
Citation: Bucko, A.; Vishi, K.;

Krasniqi, B.; Rexha, B. Enhancing JWT

Authentication and Authorization in

Web Applications Based on User

Behavior History. Computers 2023, 12,

78. https://doi.org/10.3390/

computers12040078

Academic Editors: Leandros

Maglaras, Helge Janicke, Mohamed

Amine Ferrag and Francisco J.

Aparicio-Navarro

Received: 12 February 2023

Revised: 10 April 2023

Accepted: 11 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Enhancing JWT Authentication and Authorization in Web
Applications Based on User Behavior History
Ahmet Bucko 1 , Kamer Vishi 2 , Bujar Krasniqi 1,* and Blerim Rexha 1

1 Faculty of Electrical and Computer Engineering, University of Prishtina, 10000 Prishtina, Kosovo
2 Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
* Correspondence: bujar.krasniqi@uni-pr.edu

Abstract: The rapid growth of the web has transformed our daily lives and the need for secure
user authentication and authorization has become a crucial aspect of web-based services. JSON
Web Tokens (JWT), based on RFC 7519, are widely used as a standard for user authentication and
authorization. However, these tokens do not store information about the user’s behavior history. To
address this issue, this paper presents a solution to enhance the trustworthiness of user authentication
in web applications based on their behavior history. The solution considers factors such as the number
of password attempts, IP address consistency, and user agent type and assigns a weight or percentage
to each. These weights are summed up and stored in the user’s account, and updated after each
transaction. The proposed approach was implemented using the .NET framework, C# programming
language, and PostgreSQL database. The results show that the proposed solution effectively increases
the level of trust in user authentication. The paper concludes by highlighting the strengths and
limitations of the proposed solution.

Keywords: cybersecurity; user behavior; authentication; authorization; JWT

1. Introduction

The growth of the Internet and technological advancements have impacted various
aspects of our lives. Over the past two decades, the use of web-based systems has dra-
matically increased, revolutionizing the way we access public services, banking services,
e-learning, travel booking services, and more. However, the increased demand for these
e-services has highlighted the need for improved security measures against impersonation
fraud. While many studies have addressed the security of web-based systems, it’s impor-
tant to note that a universal solution, such as “one size fits all”, is not adequate for securing
a wide range of e-services against fraud [1].

One of the main challenges on the Internet is the trustworthiness of user identity.
On the Internet, it is easier to pretend to be someone else. At a time when the number of
services offered through the Internet is rapidly growing, and also the number of users of
these services has increased in an even more rapid way, which has increased the need for
new infrastructure of services of identification, authentication and authorization. Big tech
players and the open source community have influenced the development and maintenance
of these products, hence each company today tends to use the identification, authentication
and authorization process depending on the need of their service.

This paper will propose a secure application for conducting transaction services.
(The proposed model repositories on Github, API and template, are located at https:
//github.com/ahmetbucko/Template_Csharp [accessed on 11 February 2023], whereas
the Rewarding service is found at https://github.com/ahmetbucko/BackgroundWorker
[accessed on 11 February 2023]). The proposed application will utilize JSON Web Tokens
(JWT) authentication and authorization techniques and enhance them based on user be-
havior history. The contributions of this research paper include the development of a

Computers 2023, 12, 78. https://doi.org/10.3390/computers12040078 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12040078
https://doi.org/10.3390/computers12040078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-7346-3511
https://orcid.org/0000-0002-1648-3911
https://orcid.org/0000-0002-1483-1476
https://orcid.org/0000-0002-3428-7666
https://github.com/ahmetbucko/Template_Csharp
https://github.com/ahmetbucko/Template_Csharp
https://github.com/ahmetbucko/BackgroundWorker
https://doi.org/10.3390/computers12040078
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12040078?type=check_update&version=1

Computers 2023, 12, 78 2 of 18

secure and personalized approach to transaction services that considers the behavior of
users to enhance the authentication and authorization process. The proposed model is
made available as a public repository on Github, along with an API and template. This
research paper aims to provide a comprehensive guide for researchers and developers
who are interested in improving the security of web-based systems. It will delve into the
process of registration, authentication, and authorization, using a dynamic platform that is
customized to fit the individual user. The user’s level of reliability will be calculated based
on their behavior and usage of the platform.

The remainder of this paper is structured as follows: in Section 2, we delve into the
background information, focusing on topics such as user identification, authentication,
and authorization. In Section 3, we provide a review of related works. Our proposed ap-
proach is presented in Section 4, while Section 5 outlines our experimental setup, including
an in-depth description of our relational database and the implementation of our method,
featuring two mathematical formulas. This section also covers aspects such as the registra-
tion and login process, user credibility assessment, challenge generation, and transaction
and CRUD operations. Section 6 features a critical review on results, along with an analysis
of the performance of our method. Finally, we conclude the paper in Section 7, where we
offer our discussion and conclusion, as well as suggestions for future research.

2. Background Information

The Internet has greatly influenced the development of various methods of identifica-
tion, authentication, and authorization. However, it has also facilitated the emergence of
false identities and anonymous activities. This paper focuses on the characteristics of the
access control process and discusses the different processes involved in obtaining access.
Unauthorized access is a significant risk that poses a serious threat to the digital world. It
can lead to devastating consequences such as data breaches, ransomware, and password
leaks. In many cases, these security breaches occur due to weak access control mechanisms
and inadequate use of modern technologies to protect digital systems. Previous studies
have also highlighted the importance of addressing these issues [2].

2.1. Identification

Identification refers to the process of connecting a specific person with a particular
identity from among many [3]. This is followed by authentication and authorization. In this
context, the following questions arise: ‘Is the person who he claims to be?’, ‘Has this person
been here before?’ and ‘Should this individual be allowed access to our system?’ The state-
of-the-art definitions for these questions are presented in several research publications,
as in [4,5] are presented an approach using smart cards and X.509 certificates to provide
user identification and ensure data privacy and integrity.

2.2. Authentication

Authentication is determining whether a user or process is the person or entity it
claims to be. It assures that the communicating entity is genuine [6]. The user must pro-
vide the credentials required to access the web service during the authentication process.
Biometric authentication has gained more attention [7], especially after Google and other
identity providers introduced passkey technology. However, at the same time, more attacks
are being implemented using biometrics, as presented in [8], using Machine Learning tech-
niques.

