
Citation: Li, Z.; Li, H.; Meng, L.

Model Compression for Deep Neural

Networks: A Survey. Computers 2023,

12, 60. https://doi.org/10.3390/

computers12030060

Academic Editor: Robertas

Damaševičius

Received: 29 January 2023

Revised: 28 February 2023

Accepted: 1 March 2023

Published: 12 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Review

Model Compression for Deep Neural Networks: A Survey
Zhuo Li 1 , Hengyi Li 1 and Lin Meng 2,*

1 Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi,
Kusatsu 525-8577, Japan

2 College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
* Correspondence: menglin@fc.ritsumei.ac.jp

Abstract: Currently, with the rapid development of deep learning, deep neural networks (DNNs)
have been widely applied in various computer vision tasks. However, in the pursuit of performance,
advanced DNN models have become more complex, which has led to a large memory footprint
and high computation demands. As a result, the models are difficult to apply in real time. To
address these issues, model compression has become a focus of research. Furthermore, model
compression techniques play an important role in deploying models on edge devices. This study
analyzed various model compression methods to assist researchers in reducing device storage space,
speeding up model inference, reducing model complexity and training costs, and improving model
deployment. Hence, this paper summarized the state-of-the-art techniques for model compression,
including model pruning, parameter quantization, low-rank decomposition, knowledge distillation,
and lightweight model design. In addition, this paper discusses research challenges and directions
for future work.

Keywords: deep neural networks; model compression; model pruning; parameter quantization;
low-rank decomposition; knowledge distillation; lightweight model design

1. Introduction

In recent years, due to the rapid development of artificial intelligence, machine learning
has received a great deal of attention from researchers, especially regarding deep neural
networks (DNNs) [1,2]. DNNs have been applied to various fields with excellent results,
such as image classification [3,4], object detection [5–7], and image segmentation [8]. In
2012, AlexNet [9] achieved nearly 11% higher classification accuracy than the second-place
finisher to win the ImageNet [10] ILSVRC2012 competition. After this, DNN research
became a hotspot in the literature. Since then, researchers have designed various types
of DNNs, such as VGG [11], GoogLeNet [12], and ResNet [13], which have emerged one
after another. During this time, graphics processing units (GPUs) have been widely used
for general-purpose computing with superior performance to central processing units
(CPUs). However, hardware updates are quickly rendered inadequate due to the increased
computational demand of increasingly complex models, and this increased demand is
unlikely to slow down. Therefore, to achieve a feasible compromise between available
hardware and computational demands, modern models must be compressed.

Table 1 shows the relationship between accuracy and computation on different models.
The more complex the model, the better the classification but the more storage and comput-
ing resources consumed. Therefore, reducing the consumption of storage and computing
resources has become a focus in the design of DNNs.

Computers 2023, 12, 60. https://doi.org/10.3390/computers12030060 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12030060
https://doi.org/10.3390/computers12030060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4554-6018
https://orcid.org/0000-0003-4112-7297
https://orcid.org/0000-0003-4351-6923
https://doi.org/10.3390/computers12030060
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12030060?type=check_update&version=2

Computers 2023, 12, 60 2 of 22

Table 1. Classification accuracy and computation complexity of different DNN models on
ImageNet. †

Model Layers Parameter FLOPs Top-1 Error (%)

AlexNet [9] 8 233(MB) 4.4G 43.45
GoogLeNet [12] 22 51(MB) 8.9G 34.20
VGGNet-16 [11] 16 528(MB) 15.5G 27.30
VGGNet-19 [11] 19 548(MB) 19.7G 25.50
DenseNet-121 [14] 121 31(MB) 13.4G 25.35
ResNet-50 [13] 50 98(MB) 17.9G 24.60
ResNet-152 [13] 152 230(MB) 49.1G 23.00
ResNeXt-101 [15] 101 319(MB) 71.4G 20.81
SENet-154 [16] 154 440(MB) 93.8G 18.68

† The FLOPs in the table are the number of floating operations the network makes in inferring a 512 × 512 image.
The number of parameters is computed based on FP32.

Efficient deep-learning methods have a significant impact on distributed systems, embed-
ded devices, and field-programmable gate arrays (FPGAs) for artificial intelligence [17–25].
For example, ResNet-50 [13], with 50 convolution layers and 98MB storage space, requires
over 3.8 billion floating-point operations to process an image. After pruning the redundant
weights, however, the model still operated properly but with 75% fewer parameters and
50% less computational time. Therefore, it is very important to devise methods for model
compression, especially for resource-constrained devices, such as mobile phones, Raspberry
Pi, and FPGAs. To realize model compression, multiple disciplines must be integrated,
including algorithm optimization, computational architecture design, signal processing,
and hardware system design.

