followed by malware
outbreaks on CPSes since Stuxnet made the headlines. The next section is on cyber-physical
system malware, where we discuss CPS malware, followed by defining malware classes and
its variants. The section further examines malware analysis techniques by first grouping
them into static and dynamic, with further sub-grouping using basic and advanced for
each group. This is followed by approaches that have been used for malware detection,
features used by the researchers, and a summary of significant work undertaken during
the last ten years. The benefits of the use of a metaheuristic that includes nature-inspired
algorithms have then discussed. We have also developed six hypothetical scenarios for five
CI sectors to show the severity of the impacts caused by false positives if it is not handled
delicately in a CI setting. The cyber-physical system malware countermeasures section details
the current countermeasures to counter malware attacks on CPSes. Here, we also discuss
MITRE ATT&CK framework for ICS and its significance to improving the security posture
of an organization entrusted with securing CPSes. Conclusions and future directions is our
last section, where we sum up the whole paper and draw together the gaps in the literature
and present future directions that we aim to address.



Computers 2023, 12, 79 3 of 26

2. Critical Infrastructures and Cyber-Physical Systems

The following sections will give an overview of critical infrastructures and cyber-
physical systems.

2.1. Critical Infrastructures

The US Department of Homeland Security (US-DHS) [8] mentions 16 sectors to fall
under the ambit of CI. These are chemical; commercial facilities; communication; critical manu-
facturing; dams; defense industrial base; emergency services; energy; financial services; food and
agriculture; government facilities; healthcare and public health; information technology; nuclear
reactors, materials, and waste; transportation systems; and water and wastewater systems. This
indicates the diversity and complexity of CIs, consisting of distributed networks that are
interdependent and interrelated. This dependence makes the security and resilience of
CI reasonably difficult from the perspective of adverse events, such as deliberate attacks,
accidents, and natural disasters [9]. Therefore, a prolonged incapacity or the destruction of
a CI leads to a devastating effect on the national security of a country.

2.2. Cyber-Physical Systems

The transformation from paper-based systems to computer-based systems paved the
way for organizations to develop and deploy solutions at a faster pace, thereby making their
workflows transparent and efficient. In parallel, the broad expansion of the Internet also
attracted these organizations to connect their systems to the Internet. Since computers first
developed, the combination of mechanical power and information processing capabilities
has resulted in an explosive growth of the number of physical devices exchanging data
over communication networks. This enabled such devices to be controlled by computers,
either with minimal human interaction or entirely autonomously, in the form of so-called
cyber-physical systems, which redefines conventional cybersecurity with the addition of
security aspects of physical resources and machines that process digital data in the physical
world [10–15]. In simple terms, a CPS typically consists of a digital device that monitors
and controls a physical environment.

However, some believe that CPS is a somewhat vague term. There are other definitions
as well, such as “cyber-physical systems (CPSes) are engineered systems that are built
from and depend upon, the seamless integration of sensing, computation, control, and net-
working in physical objects and infrastructures” [16]. According to the National Institute
of Standards and Technology (NIST), the term is often used in the context of the Internet
of Things (IoTs), Industrial Internet, smart cities, smart grid, smart anything (e.g., cars,
buildings, homes, manufacturing, hospitals, appliances). Some typical applications of CPS
include smart cities, smart grids, medical devices, robotics, airplanes, dams, industrial
systems, and trade [12–15,17,18]. These examples form part of the CI sectors discussed in
the previous section. CPS can be divided into two broad categories:

• Infrastructural CPS: systems that operate factories, refineries, etc. (for example, electric
power/smart grid);

• Personal CPS: systems that consist of end-user devices such as smartphones, home
systems, appliances, etc. (for example, smart appliances/smartwatch).

2.3. Cyber-Physical Systems Framework

The privacy and security aspects of a CPS can be represented through a framework
that uses three orthogonal coordinates: systems, components, and security [16]. The compo-
nents coordinate include cyber, cyber-physical, and physical domains, whereas the systems
include critical services such as smart cars, medical devices, smart grids, and industrial
control systems (ICS). The authors have specifically mentioned these four components
as they drew a comparison among these facilities in their paper. However, the systems
coordinate can have all the potential services that fall under the CI sectors discussed earlier.
The third coordinate covers the security aspect of a CPS and includes controls, attacks,
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vulnerabilities, and threats. The graphical illustration of this framework is presented in
Figure 1.
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While the CPS systems and security coordinates are self-sufficient, Humayed, Lin,
Li and Luo [16] further clarified the CPS components by integrating each with the CPS
abstract model. Figure 2 illustrates what constitutes a cyber, cyber-physical, and physical
component in a CPS model.
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Figure 2. An abstract CPS model with integrated CPS components [16].

2.4. Threats to Cyber-Physical Systems

Security threats in a typical CPS ecosystem could occur at the interface between the
devices, on the devices themselves, in the infrastructure that supports them, from the
Internet, and from malicious users. Figure 3 demonstrates some of the security attack
points in a CPS system.
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Figure 3 illustrates multiple avenues where a malicious actor can leverage a flaw or
flaws to compromise a CPS. These can be grouped as flaws related to software, network
protocols, trust level between peer devices, end-users, and clients interacting with the
systems [12,20,21]. Injection of malware at any of these vulnerabilities can nullify the
trust relationship between physical and cyber-components, resulting in non-recoverable
consequences [14]. Such a situation will undermine the societal benefits of utilizing a CI
through compromising actions ranging from monetary gain to loss of human lives [22],
unless such flaws are negated. A real-life example of this effect is the systematic control of a
water treatment plant that remotely took control of the facility to poison households [23,24].

The above discussion signifies that exposure of CPSes to cyber threats has the potential
to undermine national economies. Further, the continual lowering of sensor costs and
the perpetual increase in the desire to connect Cis to the digital world further challenges
the security of Cis [21]. This is supported by the Mordor Intelligence [25] report, where
growth of USD 1386.06 billion in the IoT market by 2026 has been forecasted. Therefore,
CPSes require a reliable and resilient security solution without significantly impacting their
performance.