Some of the authentication methods, traditionally, can be classified as follows [9]:

• Something we know (PIN, passwords).
• Something we have (smart cards, digital certificates, etc.).
• Something you are (biometric, fingerprints, face, etc.).

The importance of authentication lies in the fact that it validates users or processes
that meets the conditions to gain access to resources in sensitive data [3]. This paragraph
discusses the benefits of authentication in protecting data and limiting access. Multiple-

Computers 2023, 12, 78 3 of 18

factor authentication is recommended to increase security, such as combining passwords
with biometric data or smart cards. A new form of authentication gaining popularity is
cookie authentication, which uses an HTTP cookie to identify a user to a web service. This
is convenient for users, as they don’t need to remember their login details every time they
visit the website. However, if cookies are not encrypted properly, they can be stolen and
pose security risks. SSL usage is recommended to mitigate this risk.

2.3. Authorization

Authorization is a security technique for determining a user’s privileges or suitability
to perform specific tasks on a system [3]. Authorization is the last chain after identification
and authentication, which completes the process of granting access. Authorization also
plays a role at the level of user or process access, or the authorization displays as many web
service resources as the user has permission to access, or the level of access that the user or
process possesses in this case.

The importance of authorization lies in the fact that usability limitations are imposed
on the user, which have the following effects:

• Ensures that users cannot access an account that is not theirs.
• Prevents visitors and employees from accessing secure areas.
• Ensures that all features are not available for free accounts.
• Ensures that internal accounts only have access to the information they require [3].

As correctly noted by [10] authorization is about a more detailed set of constraints on
access to various system resources, while the result of the authentication process is a binary
decision, true for granting and false for rejecting access.

2.3.1. Authorization Strategies

• RBAC (Role-Based Access Control): is an authorization strategy that is directly related
to the role, but not to the user, where the role is a collection of permissions that are
assigned to the role for a specified or unspecified time and the role is assigned to a
group of people.

• ReBAC (Relationship-Based Access Control): an interesting type of code as it tries to
answer the question “Does this user have enough of a relationship with this object or
action that they can access it?”, where the user may be part of a group of users with its
own resource management. Furthermore, some links can be prioritized to be filled for
the user to gain access.

• ABAC (Attribute-Based Access Control): it is the simplest strategy, it is assigned
to only one user, and it is checked whether the user in question has permission to
access that resource. Moreover the management is more defined for each user where
privileges must either be added or removed.

2.3.2. Authorization Types

Basic authorization is one of the oldest authorizations that is used in old web platforms.
It is known as one of the first types of authorization at the level of the communication of
the web platforms with the user via the web. Its usage exposes a vulnerability, since it
contains the username and password encoded with the base64 protocol.

The Authorization Protocol used in the header of the request made to the server as:

Authorization: Basic dXNlcjpwYXNzd29yZA==

where the part after Basic is the user and password separated by colons (:), that is,
user:password. Let us present the case where there is no SSL or the application X.509
certificate expires. Then we have a case that enables the complete web traffic to be captured
with tools such as wireshark, where a simple filter can capture the web traffic. Even the
Base64 conversion to plain text is performed automatically, without any deeper knowledge.

Computers 2023, 12, 78 4 of 18

Authorization: Basic user:password

The authorization procedure in HTTP communication is not secure as it is in plain
text and can be read by any third party. It is not recommended for use in applications with
sensitive data, but if used over a secure connection, it is simple as it requires the user to
provide a username and password for identification.

Bearer authorization is a newer, more secure method of authentication for HTTP
and HTTPS communication. It uses security tokens, specifically JSON Web Tokens (JWT),
instead of transmitting the user and password with each request. After successful authenti-
cation using the username and password, an encrypted key is generated and validated by
the platform’s database. The platform then generates a JWT token, which can be used for
subsequent requests. This process enhances security by eliminating the need to transmit
sensitive information with each request, improving the user experience while protecting
sensitive data [11]. The bearer authentication process involves the following steps:

1. The client makes an initial request to the server without authentication.
2. The server responds with a 401 response, indicating that authentication is required,

and includes a new case value (i.e. a nonce).
3. In the next request, the client includes an Authorization: Digest header, which includes

the user’s credentials, the protected space identifier, and a response value that is
generated through the hash function (hash(nonce, user, space, URI, password)).

4. The server then looks up the user in its database and calculates the hash function
using the user’s password. If the values match, the request is deemed authenticated.

An example of the returned signed JWT token:

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.e..

And decoded in JSON format is presented in Listing 1.

Listing 1. Decoded token.

// Header:
{

"alg": "HS256",
"typ": "JWT"

}
// Payload:
{

"unique_name": "john.doe@example.com",
"nbf": 1665335411,
"exp": 1665335710,
"iat": 1665335411,
"iss": "login_fiek",
"aud": "login_fiek"

}
// Signature:

HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
your -256-bit -secret

)

Bearer authorization is commonly used by open source platforms for authentication
and automation purposes. Some platforms even support tokens that never expire, making
it easier for systems to use them. However, tokens with an expiration date are typically
utilized by users for work-related purposes.

Digest Authorization

Digest authorization is an advancement of basic authorization. It addresses the
security concerns of basic authorization, where both the user and password are sent in

Computers 2023, 12, 78 5 of 18

the authorization header, making it an insecure and unreliable method of authentication.
Instead, digest authorization uses the user identifier, protected space identifier, and the
URL of the request to generate a hash, typically using Message Digest (MD5) technology.
This provides a more secure way of authentication by adding extra layers of protection to
the password [12].

Digest authorization is considered secure against replay attacks due to the use of the
MD5 hashing algorithm. Each request generates a unique random number, known as a
nonce, which is combined with other parameters, such as the user identifier, protected
space identifier, and the URL of the request. This combination results in a hash that is used
to authenticate the request.

2.3.3. Authorization Protocols

The purpose of an authentication protocol is to verify the identity of a user or a software
system that is accessing a platform. This is accomplished by the receiving party, such as a
server, confirming the identity of the connecting party. Network authentication is a widely
used security mechanism in computer systems, and various methods of authentication
are employed for this purpose [13,14]. Below we will discuss several commonly used
authentication protocols:

Single Sign-On (SSO) is an authentication method that allows users to securely access
multiple applications and websites using a single set of credentials. This method is based
on a trust relationship established between the service provider (an application) and an
identity provider.

Furthermore, the trust relationship between the identity provider and the service
provider is established through the exchange of a certificate. The certificate serves as a sign
that the identity information being sent from the identity provider to the service provider
is from a trusted source. In Single Sign-On (SSO) processes, this identity information is
presented in the form of tokens that carry identifying details of the user, such as an email
address or username [15,16].