1.1. Contributions of This Paper

In this paper, we reviewed recent research on DNN model compression. These works
have made significant progress in recent years and have received significant attention
from researchers. The contribution of this paper was to summarize the methods of model
pruning, parameter quantization, low-rank decomposition, knowledge distillation, and
lightweight model design. Model pruning was implemented by searching for redundant
layers/channels in the model and removing them with little or no impact on the perfor-
mance. Parameter quantization is a method for converting floating-point calculations to
low-bitrate integer calculations. Low-rank decomposition uses matrix/tensor decompo-
sition to estimate the information of the DNNs. Knowledge distillation is used to train a
large network (teacher network) that can then train a smaller network (student network) so
that the results achieved by the student network are similar to those of the teacher network.
A lightweight model is used to design specially structured convolution filters to reduce
parameters and computation time. These studies are summarized in Table 2.

In general, model compression has been widely used in the fields of computer vision
and natural language processing. In addition, model compression is important for im-
proving the effectiveness of models and increasing their deployment potential. It has the
following advantages.

• Conserves storage space, especially on edge devices.
• Reduces computational demand and speeds up model inference.
• Reduces the complexity of the model and prevents over-fitting.
• Reduces training time and computational resource consumption, thus reducing train-

ing costs.
• Improves the deployability of the model, as smaller models are easier to deploy on

edge devices.

Computers 2023, 12, 60 3 of 22

Table 2. Summary of different approaches for model compression.

Core Idea Operating
Object Architecture Representative Advantage Disadvantage

Model
pruning

Designs parameter evaluation
criteria to measure parameter

importance. Removes
unimportant parameters.

Con layer
FC layer

Alter Structured pruning,
unstructured pruning.

Structured pruning narrows the
network for hardware

acceleration. Unstructured
pruning compresses the network

to any degree.

Structured pruning leads to
accuracy reduction.

Unstructured pruning leads to
irregular architecture and is

difficult to accelerate effectively.

Parameter
quantization

Convers floating-point
calculations to low-bitrate

integer calculations.
Conv layer

FC layer
Unaltered Post-training quantization,

quantization-aware training.

It reduces parameter storage
space and memory, speeds up

operation, and reduces
equipment energy consumption.

It takes a long time to train and
fine-tune and is inflexible.

Low-rank de-
composition

Decomposes the original tensor
into several low-rank tensors. Conv layer. Alter Binary decomposition,

multivariate decomposition.

It has good compression and
acceleration effects on large

convolution kernels and small
and medium-sized networks.

Difficult to decompose
simplified convolution kernels,
layer-by-layer decomposition is

not conducive to global
parameter compression.

Knowledge
distillation

Uses a large network with high
complexity as a teacher network
to guide low-complexity student

networks.

Conv layer
FC layer

Unaltered

Knowledge distillation for
output layer, mutual

information, correlation, and
adversarial.

Large-scale models are
compressed into small models

and deployed to
resource-constrained devices.

The network needs to be trained
at least twice, and the training

time is long.

Lightweight
model design

Employs a compact and efficient
network architecture and

designs a network for
deployment in mobile devices.

The entire
network. Alter Convolution kernel level, layer

level, network architecture level.

The network is simple, the
training time is short, and the

small network with a small
storage amount, low calculation
amount, and good performance

can be obtained.

It is difficult to combine the
special architecture with other
compression and acceleration

methods; poor generalization is
not suitable as a pre-trained
model to help other models.

Computers 2023, 12, 60 4 of 22

1.2. Organization of This Paper

Figure 1 shows the paper organization as follows: Section 2 introduces the method
for model pruning, including structured and unstructured pruning. Section 3 provides
an overview of the parameter quantization, post-training quantization, and quantization-
aware training. Section 4 outlines the method used for low-rank decomposition. Section 5
presents relevant research concepts and methods for knowledge distillation. Section 6
reports the strategies and recent advances in lightweight model design. Section 7 discusses
the current state-of-the-art of model compression and future research directions. Section 8
summarizes this article.

