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Abstract: This paper describes a real case implementation of an automatic pedestrian-detection
solution, implemented in the city of Aveiro, Portugal, using affordable LiDAR technology and open,
publicly available, pedestrian-detection frameworks based on machine-learning algorithms. The
presented solution makes it possible to anonymously identify pedestrians, and extract associated
information such as position, walking velocity and direction in certain areas of interest such as
pedestrian crossings or other points of interest in a smart-city context. All data computation (3D
point-cloud processing) is performed at edge nodes, consisting of NVIDIA Jetson Nano and Xavier
platforms, which ingest 3D point clouds from Velodyne VLP-16 LiDARs. High-performance real-time
computation is possible at these edge nodes through CUDA-enabled GPU-accelerated computations.
The MQTT protocol is used to interconnect publishers (edge nodes) with consumers (the smart-
city platform). The results show that using currently affordable LiDAR sensors in a smart-city
context, despite the advertising characteristics referring to having a range of up to 100 m, presents
great challenges for the automatic detection of objects at these distances. The authors were able to
efficiently detect pedestrians up to 15 m away, depending on the sensor height and tilt. Based on the
implementation challenges, the authors present usage recommendations to get the most out of the
used technologies.

Keywords: pedestrian detection; LiDAR; 3D point clouds; ROS; smart cities; traffic mobility

1. Introduction

Street life and pedestrian activities are of major interest for smart-city planning. Having
up-to-date data about pedestrian mobility in cities has traditionally been difficult. City
planners are open to incorporating automatic perception systems to better understand
human and traffic mobility within the city. Pedestrian detection has been historically
obtained through video-processing algorithms that process footage captured by video
cameras; however, low-light conditions and privacy concerns are known limitations of this
technology.

Current state-of-the-art solutions for pedestrian detection and behavior make use
of data acquired by LiDAR technology, which does not have the same above-mentioned
limitations. The cost of this technology has dropped and is currently regarded as a key
sensing element of Intelligent Transport System (ITS) infrastructures. LiDAR sensors
transmit multiple laser beams (each in a different vertical angle), sweeping a particular
horizontal field of view. The amount and granularity of the sweep is specific to each LiDAR
sensor. When one laser beam hits an object and is reflected back to the LiDAR sensor,
based on how long it takes the light to return to the sensor, it is possible to measure the
distance to a reflected object. By acquiring reflections in different horizontal and vertical
angles, it is possible to compute a three-dimensional scan of an observed area. These scans
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are commonly referred as “point clouds” and, with proper object recognition algorithms
and sufficient training, it is possible to identify and classify different types of objects
(pedestrians, bicycles, cars, etc.), depending on their distance and pose with respect to the
LiDAR sensor.

The major difficulty in dealing with point clouds is the sheer volume of data they con-
tain. For example, an entry-level sensor with 16 laser beams will typically generate between
300,000 and 600,000 points per second (in a 360◦ sweep) and may generate throughputs
close to 40 Mbit/s, depending on its configuration (single/dual return mode). This poses a
computational and network transmission challenge that can be minimized when placing a
capable computing unit and the LiDAR sensor in close network proximity. This approach
limits LiDAR data to traversing a single- or few-layer three-network segments, and follows
the multi-access edge-computing paradigm, where large volumes of data are processed
at the edge of the network (where the sensors are). Hence, smart-city applications are not
required to process these data; they can simply query for a particular data insight already
extracted by the edge-computing unit. There are a few features required for a suitable
edge-computing unit to process LiDAR data, where high performance per watt, weight and
compact form-factor may have different influence in the selection process. They should also
be capable of running different applications of deep neural networks (DNNs) trained on
high-performance GPUs. At the current time, support for CUDA, the parallel-computing
platform and programming model developed by NVIDIA, is also welcome, since object
detection and recognition/classification benefits from running in multiple GPU cores in
parallel.

The remainder of this paper is organized as follows: Section 2 describes the state of
the art and related works. Section 3 describes the material and methods for the system
architecture. Section 4 presents the achieved experimental results and, finally, Section 5
presents the conclusions and future work.