The Security Assertion Markup Language (SAML) Framework is a widely used au-
thentication method that leverages Extensible Markup Language (XML) for exchanging
authentication data between the user and the service provider that manages the authoriza-
tion process. SAML works in conjunction with an identity provider to securely authenticate
users [17].

The Single Sign On (SSO) system poses a challenge for password management as users
need to remember multiple passwords for various platforms. This leads to security issues
as users may opt for simpler passwords, making sensitive data vulnerable. To address
this, the Security Assertion Markup Language (SAML) framework allows users to access
multiple services with one password, authenticated through an XML file signed with the
XML signature scheme. The IAM service request grants users access to different platforms,
reducing the need for managing multiple passwords. The SAML framework simplifies the
authentication process and enhances security by validating users’ certificates to determine
if they are authorized to use a web service. By implementing a single sign-on solution,
the authentication process is simplified, and security is improved. [18].

The two goals of the SAML framework are:

1. To allow users who are authenticated to gain access to all the service provider’s
applications without having to re-authenticate for each one.

2. To provide access to new applications using existing user accounts.

In the SAML framework, there are three key participants:

1. User Application
2. Identity Provider - responsible for user session management
3. Service Provider - responsible for accepting authentication assertions to grant or deny

access to services.

Computers 2023, 12, 78 6 of 18

Another authorization protocol is OpenID Connect, also known as OpenID. This is
an additional layer added to the OAuth 2.0 authentication framework. It is a specific imple-
mentation of OAuth 2.0 where the identity provider managing the authorization server
also holds the protected resource, which in this case is the user data that the application
intends to access. OpenID enables supported parties to both verify the end-user’s identity
and retrieve user information using the Representational State Transfer (REST) API [19].

The processes involved in OpenID include:

• The resource owner who holds the user information that the application intends to
access.

• The relying party who needs access to the end user’s protected information.
• The OpenID provider, which acts as both an OAuth 2.0 authorization server and

resource server, and holds the user information and grants access.

In essence, OAuth is a set of rules and standards that govern secure, third-party
authorization for access to resources across servers and services that are not physically
connected. This exchange of information can be carried out without actually sharing initial
credentials, such as passwords, cards, or biometric data [7].

The OAuth 1.0 framework, being the first version of the OAuth framework, presents
a more complex process compared to its successor, OAuth 2.0. The OAuth 1.0 framework
comprises of two tokens, namely the request token and the access token. In contrast,
the OAuth 2.0 framework simplifies the authorization procedure by presenting a more
streamlined process, as will be discussed in the next section [20].

Moreover, the OAuth framework operates as a third-party system and facilitates
the access to protected resources. The process begins with a token request, where the
user provides their user key (Consumer Key) and password (Consumer Secret) to request
authorization. Upon successful validation, a request token is returned. The user is then
redirected to exchange the request token for an access token, which is validated and
returned once the process is successful. With the access token, the user is able to consume
services and resources from the platform.

The OAuth1.0 protocol utilizes two types of tokens for authorization:

• Request Token: This token includes the consumer key and the consumer secret that
are utilized to request service authorization from the platform.

• Access Token: This token grants access to the resources of the platform and is obtained
after successful validation of the Request Token.

On the other side, OAuth 2.0, the second version of the OAuth framework, builds
upon the foundation laid by its predecessor, OAuth 1.0. This version aims to simplify the
authorization process by eliminating the request token and consolidating it into a single
access token, without compromising security. Despite this simplification, the widespread
use of OAuth 2.0 serves as evidence that its security remains robust. In [21], the authors
propose a trust-establishing approach among various parties, including the client, resource
servers, and authorization server.

The authentication procedure in the OAuth 2.0 framework involves the following steps:

1. The user requests access to the platform resource by providing their unique username
and password, along with the URI where the request will be made.

2. The authorization server verifies the client’s authentication and checks if the requested
purposes are permitted.

3. The resource owner interacts with the authorization server to grant access.
4. The authorization server redirects the client with either an authorization code or an

access code, depending on the permission type. In some cases, a refresh token may
also be provided.

5. With the access token, the client can request access to the resource from the resource
server. (Reference: What Is OAuth 2.0 and What Does It Do for You?, n.d.)

Types of tokens inside OAuth 2.0 are:

Computers 2023, 12, 78 7 of 18

• Access Tokens in OAuth 2.0 have a similar functionality as those in OAuth 1.0, serv-
ing as a string that represents authorized access to resources. This string is often
meaningless to the end user and there are several types of Access Tokens, each with
unique properties and use cases. OAuth 2.0 Access Tokens can be represented in
several forms including:

– JSON Web Tokens (JWT), encrypted tokens, and reference tokens. JWT Tokens
possess the advantage of being able to be verified without the presence of an
authorization server, but are not capable of being revoked.

– Encrypted Tokens prioritize data confidentiality and require introspection for
validation by the resource server.

– Reference Tokens serve as a reference to the data stored in the authorization
server records and offer the advantage of data confidentiality and revocation
capabilities, but may require each reading from the database to retrieve the claims
held by the token.

• Refresh Tokens: In OAuth, the access token is issued by the authorization server
in response to an authentication request for accessing the resource, but it is subject
to expiration. When it expires, the user must re-authenticate with the authorization
server to receive a new access token. Refresh tokens address this issue by enabling the
extension of the access token’s lifetime through periodic refreshing, using the refresh
token. This allows for reduced token expiration time, enhancing security while still
maintaining seamless access to the resource.

In Table 1 one can find the differences between the two OAuth frameworks.

Table 1. The key differences between OAuth 1.0 and OAuth 2.0. Adapted from [22].

OAuth 1.0 OAuth 2.0

Does not require HTTPS communication Requires HTTPS communication

Requires a digital signature to sign the
OAuth message

Does not require a digital signature as it
relies on SSL communication

Handles only web-based applications Can also handle non-web-based
applications

Can be inflexible and challenging to
implement

Is flexible and easily implementable for
third parties

Uses the unique consumer secret to sign
all requests to the authentication server

Includes a client secret in each request

Provides higher security through the use
of digital signatures

Is considered less secure compared to
OAuth 1.0 and is based on bearer tokens.