Model compression

Model pruning

Parameter

quantization

Low-rank

decomposition

Knowledge

distillation

Lightweight

model design

Structured pruning

Unstructured pruning

Quantization-aware training

Post-training quantization

Response-based knowledge

Feature-based knowledge

Relation-based knowledge

Introduction

Conclusion and

future work

Discussion

Figure 1. Organization of the survey.

2. Model Pruning

The earliest pruning method was biased weight decay [26]. In the 1990s, the objective
function was used in a Taylor expansion method to find the neuron with the least impact on
the loss [27,28]. These methods focused on removing inessential components from DNNs
without having a significant effect on the performance. As the research progressed, model
pruning was divided into structured and unstructured methods.

2.1. Structured Pruning

Structured pruning is normally performed with a channel (filter) as the basic prun-
ing unit [29–33]. When one channel is pruned, the corresponding channels are also re-
moved [34,35]. Channel-based structured pruning was realized by evaluating the impor-
tance of channels. Li et al. [34] measured the relative importance of channels in each
layer by calculating the sum of the absolute weights of the channels [36]. This approach
did not require the support of a sparse convolution library, nor did it produce sparse
connections. Meanwhile, it reduced time, as compared to layer-by-layer iterative fine-
tuning. The time-saving advantage was particularly evident in the pruning process of
deep networks. However, this caused a degradation in model performance. Therefore,
Lin et al. [37] proposed a global and dynamic pruning scheme to prune redundant channels.
First, a global discriminant function based on the prior global knowledge of each channel
removed the insignificant channels from all layers. After that, it dynamically updated the
accuracy of the filters by comparing the pruned and sparse networks in order to recover
any incorrectly pruned channels. Next, it was retrained to improve the performance of the
model. Furthermore, Li et al. [38] proposed a fused max-average pooling operation and
an improved channel-attention mechanism by using two pooling functions to enhance the

Computers 2023, 12, 60 5 of 22

feature representation in DNNs. Kuang et al. [39] obtained the importance of a channel
by considering the effect of each channel on a task-dependent loss function. The smaller
the loss function value, the less important the channel. According to this characteristic,
Li et al. [40] proposed a highly efficient layer-wise refined pruning method for DNNs at the
software level that accelerated the inference process at the hardware level [41].

Channel-based pruning has also been applied in the fields of image segmentation
and object detection. Sawant et al. [42] proposed an optimal-score-based filter pruning
(OSFP) approach to prune redundant filters according to their similarities in the feature
space. OSFP removed redundant filters, improved segmentation performance, and ac-
celerated network learning. As a special pruning method, sparse training [43] and mask
learning [44] created new connections during the pruning process. Chu et al. [45] proposed
a three-stage model-compression method: (1) dynamic sparse training, (2) group channel
pruning, and (3) spatial attention distilling, in the field of object detection. Group channel
pruning divided the network into multiple groups according to the scale of the feature
layers and the similarity of the module architecture in the network. Then, the channels in
each group were pruned according to different thresholds. In addition, Chang et al. [46]
proposed an automatic channel pruning method. This method first performed hierarchical
channel clustering using feature map similarity and initial network pruning simultane-
ously. Then, a population initialization method was presented to transform the pruned
architecture into candidate populations. Finally, the optimal compression architecture was
found via particle-swarm optimization. By evaluating the performance of their parameters,
Liu et al. [47] presented a method for network slimming, which did not require any special
software/hardware accelerators for the model. During the training process, unimportant
channels were automatically identified and later pruned. It employed an L1 regulariza-
tion [48] on the weights of the batch-normalization (BN) [49] layers to achieve the sparsity
of the parameters. Then, iterative pruning was used to achieve high pruning rates.