2.5. Attacks on Cyber-Physical Systems

While discussing the cumulative (physical and virtual) effect on the risks associated
with CPSes, Scheuermann [26] argues that if the non-cyber risk of fire or explosion at an oil
refinery is X, then the risk that such a fire or explosion is caused by a cyber-attack becomes multiples
of X. Lloyd’s, in their Emergency Risk Report 2015, presented hypothetical stress test
scenarios with the title Business Blackout, underlining the consequences of a cyber-attack
on the US power grid. The report presents that when a power plant is compromised
through a piece of malware, it can cause sustained power outages, which in turn leads
to substantial financial loss. In a particular example, such a power failure could cost the
insurance industry up to USD 71.1 billion [27]. In another scenario, the report claims that
an electricity outage in 15 US states affects 93 million people. This increases mortality
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rates due to the failure of health and safety systems, causes a decline in trade owing to the
shutdown of ports, and interrupts water supplies because of electric pump failures [27].

The cyber security strategy released by the Australian Government reflects how
various critical services, both government and industry, have been targeted by malicious
actors from July 2019 to June 2020, as shown in Figure 4. Considering the diversification in
the attack vectors and the targeted approach adopted by the cyber criminals whereby the
focus is to maintain the persistence in the compromised networks, the number of attacks is
likely to be much higher.
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A report published by Malwarebytes Labs listed the top 10 industry sectors impacted
by malware attacks from a variety of cyber criminals across the world using diverse attack
vectors. Figure 5 shows that the services sector, which consists of a number of industries
that fall under the ambit of CIs, and the education sector were the highest in terms of
malware attacks. It is pertinent to mention that the graph in Figure 5 only depicts the
attacks that were detected by the deployed scanners.
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The year 2020 witnessed an unprecedented increase in ransomware attacks against
the health sector worldwide. These attacks not only compromised patients’ medical infor-
mation but disrupted many critical care facilities, raising concerns among the community
about a life-threatening situation. The ACSC identified two significant threats against
the health sector in 2020 [30]. The first malicious activity was using the SDBBot malware,
allowing remote access to the compromised computer. The compromise then enabled
the successful deployment of the Clop ransomware. While the confirmation of successful
execution of the two malware against the Australian health sector is unknown, one of the
world’s largest software companies, Software AG, fell victim to the Clop ransomware with
a ransom demand of more than $20 million [31]. The 2021 global threat report released by
CrowdStrike presents a graphical illustration of confirmed health sector compromises by a
variety of ransomware families with infection counts, as shown in Figure 6.
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2.6. Malware Outbreaks on Critical Infrastructures

The following section outlines some of the malware outbreaks that compromised
CIs both physically and at the cyber front, thus supporting the claim made by Scheuer-
mann [26].

• Stuxnet: First surfaced in 2010, Stuxnet (which is now termed a granddaddy of CI
attacks) worm attacked Iran’s Natanz nuclear facility with the motive to compromise
her atomic program. The malware unusually infected the target system by exploiting a
vulnerability in Siemens Programmable Logic Controller (PLC)—a piece of computer
hardware commonly used in CIs. Security experts from Symantec claim that a thor-
ough review of the Stuxnet source code revealed that the worm has 20 times more lines
of code than average and is bug-free, which is very rare. Reportedly, the attack com-
promised one-thousand centrifuges deployed in the facility by enabling them to spin
at a faster speed than usual, making them incapable of enriching uranium. The chief
reason for this malware was persistence, enabling the attackers to remain informed
about Iran’s nuclear capabilities and slow down their uranium enrichment process.
However, such a compromise has the potential to destroy any nuclear facility, when
compromised, leading to catastrophe. While the worm predominantly compromised
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the Natanz nuclear facility, various security firms claim that Stuxnet has subsequently
attacked information systems all over the world.

• German steel mill attack (No formal malware name assigned): In 2014, a steel mill
in Germany was compromised through a vulnerability in the support system for
environmental control that was exploited by the attackers. To date, no official name
has been given to this malware, and the relevant authorities have shared limited
information about the attack to the public. The attack, however, massively damaged
the productivity of the mill by not allowing the blast furnace to shut down causing
substantial material damage. The compromise was realized through a systematic
approach whereby the attackers gained control of the mill’s industrial automation
systems, disabling components that enabled the engaged workforce to view the status
of the machines, making the blast furnace unable to stop in an organized way.

• Energetic bear 2014 onwards: Energetic Bear, often referred to as the name of the hack-
ing group and the malware as well, was first spotted in 2014. The malware was
found in 1000 energy firms (majority of them from the United States) in 84 countries.
Though no actual damage had been reported then, security companies Symantec,
F-Secure, and CrowdStrike claim that the developer of industrial control systems from
three companies (FireEye, now Trellix, an intelligence-led security firm) claims four
companies) was targeted, and their software was injected with this malware. When
the control systems, more specifically PLCs, were updated/patched, the infections
allowed hackers to monitor the activities of the infected companies. The traces of a
similar attack were also later found in companies in the financial sector. The other
name that referred to the malware is Havex, a Trojan used to create backdoor PLCs.

• Ukraine power grid 2015/BlackEnergy: BlackEnergy (BE) was first acknowledged in
2007 and has three variants to date, referred to as BE1, BE2, and BE3. Each time
the malware gets more sophisticated and lethal compared to its predecessor regard-
ing its features and capabilities. The central theme behind all these variants was to
launch DDoS attacks. The US Department of Homeland Security exposed BE2 as
compromising many CIs, such as nuclear sites, power grids, and water purification
systems. However, the major disorder was reported in December 2015 when BE3 mal-
ware was used against Ukraine’s power grids. The attack has been termed multisite
and multistage, where supervisory control and data acquisition (SCADA) systems
of three power distribution companies were compromised in a harmonized way.
Through this, various substations were compromised resulting in power blackouts
for a significant chunk of the country’s population. Different reports suggest that the
blackout remained for between three to six hours before being restored. Not only this,
but BE3 was sophisticated enough that it used KillDisk malware that removed the
attack traces and assisted the attackers to prolong power failure.