3. Related Work

User authentication and authorization are critical aspects of web-based services and
the use of JSON Web Tokens (JWT) for this purpose has become widely adopted. However,
the trustworthiness of user authentication in web applications can be compromised by
various factors, such as password attacks, session hijacking, impersonation etc. To address
these challenges, researchers and practitioners have proposed various approaches and
frameworks to enhance the security of user authentication and authorization.

This section reviews the relevant literature on this topic, including studies on user
behavior analysis, authentication protocols and security frameworks. We compare them to
the proposed solution presented in this paper. Specifically, we discuss the strengths and
limitations of these approaches and how they differ from our proposed solution, which aims
to enhance the trustworthiness of user authentication based on the user’s behavior history.

Zamfiroiu et al. [23] proposed a secure learning management system that employs user
behavior for authentication and access control. Furthermore, the authors demonstrated

Computers 2023, 12, 78 8 of 18

that the proposed system could authenticate users and grant them access to resources
based on their behavior patterns with high accuracy, demonstrating the effectiveness of
user behavior as an authentication mechanism.

Saleh et al. [24] conducted a systematic survey on identity authentication methods for
online exams, examining various techniques and technologies, their strengths, weaknesses
and effectiveness. The authors found that while various identity authentication methods
were available for online exams, there needed to be more than a one-size-fits-all solution.
A combination of techniques may be required to ensure exam integrity.

Catalin et al. [25] developed a user behavior profiling method for social media applica-
tions that uses clustering algorithms and semantic analysis to group users and identify their
behavioral patterns. To address the issues, the authors found that their user behavior pro-
filing method was able to effectively group users based on their behavioral patterns, which
could help identify potential threats and improve security in social media applications.

Yu et al. [26] proposed a method for constructing user profiles by analyzing their
behavior history, which involves modeling user interests, preferences, and activities using
data mining techniques. The authors indicated that analyzing user behavior history was
an effective method for constructing user profiles, which could be used to personalize
recommendations and improve user experience in various applications.

Sandhu et al. [27] introduced role-based access control models, which provide a mech-
anism for regulating access to resources based on users’ roles and privileges. The authors
demonstrated that role-based access control models were effective in regulating access to
resources based on users’ roles and could be used to improve security and access control in
various organizations.

Sandhu et al. [28] presented the NIST model for role-based access control, which aims
to standardize the implementation of role-based access control across different organiza-
tions and systems. Moreover, the authors discovered that the NIST model for role-based
access control could be used to standardize the implementation of role-based access control
across different systems and organizations, improving interoperability and security.

In their paper Caruccio et al. [29] discuss the growing importance of end-user develop-
ment (EUD), specifically in the context of web-based applications (EUDWeb). It highlights
the need for better support in implementing access control, which is often considered
complex. To address this, the authors propose an EUDWeb framework and tool that in-
corporates access control mechanisms in web applications. By building on a previous
mockup-based EUDWeb approach and introducing visual assistance for role-based access
control policies, they make it easier for end-users to develop web applications with access
control functionalities. The usability of the framework is evaluated through a user study,
demonstrating its effectiveness for a diverse group of end-users.

Thomas and Sandhu [30] introduced the task-based authorization controls (TBAC)
approach as an active approach for authorization management, differing from traditional
subject-object models. TBAC enabled just-in-time permission control and introduced
authorization-steps for managing permissions. The authors collaborated with other univer-
sities to explore visual languages for policy expression and investigated issues related to
authorization delegation and revocation.

Giordano and Polese [31] presented the Visual Computer Managed Security (Vicoms)
framework, designed to help programmers implement access control in Java applications.
Vicoms provides a transparent method for managing security aspects in enterprise-level
applications, including legacy ones. The framework has been integrated into the Eclipse
open-source development environment and tested through several case studies, one of
which is detailed in the article.

Zhang et al. [32] presented a tool that generates verified eXtensible Access Control
Markup Language (XACML) scripts from access control system descriptions written in a
simple but expressive language proposed in a previous publication. While XACML is a
standard language used in e-business, policy files written in it can be difficult to read and
analyze directly. The proposed tool allows for the generation of XACML scripts for access

Computers 2023, 12, 78 9 of 18

control systems that can be formally verified to be implementing the relevant policies. This
enables algorithmic verification of access control systems against appropriately formalized
policies, making it easier to ensure that the system is functioning as intended.

Heydon et al. [33] in this paper authors argue that traditional methods of specifying
security policies using text-based languages are difficult to read and comprehend, so they
use Miro, which provides a graphical interface that allows users to define security policies
based on user roles and permissions. The paper also provides an overview of the Miro
system and describes how it is used to specify security policies and also discuss the benefits
of using it, including readability and easiness of use.

4. The Proposed Approach

After conducting several tests, the proposed method for initial credibility determina-
tion was established based on the numerical values that demonstrated the best performance,
as presented in Section 5.2.3, specifically Section 5.2.3.1. However, upon initial result evalu-
ations, it was determined that hard-coded numerical boundaries were not intuitive and
lacked standardization. As a result, a second method was developed that normalized
the boundaries using percentage values as presented in Section 5.2.3.2 and derived from
the initial method. This approach provides a more understandable and standard way of
calculating user credibility within the application.

The application employs two mathematical formulas, aimed to provide credible access
to users while maintaining the security of the platform. The methods are designed to
ensure that users who have met certain behavioral requirements are deemed trustworthy
and are granted easy access to the platform. The others will be challenged via email to
determine their true identity. The purpose of these calculations is to facilitate credible user
access without compromising platform security.

After conducting various analyses, the implementation of authentication methods
in various companies and corporations has highlighted the need for a more credible
technique, where the user himself determines the level of credibility based on his behavior
and interaction with the platform. The rapid growth of the Internet has also brought with
it an increase in online threats and the restriction of certain resources for specific users
has led to the development of various authentication techniques. To enhance security, we
are now using JWT-based platforms, but with a dynamic approach to granting access to
resources based on credibility. Our platform has introduced two methods for measuring
the credibility of users during the authentication process to access resources. This allows
secure transactions to be carried out via our application.

5. Experimental Setup

For the development of this platform, the .NET Version 6.0 framework is used, which
is based on the C# programming language. For API development, is used the REST
technology and PostgreSQL as database engine. The application runs as a service and
returns JSON responses. The app is represented in SWAGGER with OpenAPI (API and
template repository is available on Github: https://github.com/ahmetbucko/Template_
Csharp [accessed on 11 February 2023]) configuration as illustrated in the Figure 1.