Yang et al. [50] proposed an energy-aware pruning algorithm. The algorithm guided
the process by using the computational consumption of the convolutional neural network
(CNN). The pruning was implemented layer by layer and was more effective than pre-
viously proposed pruning methods by minimizing the errors in the output feature map,
rather than the filter weights. To accomplish this, the weights were first pruned by layer.
After that, local fine-tuning was performed by closed-form least squares to recover the
accuracy after pruning. Finally, the layers were pruned, and the entire network was glob-
ally fine-tuned using back-propagation. In 2021, Fan et al. [51] proposed a hierarchical
channel pruning to group different layers by reducing the model accuracy of the pruned
network. After pruning each layer in a specific order, the network was retrained. There was
a small decrease in the accuracy of the network model, but the computational resources
deployed on the hardware were greatly reduced. To reduce the computational cost of
multiple training, Chen et al. [52] proposed only-train-once (OTO), a training and pruning
framework. OTO greatly simplified the complex multi-stage training channel of current
pruning methods. Furthermore, the method of a half-space random projection gradient
was proposed, which solved the problem of structured sparsity-induced regularization. As
compared to multiple fine-tuning processes, OTO required only one, which significantly
simplified the pruning process. Chung et al. [53] pruned certain convolution channels
in the first layer of a pre-trained CNN. Pruning of the first layer greatly facilitated the
channel compression of the subsequent convolution layers. However, the input of the first
layer was a single channel. To address these issues, Chen et al. [54] proposed a solution to
strategically manipulate neurons by “grafting” appropriate levels of linearized insignificant
rectified linear unit (ReLU) neurons to eliminate the non-linear components. However, this
method required the associated slopes and intercepts of the replaced linear components
to be optimized in order to restore model performance. With the continuous advances in
structured pruning algorithms, whether layer-based or filter-based, the original multiple
pruning and fine-tuning approaches were developed to only be used once.

Computers 2023, 12, 60 6 of 22

2.2. Unstructured Pruning

Unstructured pruning was based on a heuristic approach to zero-out unimportant
parameters, such as weight magnitude [55,56], gradients [57], and hessian [27] statistics. It
has typically resulted in competitive performance improvements, but it has been difficult
to accelerate due to irregular sparsity [58,59].

In 1989, LeCun et al. [27] suggested the concept of optimal brain damage, which used
second-derivative information to determine a compromise between network complex-
ity and training-set error, so unimportant weights would be removed from the network.
Han et al. [56] described a method, train–prune–retrain, to reduce the storage and computa-
tion of neural networks by learning only the important connections. The performance was
improved by an order of magnitude without affecting the accuracy. Yang et al. [50] utilized
the energy consumption of each layer to determine the pruning order. Yang et al. [60]
created latency tables that utilized greed to determine the layers that should be cropped.
Furthermore, Yang et al. conducted comparison experiments using L1 and L2 regular-
ization. According to the experimental results, pruning with L1 regularization achieved
better accuracy than L2 regularization after pruning and without retraining. This occurred
because L1 regularization had converted more parameters closer to zero. However, L2
regularization outperformed L1 after retraining pruning. Guo et al. [61] proposed dynamic
network surgery, which reduced network complexity significantly by pruning connections
in real time. In contrast to the previous method, Guo et al. included connected splicing
throughout the process to avoid incorrect pruning. By adding a learning process to the
process of filtering important and unimportant parameters, it was possible to more accu-
rately identify the optimal parameters. Neill et al. [62] proposed two weight regularizers
that aimed to maximize the alignment between units of pruned and unpruned networks in
order to mitigate alignments in pruned cross-lingual models. Unstructured pruning greatly
reduced the number of parameters and computations. However, the unstructured pruning
set the redundant neurons to zero, rather than remove them from the network [63]. As a
result, the non-regular sparsity was not fully utilized to accelerate the model according to
current hardware architectures. Therefore, accelerating unstructured pruning techniques
for use on current hardware architectures should be further examined.

3. Parameter Quantization

Parameter quantization reduces the size and inference time of models [64–67]. Pa-
rameter quantization is versatile and applicable to most models and hardware devices.
Parameter quantization of neural networks is the process of converting the weights and
activation values of a network model from high precision to low precision. Algorithm 1
shows the steps of parameter quantization. Parameter quantization has several advantages:

• Less storage overhead and bandwidth requirements.
• Lower power consumption.
• Faster calculation speed.

Algorithm 1 Parameter quantization.

Step 1: Count the corresponding min_value and max_value in the input data (weights
or activation values);
Step 2: Choose the appropriate quantization type, symmetric (int-8) or asymmetric
(uint-8);
Step 3: Calculate the quantization parameters Z/Zero point and S/Scale according to
the quantization type, min_value and max_value;
Step 4: Quantize the model based on the calibration data, converted from FP32 to INT-8;
Step 5: Verify the performance of the quantized model, and if the result is not good, try
to use a different way to calculate S and Z, and re-execute the above operation.