2. State of the Art

Object detection, tracking and recognition are key challenges in computer vision for
both the industry and academia. These methods have been widely used with 2D images;
however, systems based on 2D images cannot provide accurate 3D location information.
On the other hand, 3D systems such as RGB-D (RGB-Depth), RGB-LiDAR and LiDAR can
only provide solutions that significantly improve RGB-only approaches. In [1], the object
classification/detection systems theory based on 2D/3D images are presented as a survey
to better understand the key differences in both approaches.

Digitization and the emergence of new types of sensors, computing and communica-
tions technologies have boosted the development of projects that make cities smarter and
in permanent communication with those who inhabit them. The scientific and commercial
advances that have emerged in the area of autonomous driving make 3D object detection an
increasingly necessary area and with great evolution potential, specifically due to advances
in deep-learning architectures, but also to LiDAR sensors. Although this work focuses on
object detection in a smart-city context, the main technological advances in this area are in
fact due to autonomous driving. Several research works, focused on the detection of objects
based on LiDAR technology, have been written in recent years. In [2], a survey of 3D object-
detection methods, based on LiDAR, is presented and the performance achieved by each
method is discussed. In [3], the PointRCNN method was proposed for the detection of 3D
objects in the raw point cloud without the need for RGB images. The method works in two
steps, first segmenting the point-cloud scene into foreground and background points, and
then refining the proposal into the canonical coordinates to obtain the final detection results.
The authors used the KITTI dataset [4] to validate the architecture, considering only the
point cloud as input. The same authors extended PointRCNN to a new point cloud-based
3D object-detection framework, later described in [5]. The performance improvements of
each component of the initial proposal were demonstrated, and a new state of the art was
achieved in the KITTI 3D object-detection dataset using only the LiDAR point-cloud data.
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LiDAR has proved to be an extremely useful sensor in 3D object-detection scenarios;
however, due to the variation of the density of the points along the distance caused by
the angular displacements between the LiDAR lasers, it has an inherent limitation. Thus,
objects located at greater distances return fewer points than objects located closer to LiDAR
sensor. The density of acquired points is directly related to the successful detection of an
object. Smaller objects, or objects farther away from the sensor have less surface area to
cross the LiDAR laser beams, which affects detection efficiency. To mitigate these problems,
the authors in [6] propose the voxel network with the point-density recognition (PDS)
method, taking advantage of the location of the voxel point centroid and feature encodings
that directly account for the density of points in the detection of multiclass 3D objects. This
limitation is also addressed in [7], where the authors propose a method that fuses point
clouds and RGB images to build a 3D object-detection architecture to improve detection
accuracy of small objects represented by point clouds. The proposed architecture uses key
points to successfully combine point-based, voxel-based and image-based methods. In this
way, complementary fusion of the geometric information collected by LiDAR and semantic
information collected by the camera is performed.

Deep-learning approaches have also significantly contributed to recent advances in 3D
object detection. The authors in [8] perform a review of recent progress in state-of-the-art
deep-learning methods for 3D understanding, including 3D shape classification, 3D object
detection and tracking, and 3D scene and object segmentation. In [9], a hybrid 2D and 3D
Hough net is proposed that combines 3D and 2D local Hough features with a classification
deep-learning network for 3D object classification in LiDAR point clouds.

It is also important to note that the characteristics of LiDAR point clouds, such as un-
structured distribution, disordered arrangement, and large amounts of data, typically result
in high computational complexity and make it very difficult to classify 3D objects. In [10],
the authors propose a convolutional neural network (CNN)-based 3D object classification
method using the Hough space of LiDAR point clouds to overcome these problems. First,
object point clouds are transformed into Hough space using a Hough transform algorithm,
and then the Hough space is rasterized into a series of uniformly sized grids. The authors
in [11] introduce a common object-detection pipeline and taxonomy to facilitate a thorough
comparison between different techniques and, departing from it, critically examine the
representation of data, feature extraction and finally object-detection models. A comparison
between the performance results of the different models is included, alongside some future
research challenges.