Entity Framework Core is also used, for the implementation and handling of the
code-first approach for creation, updating and deletion of tables or fields of the database,
which is supported by migrations inside this framework.

5.1. Relational Database

Figure 2 illustrates the relationship of the main tables in our developed platform, de-
veloped in PostgreSQL and represented in Barker’s notation [2,34]. The main tables of our
proposed framework include: User, Customer, and Transaction, where the User and Cus-
tomer tables are related to each other through a one-to-one relationship since the User table
holds the personal data and the Customer table holds the user state data. The Customer
table is related to Transactions table via a one-to-many relationship. The Transactions table

https://github.com/ahmetbucko/Template_Csharp
https://github.com/ahmetbucko/Template_Csharp

Computers 2023, 12, 78 10 of 18

holds the user transaction data and manages points earned by updating the user’s points
earned in the Customer table. The data that are deleted from the REST API are actually not
deleted, but only not displayed to the user, using a simplified middleware of the Repository
pattern for data management. Finally, we have the table EFMigrationsHistory which is
the table generated by the application of Entity Framework managing the changes in our
application and maintaining the database through the code where, apart from that, the
code also knows the status of the database to manage the data inside it.

Figure 1. SWAGGER API structure.

Figure 2. Enhanced Entity-Relationship Diagram (ERD) of the proposed model.

Computers 2023, 12, 78 11 of 18

5.2. Proposed Method and Its Implementation

To access the platform, users must first register by providing their personal information.
Upon successful login and validation, users can proceed to access the platform through
authorization. Our paper focuses on the dynamic assignment of confidence levels by the
user and the ease of access to personal resources based on their behavior while using
the platform.

Once logged in, users can add funds to their balance, conduct transactions, and earn
points for each transaction based on its value. Earned points will be added to the user’s
balance at the end of the week if certain transactions and terms are met. The user can
also view transaction history, as presented in Figure 4 in Section 5.2.5, view the list of
transactions with the corresponding points earned, and monitor the status of transactions.
These and other functionalities will be further explained in subsequent chapters.

5.2.1. Registration

To gain access in our platform, one must first complete the registration process, and
to be signed into our platform some data must be provided such as name, last name, and
email, as presented on the Listing 2.

Listing 2. JSON request and response for the registration process.

Endpoint: /api/v1/loyaltyprogram/user
Method: POST
//JSON Request Body:
{

"name": "string",
"surname": "string",
"email": "string",
"password": "string",
"confirmPassword": "string"

}

//JSON Response:
{

"id": 0,
"name": "string",
"surname": "string",
"email": "string"

}

5.2.2. Log In

The login to our platform to perform secure transactions happens dynamically and
depends on the behavior of the user and how he tries to gain access by determining the
level of credibility of himself and how our platform is currently calculating credibility,
utilizing points, or employing a percentage of credibility, which will be discussed in more
detail in next sections and also presented on the Listing 3.

5.2.3. User Credibility

Within the platform, we have two types of validation or access to the platform’s
resources since it is an internal process and is treated as two developed methodologies.
The developed platform allows us to switch from one validation method to another without
much trouble, where it is only designated as a switch from which the appSettings are read
during startup and use of the platform for credibility calculations. These two types of
validation methods are utilizing earned points and the percentage of the user’s credibility
which is earned through behaviors while logging into the platform.

Computers 2023, 12, 78 12 of 18

Listing 3. JSON request and response for the log in process.

Endpoint :/api/v1/loyaltyprogram/user/login
Method:POST
//JSON Request Body:
{

"email": "string",
"password": "string"

}

//JSON Response is dynamic:
/*If the user is credible or reliable the user will get the access

token instanlty :*/
{
"jwtToken":{

"id": 0,
"authorizationToken": "string"

}
}
/*item if the user is not credible the response in json would be:*/
"userChallengeNumbers":{

"userId": 0,
"number1": 0,
"number2": 0,
"number3": 0
}

The calculation of the user credibility is carried out according to three criteria: number
of retries, IP of login, and User-Agent. The following shows how we calculate using these
two methods in our platform.

5.2.3.1. Login by Means of Earned Points

• Number of Retries:

– 0 retries: 0.7 points
– 1 retry: 0.4 points
– 2 retries: 0.2 points
– 3 retries: 0 points and resets all your previous trust level to 0

• IP of Login:

– Same IP as last login: 0.2 points
– Different IP login: 0 points
– 2 different IP logins: −0.5 points (minus)

• User-Agent:

– Same browser: 0.2 points
– Different browser: 0 points

The above explanation is mathematically represented in Equation (1):

{[(
0→ 0.7

)
||
(
1→ 0.4

)
||
(
2→ 0.2

)
||
(
> 3→ 0 and reset

)]
retrials

+[(
sameAsLast→ 0.2

)
||
(
differentIP→ 0

)
||
(
twoLastDifferentIP→ (−0.5)

)]
IP
+[(

sameAsLast→ 0.2
)
||
(
different→ 0

)]
userAgent

}
≥ 3.5

(1)

If the user gathers more than 3.5 points, he will be granted access directly without the
challenge to gain access to the platform.

Computers 2023, 12, 78 13 of 18

5.2.3.2. Login by Percentage of Credibility

• Number of Retries:

– 0 retries: 70%
– 1 retry: 40%
– 2 retries: 20%
– 3 retries: no percentage and returns all confidence level to 0%

• IP of Login:

– Same IP as last login: 20%
– Different IP login: no percentage
– 2 different IP logins: restore confidence level to 0%

• User-Agent:

– Same browser: 10%
– Different browser: no percentage

If the percentage of users in the platform at the time of login is below 80%, then
the percentage will be recalculated and a challenge will be generated by asking the user
through email for the required value.

The percentage-base calculation is represented in Equation (2):

{[(
0→ 70%

)
||
(
1→ 40%

)
||
(
2→ 20%

)
||
(
> 3→ 0% and reset

)]
retrials

+[(
sameAsLast→ 20%

)
||
(
differentIP→ 0%

)
||
(
twoLastDifferentIP→ 0%

)]
IP
+[(

sameAsLast→ 10%
)
||
(
different→ 0%

)]
userAgent

}
> 80%

(2)

5.2.4. User Not Credible—Challenge Generation

Based on our credibility formulas, if the user credibility does not meet the criteria then
a challenge will be generated, where our challenge foresees that the user’s views contains
three numbers that will appear, to be chosen by the user, the one sent to the user’s e-mail is
the correct one that needs to be chosen by the user in order to access the transaction server.
Referring to the Figure 3, the user receives the number via registered e-mail.