Computers 2023, 12, 60 7 of 22

Parameter quantization establishes a data-mapping relationship between fixed-point
and floating-point data, allowing for better gains at a smaller cost in terms of accuracy loss.
This is shown in Equations (1) and (2),

S =
Rmax − Rmin
Qmax −Qmin

(1)

Z = Qmax −
Rmax

S
(2)

where R denotes a real floating-point number, Q denotes the quantization fixed-point value,
Z denotes the quantization fixed-point value corresponding to the zero floating-point value,
and S is the scale factor of quantization. In addition, S and Z are quantization parameters,
and the data type of S is FP32, and that of Z is INT8. Q and R are derived from Equation (3)
and Equation (4), respectively, that is, either the quantization Q or the back-propagated
floating-point value R. If they exceed the maximum range that each can represent, then
they need to be rounded. The quantization equation from floating point to fixed point is as
follows.

Q =
R
S
+ Z (3)

The equation for inverse quantization from fixed point to floating point is as follows:

R = (Q− Z) ∗ S (4)

where S and Z are found by the following Equation (5).

Z = Qmax −
Rmax

S
(5)

After quantization, the parameters of the model usually need to be adjusted. The
process of obtaining a model by retraining is called quantization-aware training (QAT).
Similarly, the process of obtaining a model without retraining is called post-training quanti-
zation (PTQ). Figure 2 shows the difference between QAT and PTQ.

Retraining and Finetuning Quantization

Quantization model

Pre-trained model

Quantization Calibration

Figure 2. Comparison of quantization-aware training (QAT, left) and post-training quantization
(PTQ, right). ⊕ denotes training data, ⊗ denotes calibration data. In QAT, a pre-trained model is
quantized and then fine-tuned using the training data to adjust parameters and recover from accuracy
degradation. In PTQ, the pre-trained model is calibrated utilizing calibration data (a small portion
of the training data) to calculate the shear range and scaling factor. Then, the model is quantified
based on the calibration results. The calibration process is usually performed at the same time as the
fine-tuning of the QAT.

Computers 2023, 12, 60 8 of 22

3.1. Quantization-Aware Training

Quantization introduces perturbations into the parameters of the trained model, caus-
ing the model to deviate more from the convergence point than when trained with floating-
point precision [68–73]. To make the model converge to a better loss point, the problem
can be solved by retraining the quantization parameters. A commonly employed method
has been QAT, which quantifies during both forward and backward propagation [74–76].
However, the model’s parameters are quantified after each gradient update. In particular, it
is important to perform this calculation after the weight updates in floating-point precision.
Similarly, it is important to perform the backward transfer in a floating-point manner, as
accumulating gradients with quantization precision can lead to high errors in zero gradients
or gradients, especially with low-precision quantization.

3.2. Post-Training Quantization

Post-training quantization was a good alternative to QAT, as it performed quantization
and adjusted the weights without any fine-tuning [77–81]. Therefore, the cost of PTQ was
very low and negligible. Furthermore, PTQ could be applied with limited or no labeling
of data, which was a distinct advantage. However, PTQ required enough training data to
retrain but only achieved a low accuracy rate, particularly for low-precision quantization.
To address the problem of PTQ’s decreasing accuracy, researchers have proposed various
methods [82–85]. For example, Banner et al. [86] and Finkelstein et al. [87] observed an
inherent bias in the mean and the variance of the quantified weight values and proposed a
bias-correction method. Meller et al. [88] and Nagel et al. [89] showed that balancing the
weight ranges across the layers or channels could reduce the quantization errors. ACIQ [86]
analytically calculated the optimal clipping range and channel-bit-width settings for PTQ.
Although ACIQ achieved low-precision degradation, the channel-wise activation quantiza-
tion used in ACIQ was difficult to implement effectively in hardware devices. To address
this problem, the OMSE [90] approach eliminated channel quantization at activation and
proposed PTQ by optimizing the L2 distance between the quantized tensor and the corre-
sponding floating-point tensor. In addition, to better mitigate the adverse effects of outliers
in PTQ, Zhao et al. [91] proposed an outlier channel-splitting method, which duplicated and
halved the channels containing outliers. Another notable work was AdaRound [92], which
proposed an adaptive rounding method that reduced losses more effectively. Although
AdaRound restricted the variation in the quantization weights to within±1, AdaQuant [93]
proposed a more general approach that allowed the weight of the quantization to change
as needed. In PTQ, all weights and activation quantization parameters were determined
without any retraining of the neural network models. Therefore, PTQ was a very fast way
to quantify neural network models. However, PTQ tended to be less accurate than QAT.