• Ukraine power grid 2016/Industroyer (crashoverride): Termed by many independent
security organizations as a continuation of the 2015 blackout but more intricate, sys-
tematized, and entirely independent of BE, this attack hit one-fifth of Kiev’s (Ukrainian
capital) population. Though the attack was not as prolonged as through BE malware,
the consumers remained without power for more than an hour. While analyzing the
samples, ESET named the malware as Industroyer and argued that this highly cus-
tomizable malware has the potential to compromise other CIs as well. Effective against
the power control products by ABB and Siemens SIPROTECT devices, the malware
had the ability to control power substations and circuit breakers, causing catastrophic
damage to the affected plant and to the consumers that also includes, but are not
limited to, compromising the functioning of vital health services.

• Triton: Detected in 2017 and also named Trisis/Hatman, the malware attacked Safety
Instrument Systems (SIS) in Middle Eastern countries. SIS controllers are aimed at
monitoring the performance of critical systems and take corrective actions shifting
the system into a safe state when it detects an unsafe condition. The attack targeted
Triconex (installed in ~15,000 sites all over the world) by Schneider Electric. The com-
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promise enabled the hackers to install a Trojan, allowing them to remotely manage
the PLCs of the affected system and maintaining persistence, enhancing the ability
of the system causing significant material and human damage. More specifically,
Triton has affected the famous Saudi Arabian company Saudi Aramco—a petroleum
and natural gas company. Since being examined, the details of the damage are still
not available. The code manipulated the emergency shutdown protocols that caused
the system to halt inadvertently. FireEye claims that the attacking entity intended
to maintain persistence to allow them to cause damage more severe than shutting
down the system. However, bringing the system to a halt gave the asset owners an
opportunity to remediate the attack.

• Pipedream: Recently reported by the Cybersecurity & Infrastructure Security Agency [33]
through an advisory, Pipedream is a purpose-built modular malware that actively
scans for vulnerabilities in the CIs that have devices/components from Schneider
Electric, OMRON Sysmac, and Open Platform Communications Unified Architecture
(OPC UA) to establish initial access. Once the initial access to a CI is attained, the cyber
criminals can open backdoors, maintain persistence, or change the device configu-
rations, which could have a devastating effect. Although the real-life compromise
from this malware has not yet been reported, a whitepaper published by Dragos [34]
highlights the sophistication of Pipedream due to its capability of reconnaissance,
brute-forcing passwords, and crashing the target device. The paper also highlights
the extensive capability of the CHERNOVITE threat group behind Pipedream as the
analysis of the malware shows the refined skills of this group in software development
methods, ICS protocols, and securing funding.

3. Cyber-Physical System Malware

Malware (malicious software) is defined by NIST as “a program that is inserted into
a system, usually covertly, with the intent of compromising the confidentiality, integrity,
or availability of the victim’s data, applications, or operating system or otherwise annoying
or disrupting the victim” [35]. Stallings and Brown [36] and Souppaya and Scarfone [35]
describe malware as one of the most significant and rapidly evolving threats to every
information system. It can cause widespread destruction and disruption and requires
extensive efforts for an organization to restore its normal operations. Symantec’s security
threat report of 2018 claims that between 2016 and 2017 there has been a 600% increase in
malware attacks against IoTs [37]. This unprecedented growth is also supported by McAfee
Labs, who recorded 57.6 million new malware samples at the end of 2017 [38].

Malware attacks on CPSes were first realized in 2010, when Iran’s uranium enrichment
plant at Natanz was compromised by Stuxnet. Since then, the proliferation of IoTs and
their utilization in CIs have further intensified such threats. Others also support this
notion and claim that attackers have the ability to successfully use malware, such as
scareware and ransomware, to control drivers of (semi-)autonomous smart cars until
they meet attacker demands, such as a payoff [39]. Bettany and Halsey [40] argue that
future wars will be fought through organized cyberwarfare and will be targeted towards
disrupting CPSes using malware. A few examples of such attacks include a German
steel mill compromise in 2014, Ukraine’s power grid compromise in 2015–2016 (using
BlackEnergy and Industroyer), Saudi Arabia’s oil company compromise in 2017 (through
Triton), the suspected compromise of the United States nuclear power plant belonging to
the Wolf Creek Nuclear Operating Corporation in 2017, the attack on India’s Kudankulam
nuclear power plant (KKNPP) in 2019, an attempted cyber-attack on Israel’s water systems
in April 2020, the compromise of one of the UK’s electricity grids compromising its internal
IT systems in May 2020, and the recent ransomware attack on Oil India Limited’s (OIL) field
headquarters. These examples support the findings of a report by the Kosciuszko Institute
that claimed that from 2018 onwards, there will be an unprecedented rise in attacks on CI,
primarily from malware [41].
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3.1. Malware Classes

Malware is considered the most common threat that can cause widespread dam-
age and disruption, and necessitates extensive recovery efforts while compromising the
confidentiality, integrity, and availability of the attacked devices. Malware, therefore, is clas-
sified to gain a better understanding of the methods and purpose of compromised systems.
Depending on its purpose, various classes of malware are summarized in this section. It is
noteworthy that these classes are not mutually exclusive and may contain the attributes of
more than one type at a given time [42].