Figure 3. Email with the requested value.

By selecting the value which has been sent through e-mail in these endpoints and
presented in Listing 4, the user will be granted with an access token valid for 5 min.

Computers 2023, 12, 78 14 of 18

Listing 4. JSON request and response for acquiring token process.

Endpoint: /api/v1/loyaltyprogram/user/validate
Method: POST
// JSON Request Body:
{

"userId": 0,
"mailedValue": 0

}

//JSON Response:
{

"id": 0,
"authorizationToken":

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ..."
}

5.2.5. Transaction and CRUD Operations

Upon successful login, the user has access to four transaction service endpoints. These
endpoints include the ability to initiate a secure transaction through a POST request, retrieve
information on a specific transaction through a GET request using a unique TransactionId,
view a list of transactions with pagination through another GET request, and delete a trans-
action through a DELETE request, which is only available to privileged users. The endpoint
definitions for the transaction service can be found in Figure 4.

Figure 4. Transaction CRUD operations.

5.2.6. Winning Bonuses at the End of the Week

Earning points at the end of the week is a process in itself completely separated
from the API application which is exposed, this part has been treated as a background
worker (Rewarding service is available on Github: https://github.com/ahmetbucko/
BackgroundWorker [accessed on 11 February 2023]) which is a worker that is subscribed to
the database and works in the background whom checks it every day if the criteria for date
has been made, in our case whether it is the end of the week in particular Sunday which
checks for each user if certain conditions have been met in order to gain the bonuses for
their transactions for the last week. In the following section are presented the rules for each
transaction bonuses and how they are being treated:

• Each earned point can be returned as a cent or EUR 0.01
• Each transaction value spent on a transaction will give the customer:

– 1 point for each value up to EUR 5000 transaction value
– 2 points for each value from EUR 5001 to EUR 7500 transaction value
– 3 points for each value over EUR 7501 transaction value

After the calculation is finished and the point calculation worker starts, it must fulfill
some conditions that the user must have before being ready to earn certain points:

• A user will lose all points if no transaction has been made in the last 5 weeks.
• The user has spent at least EUR 500 that week.

https://github.com/ahmetbucko/BackgroundWorker
https://github.com/ahmetbucko/BackgroundWorker

Computers 2023, 12, 78 15 of 18

• At least one transaction exists for that user on each day of the week.

6. Critical Review on Results

During the research performed on this paper and the accompanying experimen-
tal setup, the process of granting access to the user was described. To gain access to the
platform, the user must first complete registration and then undergo authentication. The au-
thentication process is based on the user’s level of trust or credibility, which is determined
by their behavior on the platform, such as the number of login attempts, location, and de-
vice used. The measurement of credibility is performed using two distinct methodologies:
point-based credibility measurement and percentage-based reliability measurement, which
are discussed in greater detail elsewhere in the paper.

While both methods serve the same purpose of measuring user credibility, they differ
in their approach. As indicated by their names, the primary difference between them is
that the first method, point-based credibility measurement, assesses credibility through
the awarding or deduction of points based on the user’s behavior during authentication.
The second method, percentage-based reliability measurement, is a normalized version
of the first method that expresses credibility as a percentage. However, the differences
between the two methods extend beyond the way in which credibility is measured. They
also differ in the way users are penalized and the points earned, as discussed in more detail
in subsequent chapters that delve into these methodologies.

The normalization method, expressed as a percentage, was derived from the point-
based method of determining credibility to simplify the authentication process without
compromising the security of the mathematical formula. The point-based method required
the user to undergo multiple authentication steps to reach a sufficient level of trust for
access without challenges. In the event of a major mistake, such as repeatedly entering
incorrect credentials, the user’s credibility would be reset to zero and the process of earning
points would start from the beginning, which can be frustrating for the user.

The normalization method provides a more streamlined way of determining the user’s
credibility by considering factors such as entering the correct credentials on the first attempt,
using the same IP and browser as the previous session, and fulfilling ideal authentication
conditions. This method is easier to attain, but it can also be lost more easily through small
mistakes such as accessing the platform from different locations or using different browsers.
In contrast, the point-based method is more forgiving of small mistakes and only results in
a loss of credibility for major changes in behavior or repeated errors.

7. Discussion and Conclusions

In this research paper, a novel approach to secure authentication was implemented.
Rather than relying on traditional two-factor authentication methods, the application uti-
lizes two mathematical calculations to continuously check and update the user’s credibility
or reliability. The user sets their own level of credibility based on their behavior while using
the platform, and access is granted or restricted accordingly.

The focus of this research paper is on the development of two new mathematical cal-
culators. The first calculator employs a point-based system and a percentage of credibility,
allowing the user to earn or lose credibility through their behavior. The initial calculator
used in the application was found to be insufficient as it took a significant amount of time
for the user to gain credibility. As a result, a new authentication method was developed,
derived from the point-based system and expressed as a percentage, which simplifies
the process of gaining credibility. Initial testing results show that the percentage-based
method makes the way of gaining the level of credibility more intuitive and easy for the
user. It is also a more efficient way to calculate by the application itself, where the user
gains/penalizes its behavioral state more dynamically.

Similarities exist between the suggested method for increasing user authentication in
web applications based on behavior history and the Reinforcement Learning (RL) paradigm.
In RL, an agent learns to make decisions by performing actions in a given environment to

Computers 2023, 12, 78 16 of 18

accumulate the greatest reward over time. The agent’s actions and subsequent rewards or
punishments comprise a feedback loop that influences its future choices.

Similarly, our system promotes or punishes user behavior depending on parameters
such as the number of failed password tries, the consistency of the IP address, and the user
agent type. By accumulating these incentives and penalties over time, the system is able
to create a more precise degree of user authentication trust. Our technique successfully
adapts to users’ behaviors, like an RL agent exploring and exploiting its surroundings to
maximize its decision-making process.

To further support this relationship, we have researched meaningful reinforcement
learning (RL) literature, such as Sutton and Barto’s “Reinforcement Learning: An Introduc-
tion,” Ref. [35] which explains the field’s fundamental ideas. Our technique might benefit
from adopting specific RL ideas into its design and execution, given these observations.
For instance, the exploration-exploitation trade-off, a central concept in RL, might be con-
sidered when calculating the right weight or percentage to apply to various user activities,
enhancing our trustworthiness judgment.