4. Low-Rank Decomposition

Low-rank decomposition uses a low-rank matrix to approximate the weight matrix
in a neural network [94]. Approaching the weight matrix with a low rank is particularly
effective and produces a 3× compression on the fully-connected layer. However, it does not
speed up the model significantly, since the computational operations of CNN are mainly in
the convolution layer. Therefore, reducing the number of convolution layers improves the
compression rate.

This concept of low-rank decomposition was derived from the speculation that there
was a structural capacity in a 3-dimensional (3D) tensor. The convolution kernel was
viewed as a 3D tensor by [95], and the fully connected (FC) layer was considered as a 2D
matrix or 3D tensor. Low-rank filters were used to accelerate convolutional operations.
For example, a high-dimensional discrete cosine transform (DCT) and wavelet systems
were constructed from 1D DCT transforms and 1D wavelets, respectively, using tensor
products. Learning separable 1D filters was proposed by [96] using a dictionary learning
approach. Denton et al. [97] proposed clustering schemes with low-rank decomposition
and convolution kernel for simple DNN models. They achieved a 2× increase in speed

Computers 2023, 12, 60 9 of 22

in a single convolution layer. However, the classification accuracy decreased by 1.00%.
Jaderberg et al. [98] proposed using a different tensor decomposition scheme and showed a
4.5× increase in speed, while the accuracy of the text recognition decreased by 1.00%.

Low-rank decomposition was an operation on layers, and the analysis was performed
layer-by-layer. The parameters of one layer were fixed upon completion, and the layers
above were fine-tuned according to the reconstruction error criteria. Figure 3 describes the
kernel decomposition of the low-rank decomposition matrix.

Figure 3. Kernel approximation of low-rank decomposition matrix.

Figure 4 describes the kernel decomposition of the low-rank decomposition matrix.
Lebedev et al. [99] proposed a canonical polyadic (CP) decomposition of the kernel tensor,
using nonlinear least squares to calculate the CP decomposition. Tai et al. [100] proposed
a new algorithm for computing low-rank tensor decompositions for training low-rank
constrained CNNs from the start. This method used BN to convert the activation of
the internal hidden cells. In general, both CP and BN decomposition schemes could
train CNNs from scratch. However, there was little difference between the CP and BN
decomposition schemes. For example, finding the best low-rank decomposition in the CP
decomposition was an unsolvable problem, and the best rank-K (where K is the number
of ranks) decomposition did not always exist. Decomposition was always present in BN.
Table 3 shows the comparison between the different models on ILSVPRC-2012.

Figure 4. A typical framework for low-rank regularization methods, with the original convolutional
layer on the left and the low-rank, constrained convolutional layer with rank-K on the right.

Table 3. A simple comparison of the two methods is presented to measure the performance of each,
based on the actual increases in speed and the compression ratio.

Model Top 5 Accuracy Speed-Up Compression Rate

AlexNet 80.03% 1.00 1.00
BN Low-rank 80.56% 1.09 4.94
CP Low-rank 79.66% 1.82 5.00

VGG16 90.60% 1.00 1.00
BN Low-rank 90.47% 1.53 2.72
CP Low-rank 90.31% 2.05 2.75

GoogleNet 92.21% 1.00 1.00
BN Low-rank 91.88% 1.08 2.79
CP Low-rank 91.79% 1.20 2.84

Computers 2023, 12, 60 10 of 22

There are several methods for exploiting low rankings in FC layers [97,101]. For
example, Denil et al. [102] reduced the number of dynamic parameters in a deep model
using a low-rank method. Sainath et al. [103] explored a low-rank matrix factorization of
the final weight layer in DNNs for acoustic models. Lu et al. [104] used a truncated singular
value decomposition (SVD) to decompose the FC layers to design compact multi-task DNN
models. The low-rank decomposition method was straightforward for model compres-
sion. However, the low-rank decomposition method was difficult to implement due to
the decomposition operation itself. Another problem was that the modern approaches
employed layer-by-layer low-rank decomposition, so global parameter compression was
not possible since different layers had different information. These methods identified
redundant parameters of DNNs by employing the matrix and tensor decomposition. The
filter of a neural network was viewed as a tensor with four dimensions: widthW , heightH,
number of channels C, and a number of convolution kernels N . As C and N have a large
impact on the overall network architecture, network compression was performed using
low-rank decomposition methods based on the characteristics of information redundancy
of the convolution kernel (W × H) matrix and its low-rank property.