In summary, most of the existing 3D object-detection methods based on point-cloud
representation are mainly divided into two categories—LiDAR with image fusion and
LiDAR-only methods. For LiDAR-only methods, they are divided into voxel-based meth-
ods or point-based methods. Both approaches have their advantages and disadvantages; it
depends on the type of application. LiDAR provides a more accurate 3D geometry struc-
ture, and the camera captures more scene context and semantic information. The fusion
of the two types of data can provide more contextualized information, but everything
will depend on the processing capacity available and what is required to be analyzed.
The authors in [12] present a comprehensive survey of deep learning on LiDAR-only and
LiDAR-fusion 3D perception tasks. This paper gives a review according to four key tasks in
the field of LiDAR-based perception: object classification, object detection, object tracking,
and segmentation.

For 3D object detection based on multiple sensors, LiDAR and cameras, multi-view 3D
object-detection network (MV3D) [13], F-PointNet (Frustum PointNet) [14], and MMF [15]
stand out, among others. Focusing on LiDAR-only, the methods can be grouped in point-
based plus voxel-based, such as PV-RCNN (PointVoxel-RCNN) [16], voxel-based where
VoxelNet is included [17], SECOND [18], PointPillars [19], Part-A2 [5] and Point-based,
where PointRCNN is included [3], and STD [20], among others. The following section
describes the methodology and the methods used in the implementation of a pedestrian-
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detection system in a real scenario context, through edge computing, inserted in an architec-
ture of a smart city that includes other sensors and other mechanisms for city monitoring.

3. Materials and Methods

This section describes the methodology followed by the implementation of a pedestrian-
detection solution based on point clouds acquired in real time from a LiDAR sensor.

3.1. System Architecture

The high-level system architecture of the deployed system is depicted in Figure 1. Each
LiDAR sensor, placed in strategic locations in the city (pre-identified by the municipality as
areas of interest, given traffic and pedestrian volume at crosswalks, close to the University
of Aveiro), sends point clouds to an edge node, composed of an NVIDIA Jetson Nano or
Jetson Xavier. Each edge node runs a mobile edge-computing (MEC) application “Neuron
process”, developed over ROS Melodic [21] distribution on Ubuntu 18.04, which is the edge
application responsible for pedestrian detection based on the received point clouds. Each
edge node also exposes, via the “Neuron API”, the information of each pedestrian detected
via Message Queuing Telemetry Transport (MQTT). The real-time data can, therefore, exist
on a central database accessed by the city’s monitoring dashboards, available online and in
open access.

Figure 1. System architecture (high-level).

Briefly, LiDAR sensors capture point clouds and send them to the edge nodes for real-
time processing. The edge nodes use a dedicated process (Neuron) to detect pedestrians
and retrieve associated information (location, speed, direction, etc.). These results are made
available to third-party applications (data consumers) through a dedicated API (the Neuron
API). Additional information on the Neuron API is provided in Section 3.5. The Aveiro
Tech City Living Lab [22] is the city platform consuming and exposing these results to
third-party applications. It is composed of an advanced communications infrastructure and
an urban platform for data management and innovative analytics that, together, provide
an open and large-scale technology laboratory in the city at the service of researchers,
digital industries, start-ups, scaleups, R & D centers and other stakeholders interested in
developing, testing or demonstrating concepts, products or services.
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3.2. Hardware

Implementation relied on already pre-acquired hardware (LiDAR sensors and edge
nodes) by the Aveiro Tech City Living Lab. The reasons for the selected hardware resulted
from an equilibrium between hardware capabilities, hardware availability and investment
in a pilot project. The LiDAR sensors used were the Velodyne Puck (VLP-16) and Velodyne
Puck Hi-Res (VLP-16-HIRES); their main relevant characteristics can be seen in Table 1:

Table 1. Relevant technical specifications for the LiDAR sensors used.