• Virus: A program, when inserted, attempts to replicate itself by adding copies into
system or data files [35,36]. These programs are mainly activated by user interaction;

• Worm: A worm, considered as an advanced form of the virus, has the features of being
self-replicating and self-reliant as they spread without user interaction ranging from a
single system to an entire network [35,36];

• Trojan Horse: A self-reliant, non-replicating program that appears to be legitimate
and innocuous but has a hidden malicious objective of exploiting the system [35,36].
Once active, the Trojan opens a backdoor for the attacker to gain further control of the
affected system or install a virus or worm to intensify the attack further;

• Adware: Largely, adware does not affect the system files nor the user data as they
are aimed at occupying the user screen to display different advertisements. These
programs are also integrated into other software that the user needs for their normal
working. The program generates pop-ups and entices a user or the browser redirects
to a commercial website [36]. In addition, this software has the potential to slow down
the system by using considerable system resources;

• Spyware: A program installed on a system without the user’s consent and transmits
critical information to the attacker such as keystrokes, screen data, network traffic,
and scrapes the user’s files for sensitive information [36]. Spyware was considered as
a companion to adware used to track a user’s browsing interests and then selling it to
the advertisers;

• Rootkit: A collection of files installed on the compromised system to escalate the per-
missions to the administrator level in a stealthy way that is incredibly difficult to
detect [35,36]. The stealthiness is achieved due to a change in the system’s configura-
tion files that hides the rootkit from detection;

• Backdoor: Backdoor, also known as a trapdoor, is a program that executes the com-
mands through TCP or UDP ports [35,36]. It can be considered as a secret entry for
the attackers to maintain persistence into the compromised system. Consequently,
the attacker attains the ability to acquire confidential information by executing arbi-
trary instructions. Backdoors also allow the attacker to install other malware on the
compromised system;

• Keystroke Logger/Keylogger: As the name infers, keystroke loggers monitor and capture
the keys of the keyboard being used [35,36]. Different variants of these loggers can
either actively transfer the observed data to the attacker or through other means such
as email or file transfer;

• Scareware: Ye, Li, Adjeroh and Iyengar [39] argue that scareware tricks the user to
either buy or download software that is dangerous and designed for financial and
privacy-related threats;

• Ransomware: Gaining popularity during the last five years, the Australian Cyber
Security Centre (ACSC) [43], Connolly, et al. [44], and Hampton and Baig [45] define
ransomware as a type of malware that locks the attacked system or network until
the desired ransom is paid. After the initial foothold, the program can spread to
other shared storage devices to encrypt data and make the systems inaccessible.
Ransomware can even delete the data if the payment is not made within the given
timeframe;

• Bot: Malicious programs that remotely control an already compromised system are
referred to as Bots. This type of malware is a starting point that installs other types of
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malware and has the ability to transform an already conceded system into a network
of bots commonly known as Botnets [39].

3.2. Malware Variants

There are two main types of malware:

• Polymorphic malware: a program that changes its appearance each time it replicates but
keeps its original code intact [36,39,46]. The change in appearance enables the program
to hide from the malware scanners because, with every change in the appearance,
the signature of the malware gets changed;

• Metamorphic malware: a program that mutates with every iteration.

The key difference between metamorphic and polymorphic is that the earlier rewrites
itself entirely and does not maintain the original code [36,39,46]. This behavior makes it
impossible for detectors to identify the threat and compromises the affected system.

4. Advanced Persistent Threat (APT)

NIST defines advanced persistent threat (APT) as “an adversary that possesses sophis-
ticated levels of expertise and significant resources which allow it to create opportunities to
achieve its objectives by using multiple attack vectors, including cyber, physical, and decep-
tion” [47]. Often incorrectly attributed as another malware class, an APT is a well-resourced
group or organization, usually state-sponsored, that undertakes a cyber espionage opera-
tion using refined, coordinated, and purposeful techniques to compromise a high value
selected target. According to the ACSC, APT groups’ target are usually nation-states or
private organizations [48], with their aim varying from data theft, disruption of operations,
or destruction of infrastructure [36,49–51]. Malware outbreaks on the critical infrastructures
discussed earlier in this paper are examples of attacks launched by different APT groups.
Figure 7 highlights the attributes of a typical APT group.
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The MITRE ATT&CK (adversarial tactics, techniques, and common knowledge) main-
tains a list of 110 APT groups through open-source reporting. Table 1 presents a consoli-
dated list of nine APT groups, highlighting their suspected attribution and the weapon of
choice [52–54]. It is worth noting that each of the APT groups mentioned in the table uses
malware against their targets.
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Table 1. List of 9 APT groups with their capabilities.

APT Group Attribution (Suspected) Weapon of Choice

Lazarus (APT37) North Korea Ransomware
Equation Unites States Zero-day exploits, spyware

Fancy Bear (APT28) Russia Spear-phishing/malware
Dynamite Panda (APT18) China Trojan ransomware

Elfin (APT33) Iran Malware
OceanLotus (APT32) Vietnam Social engineering/malicious payloads

Zhenbao (APT21) China Spear-phishing/malicious attachments
APT5 Unknown Malware with keylogging capabilities

CHERNOVITE Unknown Pipedream—a modular malware

5. Malware Analyzing Techniques

Malware analysis is defined as an “art of dissecting malware to understand how it
works, how to identify it, and how to defeat or eliminate it” [55]. In general, the process for
analyzing malware has two branches: static and dynamic. In static analysis, the malware is
examined without execution, whereas the dynamic analysis scrutinizes malware through
execution and observing its behavior in a virtual or emulated environment [51,56–62].
Static and dynamic techniques can be further grouped as shown in Figure 8.

The following table discusses the functionality for each of the subgroups presented in
Figure 8.
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A closer look at Table 2 indicates that while static malware analyses are more innocuous
than dynamic analysis, they do not yield results that can be of much value in today’s
threat-evolving atmosphere. In contrast, dynamic analysis generates more information
of interest, because it executes the malware in a controlled environment close to the real-
world setting. This notion is supported by Ye, Li, Adjeroh and Iyengar [39], Ranveer
and Hiray [51,63], Gaurav, Gupta and Panigrahi [62] and Yan, Ren, Wang, Sun, Zhang
and Yu [61] as they argue that static analysis is ineffective as it has the predisposition of
leaving away the key behaviors of malware that can be obtained through dynamic analysis
and therefore are considered inadequate. While dynamic analysis is far better than static
analysis, particularly in terms of accuracy, Gandotra, Bansal and Sofat [42] and Mathur and
Hiranwal [46] argue that both static and dynamic analysis have limitations to achieve a
high accuracy and a low false-positive ratio. They indicated the work of the researchers
who have used a hybrid technique integrating the features obtained through both static and
dynamic methods. A general flow of activity for hybrid analysis is presented in Figure 9.
Results achieved from hybrid analysis bring better malware detection rates and reduce
time requirements [39,42,58,61,64].
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Table 2. Malware analysis techniques.