Since the weight vectors were mostly distributed in a low-rank subspace, the con-
volution kernel matrix was reconstructed with a small number of basis vectors to reduce
memory requirements. Low-rank decomposition methods had good compression and
speed improvements for large convolution kernels and in small and medium-sized net-
works. However, new networks increasingly use 1 × 1 convolution in recent years. A 1 × 1
convolution is not conducive to the use of low-rank decomposition. In addition, the matrix
decomposition operation is expensive, layer-by-layer decomposition is not conducive to
global parameter compression, and it requires significant retraining to achieve convergence.
To address this problem, Jaderberg et al. [98] proposed a two-step method for accelerating
convolution layers in large convolutional neural networks based on tensor decomposition
and discriminative fine-tuning [105].

5. Knowledge Distillation

As shown in Figure 5, knowledge distillation is a teacher–student architecture [106–108].
The teacher network is a complex pre-trained network, and the student network is a simple
small network. The teacher network provides the student network with prior knowledge
so that the student network achieves similar performance to that of the teacher network.

Figure 5. Model compression based on knowledge distillation.

Deploying deep models in mobile devices is challenging due to the limited processing
power and memory of these devices. To address these issues, Buciluă et al. [109] first pro-
posed model compression to transfer information from a large model to train a small model
without significant accuracy degradation. Henceforth, the training of small models by
large models was called knowledge distillation [108,110,111]. Chen et al. [112] posited that
feature embedding from deep neural networks could convey complementary information

Computers 2023, 12, 60 11 of 22

and, thus, proposed a novel knowledge-distilling strategy to improve its performance. The
main idea of knowledge distillation was that the student model imitated the teacher model
to achieve competitive, or even superior, performance. The key focus was how to transfer
knowledge from a large teacher model to a small student model.

In the process of knowledge distillation, knowledge types, distillation strategies, and
teacher–student architectures have played key roles in the student learning process. The
activations, neurons, and features of the middle layer were available as knowledge to guide
the learning of the student model [113–117]. The relationship between different activations,
neurons, and features contained the rich knowledge learned by the teacher model [118–122].
As shown in Figure 6, three methods of knowledge distillation were introduced. These
three distillation methods are described in detail in the following sections.

Figure 6. (a) The generic response-based knowledge distillation. (b) The generic feature-based
knowledge distillation. (c) The generic instance-relation-based knowledge distillation.

5.1. Response-Based Knowledge

Response-based knowledge distillation is a simple and effective model compression
method that has been widely used in a variety of tasks [108,110]. Response-based knowl-
edge is the final output layer of the teacher model, and the main idea is to directly mimic
the final prediction of the teacher network. The response-based image knowledge is called
a soft target, which is the probability of different classes of inputs that can be estimated by
the Softmax function, as in Equation (6):

q(zi, T) =
exp(Zi/T)

∑j exp(Zj/T)
(6)

where Zi is the logit for the i-th class, j ∈ (1, 2, · · · , k), k is the total number of classes, exp
is an exponential operation, and T is the temperature parameter to control the importance
of each soft target. If T = 1, it is the original Softmax function.

5.2. Feature-Based Knowledge

Deep neural networks are excellent at learning multiple-level representations of fea-
tures. This became defined as representational learning [123–125]. Therefore, the feature
map, as the output of the final and middle layers, is available as knowledge to supervise the
training of student models. The feature-based knowledge from the middle layer is a good
extension of the response-based knowledge. The feature-based knowledge-distillation loss
was defined by Equation (7):

LFeaD(ft(x), fs(x)) = LF(φt(ft(x)), φs(fs(x))) (7)

Computers 2023, 12, 60 12 of 22

where ft(x) and fs(x) are feature maps of the middle layers of the teacher and student
networks, respectively. The transformation functions φt(ft(x)) and φs(fs(x)) transform the
feature maps of the teacher and student networks into the same shape, respectively. In
addition, LF(·) is the similarity function used to match the feature maps of the teacher and
student networks.

5.3. Relation-Based Knowledge

Both response-based and feature-based knowledge methods use the output of a partic-
ular layer in the teacher model. The relation-based knowledge method further explores
the relationship between different layers. Yim et al. [118] proposed the flow of the solution
process (FSP), which was defined by the Gram matrix between the different layers. The FSP
matrix reflected the relationship between the feature map by the inner product between the
two layers of features. Correlations between feature maps were used as prior knowledge.
Knowledge distillation by SVD extracted information from the feature maps [126].