By understanding the core elements of RL and how they apply to real-world examples,
we can better appreciate the connection between our proposed method for enhancing user
authentication and the RL paradigm. As we continue to develop our approach, incorporat-
ing RL principles and techniques can potentially lead to more robust and adaptive solutions
for securing user authentication in web applications.

In conclusion, the limitations of the proposed approach are: mobile users due to
frequent changes of their IP addresses are punished by the proposed formula, as well as
usage of a different browser being discouraged by the actual approach. Moreover, users
continually updating their devices, automatic updates of the browsers, and even changing
from one device to another device will penalize the user’s behavioral state. The application
is built to support other methods of calculating the users’ credibility, not only the two
above-mentioned methods, because it uses dependency injection. Essentially, this means
only the method interface needs to be injected and the new method will be triggered inside
the credibility calculator of the user. The application lacks a logging technology of the users’
behavioral and application status. Currently, the state of user credibility is stored in the
database. For the real-world scenario the best practice is to use a logging technology such
as Elastic Search. The logs of the users’ behavior will be sent to Elastic. Logged data will
be retrieved and will calculate the users’ current state of credibility when a user requests
access. These constraints could serve as improvements for future work.

Author Contributions: Conceptualization, B.R.; Methodology, K.V.; Software, A.B.; Validation, B.K.;
Formal analysis, A.B.; Data curation, A.B.; Writing—original draft, A.B., K.V., B.K. and B.R.; Writing—
review & editing, B.K.; Supervision, B.R. All authors have read and agreed to the published version
of the manuscript.

Funding: Ministry of Education, Science, Technology and Innovation, Government of Kosovo with
Decision no. 2-814 dt. 15 June 2021 has funded this research.

Data Availability Statement: All data were presented in the main text.

Acknowledgments: Authors would like to thank you The Ministry of Education Science, Technology
and Innovation of Kosovo, the Department of Computer Engineering from University of Prishtina
and the Department of Informatics at the University of Oslo for support and cooperation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beaudin, S.; Levy, Y.; Parrish, J.; Danet, T. An empirical study of authentication methods to secure e-learning system activities

against impersonation fraud. Online J. Appl. Knowl. Manag. 2016, 4, 42–61. [CrossRef]
2. Hitchman, S. The Details of Conceptual Modelling Notations are Important—A Comparison of Relationship Normative Language.

Commun. Assoc. Inf. Syst. 2002, 9, 10. [CrossRef]
3. Imageware. Identification, Authentication, Authorization—What’s the Difference. 2023. Available online: https://imageware.io/

identification-authentication-authorization-difference/ (accessed on 16 January 2023).

http://doi.org/10.36965/OJAKM.2016.4(1)42-61
http://dx.doi.org/10.17705/1CAIS.00910
https://imageware.io/identification-authentication-authorization-difference/
https://imageware.io/identification-authentication-authorization-difference/

Computers 2023, 12, 78 17 of 18

4. Rexha, B.; Lajqi, H.; Limani, M. Implementing data security in student lifecycle management system at the University of Prishtina.
Trans. Inf. Sci. Appl. 2010, 7, 965–974. [CrossRef]

5. Alangot, B.; Szalachowski, P.; Dinh, T.T.A.; Meftah, S.; Gana, J.I.; Aung, K.M.M.; Li, Z. Decentralized Identity Authentication with
Auditability and Privacy. Algorithms 2023, 16, 4. [CrossRef]

6. Abhishek, K.; Roshan, S.; Kumar, P.; Ranjan, R. A Comprehensive Study on Multifactor Authentication Schemes. In Advances in
Computing and Information Technology; Advances in Intelligent Systems and Computing; Meghanathan, N., Nagamalai, D., Chaki,
N., Eds.; Springer: Berlin, Heidelberg, 2013; Volume 177, pp. 561–568. [CrossRef]

7. Vishi, K. Security and Privacy in User Authentication: Aspects of Fusion, Machine Learning, and Privacy in Biometric
Authentication. Ph.D. Thesis, Department of Informatics, the Faculty of Mathematics and Natural Sciences, University of
Oslo, Oslo, Norway, 2023.

8. Musa, A.; Vishi, K.; Rexha, B. Attack Analysis of Face Recognition Authentication Systems Using Fast Gradient Sign Method.
Appl. Artif. Intell. Int. J. 2021, 35, 1346–1360. [CrossRef]

9. Lal, N.A.; Prasad, S.; Farik, M. A review of authentication methods. Int. J. Sci. Technol. Res. 2016, 5, 246–249.
10. Stamp, M. Information Security—Principles and Practice, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN

978-0-470-62639-9.
11. Kornienko, D.V.; Mishina, S.V.; Shcherbatykh, S.V.; Melnikov, M.O. Principles of securing RESTful API web services developed

with python frameworks. J. Phys. Conf. Ser. 2021, 2094, 032016. [CrossRef]
12. Franks, J.; Hallam-Baker, P.; Hostetler, J.; Lawrence, S.; Leach, P.; Luotonen, A.; Stewart, L. RFC 2617—HTTP Authentication: Basic

and Digest Access Authentication; Technical report; Internet Engineering Task Force (IETF): Fremont, CA, USA, 1999. [CrossRef]
13. Okta. Authentication Protocols 101: Definition, Types, and When to Use. 2022. Available online: https://www.okta.com/

identity-101/authentication-protocols/ (accessed on 14 January 2023).
14. Mohammad, A.; Al-Refai, H.; Alawneh, A.A. User Authentication and Authorization Framework in IoT Protocols. Computers

2022, 11, 147. [CrossRef]
15. Onelogin. How Does Single Sign-On Work? Available online: https://www.onelogin.com/learn/how-single-sign-on-works/

(accessed on 10 January 2023).
16. Sharif, A.; Ranzi, M.; Carbone, R.; Sciarretta, G.; Marino, F.A.; Ranise, S. The eIDAS Regulation: A Survey of Technological Trends

for European Electronic Identity Schemes. Appl. Sci. 2022, 12, 12679. [CrossRef]
17. Onelogin. SAML Explained in Plain English. Available online: https://www.onelogin.com/learn/saml/ (accessed on 10 January 2023).
18. Hughes, J.; Maler, E. Security assertion markup language (saml) v2.0 technical overview. OASIS SSTC Work. Draft Sstc-Saml

2005, 13, 1–51
19. ForgeRock. OpenID Connect 1.0 Guide. Available online: https://backstage.forgerock.com/docs/am/5.5/AM-5.5-Oidc1-Guide.

pdf/ (accessed on 29 December 2022).
20. Hammer-Lahav, E. RFC 5849—The OAuth 1.0 Protocol; Technical report; Internet Engineering Task Force (IETF): Fremont, CA,

USA, 2010. [CrossRef]
21. Gashi, E.; Rexha, B.; Rexhepi, A. Trust establishment between OAuth 2.0 resource servers using claims-based authorization.