Sub-Group Functionality

Static Basic

Uses tools to determine the nature of the file, and the range of operations an executable may perform.
The tools used can also give technical information for the file being examined that can be used as

signatures. While the process is time-efficient, it is not as effective as it may lead to false positives or
false negatives. Elementary methods such as hash values and antivirus tools are used here.

Advanced Reverse-engineering of the malicious file is undertaken to understand its flow, and behavior of the
program is observed. Tools such as IDA Pro are used for malware disassembly under this sub-category.

Dynamic Basic
Malware is executed, and behavior observed on the system. The behavior enables the production of

useful signatures that may assist in detection or eliminating the malicious files. Better than Basic Static,
but vulnerable to bypass key malware attributes.

Advanced

Allows the examiner to dig deep into the malicious file by using a debugger that enables the extraction
of critical details that are otherwise not possible with other categories. The process is quite

time-intensive, but the information obtained is far more effective in thwarting the malware as
compared to the others. Debuggers are used in this subcategory and enable the examiner to acquire

root level information about the executable.
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6. Approaches to Malware Detection

Malware detection, as defined by [65], is a mechanism that analyzes a set of executables
to detect its malicious or benign nature. The formal representation of the above definition
can be represented as a function D(P) [66], where D is the computational function, and P
is the collection of programs. The function examines a program by either analysis or
identification, and classifies them as malicious, benign, or undecidable. D continues
to scrutinize the undecidable nature of P until the executable is classified as malicious
or benign [66].

Signature-based and behavior-based are the two foremost classes for malware de-
tection [57,67,68]. As the name implies, the signature-based detection solely relies on a
predefined database of a short sequence of bytes [39]. A file is declared malicious when its
characteristics match any of the signatures available in the database [69,70]. The process
of the signature-based malware method is shown in Figure 10. While still being widely
used, Bazrafshan, Hashemi, Fard and Hamzeh [69], Ye, Li, Adjeroh and Iyengar [39],
and Damodaran, Troia, Visaggio, Austin and Stamp [57] argue that the flip side of this
approach is that malware developers have advanced to executables that change its signa-
tures each time they are launched. Such malware are known as polymorphic, as discussed
earlier, and are unable to be detected by the signature-based method [59,70,71]. This swings
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the malware detection focus to features related to the behavior of malicious executables.
In addition to this, using the signature-based detection has the potential for malware to
evade the security control and remain undetected for a long time.
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The literature indicates that some of the researchers take behavior-based and heuristics-
based detection approaches under one umbrella, whereas others declare both approaches
as independent. In his bachelor’s thesis, Chumachenko [71] considers behavior-based and
heuristics-based detection approaches as one, whereas Bazrafshan, Hashemi, Fard and
Hamzeh [69] and Souri and Hosseini [70] treat them as separate. In another survey paper,
Ye, Li, Adjeroh and Iyengar [39] consider heuristic-based malware detection method in
similar terms as the behavior-based approach.

The inability of the signature-based approach in sensing evolving malware, includ-
ing those that exploit zero-day vulnerabilities [56,66,69,71,72], resulted in behavior-based
detection being introduced. In this approach, the artifacts of an executable are analyzed
to classify them as malware or benign [63,65,69,71,72]. Bazrafshan, Hashemi, Fard and
Hamzeh [69], Mohaisen, et al. [73], and Souri and Hosseini [70] further argue that this
detection approach overcomes the weaknesses of signature-based detection techniques,
such as detecting polymorphic malware and their variants. The executable is run in a
sandboxed setting, which is a controlled environment, and various features are logged.
While this approach has higher precision in distinguishing malware, Bazrafshan, Hashemi,
Fard and Hamzeh [69], Souri and Hosseini [70], Chumachenko [71], and Mohaisen, Alrawi
and Mohaisen [73] argue that time complexity, unpromising false positive ratio, and storage
intricacy for behavioral artifacts are its weaknesses.

7. Malware Features

When the signature or behavior of an executable is examined, it represents a large
set of attributes, called features, in the form of a matrix (referred to as a feature vector).
Not all features are useful, because some are redundant or irrelevant. Selecting the most
appropriate and pertinent set of values makes the extracted features more manageable,
organized, and reduces the computational complexity, which in turn helps achieve a low
false positive rate [56,61,63]. According to the literature, there is no standard set of features
that can be employed universally for malware detection. The works studied indicate
that the researchers used different features according to their needs and the issue being
addressed. For this reason, it is difficult to make a valid comparison [74]. Further, some
researchers have categorized malware features using detection approaches, i.e., signature
or behavior-based, while others have represented using analysis techniques (static or
dynamic). However, the use of different classes complicates malware examination, even
though all researchers are essentially performing either static or dynamic analysis of
executables. This belief has been supported by Ye, Li, Adjeroh and Iyengar [39] and Mathur
and Hiranwal [46], who argue that static/dynamic/hybrid analysis are the applications of
signature-based and behavior-based techniques. Further, Ye, Li, Adjeroh and Iyengar [39]
argue that the hybrid technique for extracting a feature from an executable contributes to
the efficient and accurate detection of malicious files. Table 3 presents a brief summary of
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features using the previous categorization, including hybrid analysis. Figure 11 illustrates
different features clustered into five groups [75].

Table 3. Malware features used by different researchers.