Specifications Velodyne Puck
(VLP-16)

Velodyne Puck Hi-Res
(VLP-16-HIRES)

Number of channels 16
Measurement range 100 m
Horizontal FoV 360◦

Horizontal angular resolution 0.1◦–0.4◦

Vertical FoV 30.0◦ (−15.0◦ to +15.0◦) 20◦ (−10◦ to +10◦)
Vertical angular resolution 2.0◦ 1.33◦

Rotation rate 300 RPM–1200 RPM
3D LiDAR points generated
(per second)

300 K (single return mode)
600 K (dual return mode)

NOTE-1: data extracted from the official Velodyne datasheets (https://velodynelidar.com/, accessed on 17
March 2023) NOTE-2: according to Velodyne [23]: “Even if a viewer intentionally stares at a Velodyne sensor, the
combination of low power and rapid rotation results in a class I rating. Therefore, the Puck’s roughly 300,000 beam
points per second are harmless to the very humans the sensors are designed to protect”.

The edge-computing nodes (MEC Hosts) are the NVIDIA Jetson Nano and Jetson
Xavier NX. Their main relevant characteristics can be seen in Table 2:

Table 2. Relevant technical specifications for the edge-computing nodes used.

Specifications Jetson Nano Jetson Xavier NX

AI Performance 472 GFLOPs 21 TOPs

GPU 128-core NVIDIA
Maxwell™ GPU

384-core NVIDIA Volta™
GPU

with 48 Tensor Cores

CPU 4-Core Arm Cortex-A57
MPCore processor

6-core NVIDIA Carmel
Arm®v8.2 64-bit CPU
(6MB L2 + 4MB L3)

Deep-Learning Accelerator — 2x NVDLA v1
Programmable Vision

Accelerator — 2x PVA v1

Memory 4 GB 64-bit LPDDR4
(25.6 GB/s)

8 GB 128-bit LPDDR4x
(59.7 GB/s)

Companion software
JetPack SDK, which provides Ubuntu 18.04 environment

with accelerated graphics support for NVIDIA CUDA
Toolkit (v10.0 for Nano and 10.2 for Xavier NX)

NOTE: Data extracted from the Nvidia (https://developer.nvidia.com/embedded/jetson-modules, accessed on
17 March 2023).

The Jetson Xavier NX was a later addition to the setup and was only integrated at the
final steps of the pilot.

3.3. Pilot Setup

Edge nodes are housed in a protective shell on top of a “smart pole”, while the LiDAR
sensors are laterally attached, at an approximate height of 3m and with a slight tilt in the
vertical axis. These smart poles are typically installed close to a sidewalk and road, as
depicted by Figure 2.

https://velodynelidar.com/
https://developer.nvidia.com/embedded/jetson-modules
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Figure 2. Aveiro Tech City Living Lab smart poles. (a) LiDAR and edge node location in the smart
posts. (b) Panoramic view of the road and location of the pole next to a zebra crossing.

The LiDAR sensor parametrization can be performed through their own dedicated
web interface, where various parameters can be configured, the most relevant are: laser
status (on, off); laser return mode (strongest, last or dual), also known as laser detection of
a reflection; motor rotation speed (between 300 and 1200 revolutions per minute (RPM),
equivalent to 5 and 20 Hz, respectively), for safety reasons, the laser is automatically turned
off if the motor is stopped; the sensor’s horizontal field of view (FoV); the host/destination
IP address (the receiver of the point clouds), and; the sensor’s IP address (static or dy-
namic, via DHCP). Other parameters are available—for additional information, including
programmatic configuration through curl, the sensor datasheet provides further details.

Communication with the edge-computing nodes (MEC hosts) is made through a
command-line interface via a protected SSH session. These nodes use Linux Ubuntu 18.04
where the object-detection algorithm (Neuron process) has been deployed and executed.
The network topology is represented in Figure 3:

Figure 3. Network topology.
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The LiDAR sensors periodically send, through the IP network, point-cloud data to
the edge-computing nodes (at approximately 40 Mbps) for processing. These data are
processed in quasi-real time by the Neuron process running at the edge-computing nodes.
The data-processing results can be remotely accessed by any data consumer through the
Neuron API.

When using multiple LiDAR sensors in a network, each sensor’s destination IP ad-
dress should be set to a non-broadcast IP address. Even though two sensors could send to
the same destination IP address (reporting to the same MEC host), this is still not the rec-
ommended approach, as the ethernet medium contention algorithm will limit transmission
cycles from the sensors and may lead to a degradation in performance. The recommended
setup is to have each sensor reporting to a different destination IP address (one MEC host
per sensor or a single MEC host with two network interface cards).