Electron. Gov. Int. J. 2021, 17, 3. [CrossRef]
22. Halder, S. How OAuth Boosts API Security and Access Management. 2021. Available online: https://nordicapis.com/how-

oauth-boosts-api-security-and-access-management/ (accessed on 5 January 2023).
23. Zamfiroiu, A.; Constantinescu, D.; Zurini, M.; Toma, C. Secure Learning Management System Based on User Behavior. Appl. Sci.

2020, 10, 7730. [CrossRef]
24. Saleh, G.; Tharwat, G.; Gamalel-Din, S. A Systematic Survey on Examinees Identity Authentication in Online Distant Exams.

J. Al-Azhar Univ. Eng. Sect. 2023, 18, 129–151. [CrossRef]
25. Catalin, B.; Alin, Z.; Madaline, Z.; Bogdan, I. User Behavior Profiling in Social Media Applications. Econ. Comput. Econ. Cybern.

Stud. Res. 2019, 53, 21–38. [CrossRef]
26. Yu, C.; Yang, Y.; Wei, Z.; Junyi, S. Analyzing User Behavior History for constructing user profile. In Proceedings of the 2008 IEEE

International Symposium on IT in Medicine and Education, Xiamen, China, 12–14 December 2008. [CrossRef]
27. Sandhu, R.; Coyne, E.; Feinstein, H.; Youman, C. Role-based access control models. Computer 1996, 29, 38–47. [CrossRef]
28. Sandhu, R.; Ferraiolo, D.; Kuhn, R. The NIST Model for Role-Based Access Control: Towards a Unified Standard. In Proceedings of

the Fifth ACM Workshop on Role-Based Access Control, RBAC ’00, Berlin, Germany, 26–28 July 2000; Association for Computing
Machinery: New York, NY, USA, 2000; pp. 47–63. [CrossRef]

29. Caruccio, L.; Deufemia, V.; D’Souza, C.; Ginige, A.; Polese, G. A Tool Supporting End-User Development of Access Control in
Web Applications. Int. J. Softw. Eng. Knowl. Eng. 2015, 25, 307–331. [CrossRef]

30. Thomas, R.K.; Sandhu, R.S. Task-based authorization controls (TBAC): A family of models for active and enterprise-oriented
authorization management. In IFIP Advances in Information and Communication Technology, Proceedings of the Database Security XI,
Lake Tahoe, CA, USA, 10–13 August 1997; Lin, T.Y., Qian, S., Eds.; Springer: Boston, MA, USA, 1997; pp. 166–181. [CrossRef]

31. Giordano, M.; Polese, G. Visual Computer-Managed Security: A Framework for Developing Access Control in Enterprise
Applications. IEEE Softw. 2013, 30, 62–69. [CrossRef]

http://dx.doi.org/10.5555/1865361.1865369
http://dx.doi.org/10.3390/a16010004
http://dx.doi.org/10.1007/978-3-642-31552-7_57
http://dx.doi.org/10.1080/08839514.2021.1978149
http://dx.doi.org/10.1088/1742-6596/2094/3/032016
http://dx.doi.org/10.17487/rfc2617
https://www.okta.com/identity-101/authentication-protocols/
https://www.okta.com/identity-101/authentication-protocols/
http://dx.doi.org/10.3390/computers11100147
https://www.onelogin.com/learn/how-single-sign-on-works/
http://dx.doi.org/10.3390/app122412679
https://www.onelogin.com/learn/saml/
https://backstage.forgerock.com/docs/am/5.5/AM-5.5-Oidc1-Guide.pdf/
https://backstage.forgerock.com/docs/am/5.5/AM-5.5-Oidc1-Guide.pdf/
http://dx.doi.org/10.17487/rfc5849
http://dx.doi.org/10.1504/EG.2021.116027
https://nordicapis.com/how-oauth-boosts-api-security-and-access-management/
https://nordicapis.com/how-oauth-boosts-api-security-and-access-management/
http://dx.doi.org/10.3390/app10217730
http://dx.doi.org/10.21608/auej.2023.283035
http://dx.doi.org/10.24818/18423264/53.1.19.02
http://dx.doi.org/10.1109/itme.2008.4743884
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1145/344287.344301
http://dx.doi.org/10.1142/S0218194015400112
http://dx.doi.org/10.1007/978-0-387-35285-5_10
http://dx.doi.org/10.1109/MS.2012.112

Computers 2023, 12, 78 18 of 18

32. Zhang, N.; Ryan, M.; Guelev, D.P. Synthesising Verified Access Control Systems in XACML. In Proceedings of the 2004 ACM
Workshop on Formal Methods in Security Engineering, FMSE ’04, Washingtion, DC, USA, 29 October 2004; Association for
Computing Machinery: New York, NY, USA, 2004; pp. 56–65. [CrossRef]

33. Heydon, A.; Maimone, M.; Tygar, J.; Wing, J.; Zaremski, A. Miro: Visual specification of security. IEEE Trans. Softw. Eng. 1990,
16, 1185–1197. [CrossRef]

34. Barker, R. CASE Method: Entity Relationship Modelling; Number v.1 in CASE method; Addison-Wesley: Boston, MA, USA, 1990;
ISBN 9780201416961.

35. Sutton, R.; Barto, A. Reinforcement Learning, Second Edition: An Introduction; Adaptive Computation and Machine Learning series;
MIT Press: Cambridge, MA, USA, 2018; ISBN 0262039249.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1029133.1029141
http://dx.doi.org/10.1109/32.60298

	Introduction
	Background Information
	Identification
	Authentication
	Authorization
	Authorization Strategies
	Authorization Types
	Authorization Protocols

	Related Work
	The Proposed Approach
	Experimental Setup
	Relational Database
	Proposed Method and Its Implementation
	Registration
	Log In
	User Credibility
	User Not Credible—Challenge Generation
	Transaction and CRUD Operations
	Winning Bonuses at the End of the Week

	Critical Review on Results
	Discussion and Conclusions
	References