Category Sub-Category Features Used References

Malware Detection
Signature-Based Binary, Assembly

[70] 1
Behaviour-Based API Calls, Assembly

Malware Analysis
Static Opcode n-gram, Byte Code n-gram, String, Portable

Executables
[63]

Dynamic Function-based feature, API Calls, System Calls,
Information Flow Tracking

Malware Analysis

Static
Windows API Calls, byte n-grams, Strings, Opcodes,

Control Flow Graphs (CFGs), File Property, File Resource
Information, Export Table

[39] 2

Dynamic
No specific feature mentioned. Instead, the author

discussed different execution environments (Debugger,
Simulator, Emulator, and Virtual Machine)

Malware Detection Behaviour-Based File System, Registry, Network [73]

Malware Detection Behaviour-Based Files, Registry Keys, Mutexes, Processes, IP Addresses,
and DNS Queries, API Calls [71]

Malware Analysis Static n-grams [68]

Malware Analysis
Static API Calls, Opcodes

[57]
Dynamic API Calls

Malware Analysis Hybrid
Static Function Length Frequency, Printable String Information

[59]
Dynamic API Calls

Malware Analysis Hybrid
Static Opcodes

[76]
Dynamic System Calls, Operations, Raised Exceptions

Malware Analysis Hybrid
Static 2-g, opcodes [selective], Control Flow Graphs (CFGs)

[77]
Dynamic Instruction Traces, System Calls, Miscellaneous File

Information Features

Malware Analysis Hybrid
Static Control Flow Graphs (CFGs), Data- Flow Graphs (CFGs),

System Calls [58]
Dynamic API Calls

Malware Analysis Hybrid
Static Printable String Information (PSI)

[64]
Dynamic API Calls Sequence (3-API-call-grams and

4-API-call-grams)

Malware Detection Hybrid Heuristic API Calls, Control Flow Graphs, n-grams, OpCodes,
Hybrid features [69] 2

1: Survey paper summarizing work from different researcher; 2: Used heuristic approach (discussed later) that is
based on data mining and machine learning. A combination of signature and behaviour-based approach has been
discussed by the authors when presenting the features.
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8. Artificial Intelligence and Machine Learning

Artificial intelligence (AI), the term coined by John McCarthy in 1955, holds the
promise of enhancing computing power. The main idea behind AI is to enable computers
to interpret data at a level adequate for making human-like decisions. Russell, et al. [78]
argue that AI has a high potential for maximizing the societal benefits it has to offer by
bringing robust and beneficial systems for the community. Through AI, computers are
entrusted with the control of complex systems. Google Duplex is the recent example of
an AI approach being extensively employed through which a robot talks to a human,
initially, without providing a clue about itself. However, Google later confirmed that their
robot would first introduce itself before carrying on the intended communication [79,80].
Machine learning (ML) is a field of AI aimed at building trust and bringing resilience in
digital systems that are increasing exponentially around the world and have grown more
dependence on computing machines than ever before [81,82]. The huge influx of new
malware threats appearing daily attracted researchers to use ML capabilities for automated
analysis. Compared to manual processing, this yields useful, fast, and reliable results.

9. Heuristic and Metaheuristic Techniques

The following section defines optimization, followed by the concepts behind heuristic
and metaheuristic techniques. This will be followed by the significance and details of
nature-inspired metaheuristic algorithms.

Optimization: The concept of optimization can be directly related to CI’s security, based
on its definition and criticality, as all such systems are aimed to provide efficient quality
services with maximum profit. A compromised CI is detrimental to all these attributes.
However, Luke [83], Talbi [84], Yang [85], and Yang [86] proclaim that real-world optimiza-
tion problems are hard to solve as they are complex and intricate. Alternatively, approxi-
mate solutions or algorithms can be used. For malware detection, the disadvantages of the
signature and behavior-based approaches make it necessary to use approximate solutions.

Approximate solutions, also known as stochastic algorithms [85], are further subdi-
vided into heuristics and metaheuristics [83,84,86,87]. Ironically, the two terms have been
used interchangeably, but there is a difference, though very subtle. Talbi [84] presented
problem-specific heuristics and metaheuristic as two offshoots of heuristic algorithms.
In their survey paper on malware analysis, Bazrafshan, Hashemi, Fard and Hamzeh [69]
argue that approximate solutions utilize data mining and machine learning methods to
study the behavior of the file being examined. The abstract view showing the general
process for malware detection using an ML approach by either classification or clustering
is represented in Figure 12.
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Figure 12. Malware detection using ML [39].

Heuristic Techniques: Heuristic, a Greek word meaning find or discover, is a technique
that focuses on discovering a solution based on a trial-and-error method, i.e., finding a
solution by thinking outside the box or by accident [84,86]. Examples of the heuristic-based
algorithm are artificial neural networks (ANN) and support vector machines (SVM) that
aim to minimize learning and prediction errors via iterative trial and error [86].

Metaheuristic Techniques: Metaheuristic, a major subfield of stochastic optimization [83,88],
are self-learning algorithms aimed at efficiently solving complex optimization problems [89–92].
In contrast to heuristic algorithms that are problem dependent and are experience-based [89,90],
metaheuristic attains optimization by guiding the design of heuristic algorithms with less
computational cost [83,84,87]. Metaheuristic has three key attributes—the fast solution to
the problem, solving large problems, and obtaining robust algorithms [84]—in addition to
being very flexible and modest to design and implement. Therefore, these algorithms are
also known as black box whereby only input and output information is required without
needing to calculate the derivative of the search space. The first instance of metaheuristic
algorithms dates back to between 1950 and 1955 when the pattern search and evolution pro-
cess methods were introduced [89]. The two dominant classes for metaheuristic algorithms
are evolutionary and swarm intelligence [88]. However, the aim behind both these classes
is to find the most conducive solutions during optimization. These algorithms can also be
classified into two categories: single-solution based and population-based metaheuristic
algorithms. Single-solution metaheuristic (such as simulated annealing) are designed to
give a single solution at a time, whereas population-based (such as genetic and firefly
algorithms) are interactive and strive for an optimum solution [6,84,86,90].