3.4. Pilot Challenges

Both the VLP-16 and VLP-16-HIRES LiDAR sensors use a mechanical moving mech-
anism, which may degrade its lifetime. To the best of our knowledge, Velodyne does
not publicly advertise the life expectancy of these sensors; nonetheless, it is reasonable to
assume these were not manufactured for extensive 24/operation. Therefore, during the
pilot setup, the usage of the sensors was deliberately limited to a few hours per day.

These sensors provide somewhat long-range and wide-angle laser scans. Velodyne
advertises a range up to 100 m and, while it is true—they can accurately identify the
existence of a reflected surface (object) at those distances—a quite different indicator is how
much of that information can effectively be used for object classification, since point clouds
become considerably sparser as the distance to the sensor increases. This is inherited by
the specific sensor’s horizontal and vertical angle resolutions (see Table 1). This means that
objects closer to the sensor (up to a minimum distance) will produce considerably more
laser reflections (3D points in the point cloud) than objects farther away. For stationary
instalments (fixed in a single position), this brings an important aspect for sensor placement
and data analysis.

For the specific case of this pilot, possible targets for detection were humans and
vehicles. Therefore, the sensor should be placed to maximize:

• the number of laser beams that hit a target;
• the distance at which the target can be detected and correctly classified;
• the area of interest for detection and classification.

On the other hand, for security reasons, and given their cost value, LiDAR sensors
need to be protected against theft and vandalism. This may lead to non-optimal placement
with respect to the above-mentioned detection goals. Figure 4 highlights how these two
conflicting goals interact.

Figure 5 depicts a sample point cloud obtained by the LiDAR sensor when applying the
configuration depicted in Figure 4d. It can be seen that human detection in 3D point clouds
is very challenging, as the number of reflections and their intensity will vary depending on
the human pose and how close, or far away, the human is from the sensor.

Figure 6 highlights the problem statement—the clusters of points that can be used to
recognize a human (pedestrian) will depend on the human pose and how far, or how close,
it is with respect to the LiDAR sensor. To ensure high precision of the cluster detector and
considering just one of the setups in Figure 4, this would imply a considerable effort in
training, involving a very large dataset of manually annotated data for all possible distances
and human poses. Manually labeling 3D LiDAR point clouds is not only inefficient but also
very tedious, which leads to human errors due to the sheer number of possible variations
of human pose, shape, and size.
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Figure 4. LiDAR sensor position and its impact on human (pedestrian) classification and area of
detection. Case study for a 16-channel LiDAR sensor with a vertical resolution of 2.0◦. Yellow means
the object has a slight chance of being classified, depending on its pose in relation to the sensor; green
means the object has a very strong chance to be accurately classified; white means the object does not
generate sufficient reflections to be accurately classified by the sensor. (a) LiDAR at 3 meters height
with 15◦ degree tilt. (b) LiDAR at 3 meters height with 20◦ degree tilt. (c) LiDAR at 3 meters height
with 25◦ degree tilt. (d) LiDAR at 1.2 meters height with 0◦ degree tilt—the ideal setup.

For this challenge, and considering (i) the decoupling of video footage and the LiDAR
3D point clouds, and (ii) the given time frame for the pilot (approx. 6 months), the work had
to rely on already existing training datasets, performed by online methods. Unfortunately,
the publicly available datasets mainly considered point clouds obtained with a LiDAR
sensor placed at lower heights (0.8–1.20 m). This means the available training datasets
are not optimized for a LiDAR sensor placement at the desired height (3 m) and tilt
(Figure 4a–c).
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Figure 5. Generated point cloud (VLP-16) for an heigh of 1.20 m and a tilt of 0◦ (scenario Figure 4d).
(A) A pedestrian just over 8 meters away from the sensor. (B) Two pedestrians within 4 meters of the
LiDAR.

Figure 6. Zoomed-in point-cloud clusters extracted from Figure 5—the closer the human is to the
sensor, the denser the cluster of points. The circled numbers reflect the laser channel, as specified by
the sensor’s datasheet. (A) A pedestrian just over 8 meters away from the sensor. (B) Two pedestrians
within 4 meters of the LiDAR.