Nature-Inspired Metaheuristic: Nature inspires the majority of the metaheuristic pro-
cedures, hence why they are called nature-inspired metaheuristic algorithms [6,84–86].
Researchers design these algorithms after drawing inspiration from nature, which com-
prises a habitat, an environment, and a collection of different species [93,94]. Therefore,
the study of species living and movement style followed by its adaptation to algorithms
is known as nature-inspired algorithms [94]. These nature-inspired algorithms have seen
their influx in securing computing systems over the last decade because of their efficiency
as they imitate the most exceptional features in nature as it has evolved over millions of
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years [6,95,96]. However, this is still an open field of research as the cat-and-mouse game
among the diverse attack vectors and security professionals are getting complicated day
by day. Hence, optimization will remain a continuous struggle for security researchers.
Figure 13 presents a typical high-level sequence of attack in nature using an aggressor-
victim scenario. It draws its one-to-one relationship within the cyber domain using an
attacker/malware scenario. This further supports the idea of using nature-inspired algo-
rithms in securing CPSes from malware attacks. Table 4 presents various categories of
nature-inspired algorithms with the example of specific algorithms within each.
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Table 4. Classification of nature-inspired metaheuristic algorithms. Excerpt from [97].

Examples

Evolutionary Algorithms Genetic Algorithm (GA)
Differential Evolution (DE)
Genetic Programming (GP)
Evolutionary Strategy (ES)

Granular Agent Evolutionary Algorithm

Physical Algorithms Simulated Annealing (SA)
Memetic Algorithm (MA)

Harmony Search (HS)
Shuffled Frog-Leaping Algorithm (SFL)

Swarm Intelligence Algorithms Ant Colony Optimization (ACO)
Particle Swarm Optimization (PSO)

Artificial Bee Colony (ABC)
Fish Swarm Algorithm (FSA)

Bio-Inspired Algorithms Artificial Immune System (AIS)
Bacterial Foraging Optimization (BFO)

Dendritic Cell Algorithm
Krill Herd Algorithm

Other Nature-Inspired Algorithms Cat Swarm Optimization (CSO)
Cuckoo Search Algorithm 1

Firefly Algorithm 1

Invasive Weed Optimization Algorithm (IWO)
Gravitational Search Algorithm

River Formation Dynamics
Bat Algorithm 1

1: Also categorised as swarm intelligence algorithms.
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The literature on metaheuristic algorithms studied for this research revealed that while
the work on malware detection using nature-inspired methods has been performed, it is not
substantial. In their survey paper, Rhmann and Ansari [90] presented that harmony search
(HS), various flavors of artificial immune system (AIS), genetic algorithm (GA), and genetic
programming-based models have been used for malware detection. Though the researchers
did conclude that metaheuristic is effective against unknown malware and help in reducing
false positives and false negatives, the accuracy attained using these approaches was not
discussed. In another survey paper, GA, particle swarm optimization (PSO), and harmony
search algorithms have been leveraged in malware exposure [70]. While the work presented
by Souri and Hosseini [70] exhibits that use of nature-inspired metaheuristic algorithms
is still at its infancy, the researchers did propose that use of these algorithms can speed
up the processing time and improve the accuracy factor—a critical element in CI. In his
research report, Abuelsamid [22] claims that heuristic-based algorithms have the potential
of introducing false positives, which are acceptable in a general computing system, but not
in a CI. The author further argues that the probability of false positives using a heuristic-
based approach varies between 2% to 5%, which cannot be tolerated in a CI setting, because
it increases the risk of fatality. Therefore, leveraging the real potential of nature-inspired
algorithms is considered essential for the trustworthiness of CIs.

10. Impact of False Positives on CIs

A system receiving a positive signal and reacting oppositely is defined as a false
positive. In a malware context, a FP is a condition when a file is wrongly classified as
being malicious [39]. A well-known example of a FP is when an email system translates a
legitimate incoming email as spam and forwards it to the spam folder. Such a scenario has
the potential to miss essential and critical emails. In the previous sections, we mentioned
why FPs are critical for correct classification of malicious and benign traffic considering
the socio-economic conditions associated with CIs. Therefore, in CIs supported by CPS,
such failures could be catastrophic and life-threatening. Table 5 describes the FP conditions
and their impact on CIs. Table 5 describes the FP conditions and their impact on CIs using
hypothetical scenarios.

Table 5. Impact of false positives on CIs.

Sub-Domain Impact of False Positive

Transportation
Systems

Autonomous
Vehicle

A high-speed car on a freeway suddenly applies brakes after receiving a non-life-threatening alert such
as minor debris when it could have easily crossed them. Such a situation has the potential for severe
accidents to the following vehicles. A similar situation could also exist when the automated system

does not trigger an alarm about fuel status causing the car to stop abruptly.

Autonomous Rail
System

A moving train receives a stop (red) signal, but processes it as a moving (green) signal and does not
stop, leading to fatal accidents.

Financial Services Banking System A malfunction on one automated teller machine (ATM) requires a system to shut it down. However,
the system shuts all ATMs in that area affecting a broader community to use the services.

Defense and
Industrial Base Defense

A frigate while manoeuvring generates an alert of encountering an enemy ship which is otherwise a
friendly ship. Such an alert has the potential of causing an additional activity on the frigate, thus

diverting it from its real assignment.

Missiles with the potential of being redirected once fired by providing new GPS coordinates can be
miscued when the system involved wrongly translates the given parameters.

Energy Power Grid

A smart grid receives an alert to shut down a few stations due to any natural cause but shuts down the
entire network, or the networks that are not affected by the reason. Such false alerts deprive hundreds
of thousands of people of energy supply, while also compromising vital healthcare services (a separate

CI domain).

Information
Technology

Automated
Superstore Services

System installed in a smart home does not open gates/doors for a legitimate person while
coming inside.

Smart Home
System

System generates an alert about the low stock level of certain items whereas the shelves still have
enough quantity of items available. This scenario could impact the goodwill of the superstore in a

competitive environment. Moreover, this false trigger could lead to increased
manufacturing/production rate.
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11. Cyber-Physical System Malware Countermeasures

Due to the targeted, sophisticated, and aggressive nature of cyber-attacks to disrupt the
normal business operations of CPSes, a proactive approach is essential to be built and tested
for a robust response. For resilient CPSes, an all-inclusive contingency plan (CP) consisting
of a business impact analysis (BIA), a business continuity plan (BCP), an incident response
plan (IRP), and a disaster recovery plan (DRP) is an essential element to anticipate, react,
and recover from cyber intrusions. This is deemed necessary as disabling a CI generates fear
and turmoil, in addition to crippling the nation’s economy, as seen in the cases of Stuxnet,
BlackEnergy, Industroyer, and Triton. To counter this unprecedented threat, the guardians
of CPSes should comply with the five basic principles of security, namely layering, limiting,
diversity, obscurity and simplicity. This approach is well known as ‘Defense-in-Depth’
(DiD), which is the concept of implementing multiple barriers to protect a digital network
from the adversary such that if one mechanism fails, another will already be in place to
prevent an attack [36]. Figure 14 presents a holistic view following the DiD approach that
must be implemented to protect CPSes from an adversary’s attacks. An ideal strategy
to protect critical systems is to implement controls that deter the attacking entity from
penetrating the target network. If this fails, the security mechanism should allow for
detecting an infiltration, which in turn triggers prevention and correction mechanisms.
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Developed nations have taken several initiatives in securing their CPSes through the
development of best practice guides to ensure the security of critical systems from the
risks of espionage and coercion, particularly from adversary nations. Australia’s Critical
Infrastructure Centre has developed six security principles through active involvement
from key stakeholders that enables government and industry operators of CPSes to min-
imize the chances of a compromise. These principles include pre-employment screening
to minimize the occurrence of insider threats, sensitive data storage and protection, controlled
physical access, effectively securing industrial control systems (ICS), comprehensive risk strategy to
manage outsourced and offshore functions, and bringing security awareness and consciousness as
an integral part of the organization [99]. While the principles are developed for a specific CI
sector (supply chain), these can be implemented for any other industry to halt malware
propagation from spreading into the network before executing its payload. The United
States [100] and the United Kingdom through a cyber assessment framework (CAF) [101]
has a similar approach in securing their CPSes.
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The MITRE ATT&CK framework describes how adversaries can infiltrate into a tar-
geted network and move laterally to maintain persistence [102–104]. The framework was
developed from an adversary’s point of view, describing the tactics and techniques to com-
promise a system that they wish to attack, and what operating systems and applications
are vulnerable to these techniques using various use cases. The framework also allows the
owners with mitigation mechanisms of adversary’s techniques to safeguard their networks
and evaluate the strength of the currently deployed controls. MITRE recently released spe-
cific ATT&CK framework for industrial control systems (ICS) that allows the government
and the industry to protect CPSes in a wholesome manner [105,106]. The ICS framework
has eight use cases: adversary emulation, behavioral analysis, cyber threat intelligence enrichment,
defense gap assessment, red teaming, security operations centre (SOC) maturity assessment, failure
scenario development, and educational resource. The last two use cases have been included
explicitly for industrial control systems to focus on alternative means if a CPS component
fails and bridging the gap between people who operate CPSes and those who deal with
cyber security issues in the CPS environment, respectively. Contrary to the enterprise
ATT&CK framework, which has 14 tactics, the ICS framework has 12 tactics, each with
several techniques. These are initial access, execution, persistence, privilege escalation, evasion,
discovery, lateral movement, collection, command and control, inhibit response function, impair
process control, and impact. Starting from the initial access (first tactic), security professionals
entrusted with securing CPSes can look into their system to map the technique(s) that an
adversary can employ against the given CPS. Following this, all tactics can be analyzed
with the help of the current security controls, allowing the organization to know how the
adversary can infiltrate into the system [106,107]. This would enable a comprehensive
review of the security controls and their configurations and how they can be improved
before the actual attack occurs.

12. Conclusions and Future Directions

CPSes are increasingly being used to improve CIs processes to deliver efficient and
reliable services. Consumers and private sector industries are not the only beneficiaries
of the inherent advantages of these systems; considering the 16 sectors, as introduced by
the United States Department of Homeland Security (DHS), a government’s infrastructure
is also relying on CPSes. As cyber-attacks are becoming more and more sophisticated,
a secure and robust mechanism is the need of the hour to protect physical operations from
being sabotaged. This paper presented a comprehensive review of the state-of-the-art
malware detection approaches that are currently being used and further discussed their
limitations with a view that work on CI-specific malware is still in the early stages. This is
verified by summarizing the work of various authors who have analyzed different malware
less than those that have attacked CPSes. The survey draws the relationship between the
CIs and CPSes and addressed their criticality, when compromised, with the help of real-
world malware attacks, hypothetical scenarios, and the impact of false positives leading to
catastrophic failures that could be devastating for any nation. The paper further presented
the strong potential of nature-inspired metaheuristic algorithms to achieve optimization in
malware detection processes in an efficient and time-intelligent manner. Further, our survey
shows that the researchers in the cyber domain have barely utilized the benefits of nature-
inspired algorithms.

Therefore, the next-generation defense systems would necessitate leveraging the use of
nature-inspired techniques in attaining high accuracy and resilience with low false positives
for the safe, continuous, reliable and secure industrial operations of CPSes. Adopting such
an approach will allow CI service providers to identify malware threats facing their network
in an automated, real-time manner, ultimately providing actionable intelligence to enable
the mitigation of these threats. Thus, the paper has identified the following gaps, which the
researchers aim to address in the subsequent phase:
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1. Non-availability of benign and malware datasets that researchers have used thus far.
Where available, it lacks the method used to create these datasets making it impossible
to reproduce;

2. Lack of work on malware analysis directly relevant to CPSes. We believe that analysis
of malware that have compromised CIs may allow us to classify features that distin-
guish general and CPS malware. A successful outcome has the potential for more
reliable and robust CIs. Our analyses thus far also show that a very limited number
of CPS bound malware executables/binaries (their variants) are publicly available.
This presents a more daunting task as the analyses on a relatively small number of
samples would give a smaller dataset;

3. Limited or almost negligible use of available nature-inspired metaheuristic algorithms
that can be leveraged to bring optimization in malware-detection processes;

4. Restricted work in reducing the false positives specific to CPSes as it directly relates
to the risk of fatality which could be seen as detrimental to bringing trust-level for
the consumers.
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