3.5. Neuron Process and API

The Neuron process follows the typical LiDAR-based detection pipeline, divided into
five stages: pre-processing, also known as voxelization, ground segmentation, clustering,
feature extraction, and human classifier [24]. This data pipeline is illustrated in Figure 7.
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Figure 7. The Neuron process detection pipeline.

The Voxelization phase mainly includes downsampling, for processing efficiency and
region-of-interest (ROI) definition. The ground segmentation phase is used to remove
points from the ground plane and preserve point clouds that have relevant content to
analyze. In this work, we are only keeping points pi = (xi, yi, zi) ∈ R3, i = 1, . . . , n, where
zi ≥ zmin. zmin can be configured and adjusted for each scenario.

The next step is to perform Clustering of points according to their spatial relationships.
In this work, the Euclidean distance metric (d) was used to carry out this clustering process
(see Equation (1)), which has proved to provide good results in different contexts.

d =

√
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2 (1)

In the Feature Extraction phase, the following features are included: feature 1 ( f1)—
number of points included in the cluster; feature 2 ( f2)—minimum cluster distance from
the sensor; feature 3 ( f3)—3D covariance matrix of the cluster; feature 4 ( f4)—normalized
moment of inertia tensor; feature 5 ( f5)—slice feature for the cluster; and feature 6 ( f6)—
reflection intensity distribution (mean, standard deviation, and normalized 1D histogram).
Additional information on these features can be found in [25].

The last phase of the pipeline is the Human Classifier, where we use the Support Vector
Machines (SVM) learning method as a binary classifier, trained for human classification (i.e.,
human and non-human) at each iteration, based on the six features previously referenced.
The SVM method uses discriminant functions (see Equation (2)) to define a hyperplane that
can linearly separate a dataset.

ŷn = WTxn + b
ŷn ∈ {1,−1} (2)

where n ∈ {1, . . . , N}, xn is the data point, W is a vector of weights, b is the bias and ŷn is
the model prediction. Each prediction can be either 1 or −1 for points that lie on both sides
of the hyperplane and 0 for points that lie on the hyperplane itself. Given a dataset that
contains several x with their corresponding y, the main objective is to find values for W
and b that give the best possible margin.

The Neuron process uses the online-learning framework for human classification in
3D LiDAR scans [25]. An updated version of this work is presented in [26]. The original
source code is open source, protected by the GNU General Public License v3.0, and can be
found here [27]. The following permissions have been enabled:

• Commercial use
• Modification
• Distribution
• Patent use
• Private use

The pedestrian classifier was implemented with SVM [28], as referenced above, since
it can produce good results in non-linear datasets such as the point clouds of pedestrians,
also demonstrated in [29] and [30].
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The Neuron process modifies the original source code to reflect the context of the pilot,
including the provision of the following features through a new API:

• Pedestrian counter.
• For each detected pedestrian:

# an objectID, which identifies this pedestrian in the current point cloud—it
enables basic tracking functionality with previous point-cloud snapshots;

# LiDAR distance (in meters) measures the pedestrian distance to the sensor;
# travel distance (in meters) measures how much distance this pedestrian has

travelled since the last snapshot (uses the objectID parameter for tracking);
# velocity (in meters/second) measures the pedestrian velocity when compar-

ing its position with the previous snapshot (uses the objectID parameter for
tracking);

# the pedestrian coordinates, based on its centroid X, Y, Z position;
# the elevation angle (in degrees) measures the pedestrian cluster’s centroid

relative to the LiDAR sensor’s horizontal plane—this parameter is defined as
ω (lowercase Greek letter omega) in the VLP-16 datasheet;

# the displacement angle (in degrees) provides the walking path angle with
respect to the LiDAR sensor’s X and Y axis;

With the above-mentioned parameters, it is possible to plot each pedestrian and its
corresponding movement vector in space. The interpretation of the walking direction, based
on the measured displacement angle, is explained in Figure 8. A positive displacement
angle, with respect to the X axis, means the walking path should use a counterclockwise
angle and the direction, with respect to the walking path, is from the rear to the front of the
sensor. The opposite is true in the case that the measured displacement angle is negative.

Figure 8. Relationship between the displacement angle (α) and the pedestrian walking direction.
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4. Experimental Results

This section presents the experimental results achieved in a real deployment in the
city of Aveiro, Portugal.

When placing the sensor (LiDAR) horizontally (no tilt) and at a height of approx.
1.20 m, the detection and classification of pedestrians are within the expectations derived
from the analysis provided in Section 3, specifically in what is depicted in Figure 4d.
Pedestrians and their associated information (position, velocity, direction, etc.) were
successfully extracted from the received point clouds in quasi-real time. Figure 9 depicts a
visual interpretation of the detected objects (all pedestrians), confirming the multi-tracking
capability of the implemented solution. It is also possible to confirm that pedestrians
were detected beyond the fifth ring, corresponding to laser channel 8 (using Figure 4 for
context) and therefore up to 9 m distance from the LiDAR sensor. When placing the sensor
at a height of 3 m with a 20◦ tilt (approx.), the detection and successful classification of
pedestrians are also within the expectations derived from the analysis provided in Section 3,
specifically in what is depicted in Figure 4b.

Figure 9. Detection of multiple pedestrians in a point cloud obtained with LiDAR sensor (VLP-16)
positioned at a height of 1.20 m and with no tilt.

Figure 10 depicts a point cloud obtained with this setup. The laser reflection pattern
clearly identifies the existence of horizontal tilt and a limitation in the field of view. Fur-
thermore, the laser reflections are notably becoming sparser as we move away from the
central position. Therefore, pedestrians will not be correctly identified by the implemented
algorithm as they move left or right (away) from the sensor’s central position, as seen in
Figure 11.
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Figure 10. Detection of multiple pedestrians in a point cloud obtained with LiDAR sensor (VLP-16)
positioned at a height of 3 m and with a tilt of approx. 20◦.

Figure 11. Failure of successfully detecting pedestrians due to insufficient training data for this setup
(height of 3 m and tilt of approx. 20◦).

Figure 12 depicts the deployed scenario, where, in this case, we can see a successful
detection of four pedestrians, very close to each other, and the information extracted from
each of these objects, such as its ID, distance to the LiDAR, distance travelled since the
first detection, speed, direction of movement and other information. Table 3 presents the
movement information related to each pedestrian detected.

Table 3. Pedestrian data information.

Object ID Lidar Distance
[m]

Travel Distance
[m] Velocity [m/s] Displacement

Angle (α) [◦]

1 2.18 0.14 1.29 118.72
2 2.99 0.15 1.31 120.86
3 3.74 0.15 1.31 −104.87
4 3.04 0.22 1.97 126.60
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Figure 12. Screenshot of a pedestrian’s detection with the counters and movement information.

5. Conclusions

This paper discusses the challenges inherent with pedestrian detection in a smart-
city context, using data provided by LiDAR sensors only. It also describes a solution for
automatic pedestrian detection and feature extraction using available open source code.
Systems such as this are an important asset for municipality management structures to
monitor and better understand the flow of pedestrians in their city, mainly for safety
monitoring but also to understand city livelihood. The presented solution was developed
over an SVM classifier, pretrained for human detection and adapted for outdoor context.

Based on the results, we conclude that installing LiDAR sensors on poles, despite
the characteristics referring to having a range of up to 100 m, presents great challenges
for the automatic detection of objects at those distances. For an efficient detection in an
outdoor scenario in an urban environment, as presented in this work, it is possible to detect
pedestrians up to 15 m away, and performance depends on sensor height and inclination,
the vibration produced by the motor of the LiDAR, and wind conditions (due to pole
movement). Despite these constraints, it was possible to implement a solution capable
of detecting pedestrians and produce credible results that can be published by the city
monitoring platform. The solution is currently up and running.

The next steps are the inclusion of a real-time visualization tool that plots the most
common paths taken by pedestrians and include the detection and classification of cars,
bicycles and boats (the city of Aveiro has an inner river where boats/moliceiros travel), and
the inclusion of a set of tests to determine the maximum velocity detected by the algorithm
(e.g., detecting fast runners).
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