Zhang et al. [127] proposed a graph-based distillation framework to use the knowledge
of multiple teachers. Lee et al. [119] proposed a multi-headed graph-based knowledge-
distillation method. The student network simulated the mutual information flow of the
paired queuing layers of the teacher network to explore paired-queuing information. Usu-
ally, the distillation loss of relation-based knowledge over the relations of the feature map
is expressed as Equation (8):

LRelD(ft, fs) = LR1(Ψt(f̂t, f̌t), Ψs(f̂s, f̌s)) (8)

where ft and fs are the feature maps of the teacher network and the student network,
respectively. f̂t, f̌t and f̂s, f̌s are a pair of feature maps in the teacher network and student
network, respectively. Ψ(·) is the similarity function of a pair of feature maps. LR1 denotes
the correlation function between the teacher and student feature maps.

6. Lightweight Model Design

Lightweight DNN model design refers to the redesign based on the existing DNN
structure to achieve a reduction in the number of parameters and the computational
complexity. Table 4 shows the design skills for the lightweight model. Iandola et al. [128]
proposed SqueezeNet, which replaced 3 × 3 convolution kernels with a 1 × 1 convolution
kernel. The parameters of a 1 × 1 convolution kernel were 1/9 of the parameters of a 3 × 3
convolution kernel. However, this also decreased the number of input channels available
as compared to 3 × 3 convolution. By learning ResNet and adding bypass branches
to the original network, the classification accuracy was improved by approximately 3%.
Howard et al. [129] proposed MobileNet, which divided convolution into depth-wise
convolution and point-wise convolution. Each convolution kernel filter of a depth-wise
convolution performed convolutional operations on only one specific input channel. Point-
wise convolution used a 1 × 1 size convolution kernel to combine the multi-channel
outputs of the depth-wise convolution layer. Zhang et al. [130] proposed ShuffleNet, which
shuffled the input groups into channels, thus ensuring that the perceptual fields of each
convolutional kernel were spread across the inputs of different groups to increase the
learning ability of the model.

Computers 2023, 12, 60 13 of 22

Table 4. Skills for lightweight models.

Model Methods

SqueezeNet [128]
• 1 × 1 convolution instead of 3 × 3 convolution.
• Reducing the number of input channels for 3 × 3 convolution.
• Downsampling operation.

SqueezeNext [131]
• Number of compressed feature map channels.
• Low-rank separable convolution.
• Reducing the number of input channels in the FC layer.

MobileNetV1 [129] • Depthwise separable convolution.
• Two hyperparameters, α and ρ.

MobileNetV2 [132]
• Reducing the use of 1 × 1 convolution.
• Linear bottleneck structure.
• Two hyperparameters, α and ρ.

ShuffleNetV1 [130] • 1 × 1 group convolution.
• Channel shuffle.

ShuffleNetV2 [133]

• Replacing 1 × 1 group convolution with 1 × 1 dense convolution.
• Keeping the number of input and output channels consistent.
• Using concatenating instead of adding.
• Channel segmentation.
• Channel shuffle.

Gao et al. [134] improved the effectiveness of lightweight models in self-supervised
learning.Tan et al. [135] proposed MnasNet, a neural architecture search (NAS) method.
The time consumption of the model on the device was incorporated into the search space
through multi-objective optimization. Next, using a decomposed hierarchical search space
allowed the network to maintain layer diversity while maintaining a simplified search
space. This enabled a better compromise between accuracy and time consumption in
the search model. Huang et al. [136] proposed that group convolution was learnable.
Learning group convolution continued the training by combining the training process with
pruning for more accurate pruning. Mehta et al. [137,138] proposed an end-to-end speech
processing network (ESPNet), which was a lightweight network for semantic segmentation,
and its core was an ESP module. The ESP module contained point-wise convolution and
a spatial pyramid of dilated convolution, which were more efficient than to MobileNet
and ShuffleNet. Depth-wise separable convolution reduced the computation time and the
number of parameters of the network, whereas point-wise convolution used the highest
number of parameters. Motivated by this, Gao et al. [139] proposed a channel-wise and
depth-wise separable convolution. ChannelNet was constructed by replacing the FC layer
and the global pooling layer of the network.

The interleaved group convolution (IGC) series network was an extreme use of group
convolution [140–142]. IGC decomposed the regular convolution into multiple group
convolutions, reducing a large number of parameters. Furthermore, the complementarity
principle and the sorting operation ensured the flow of information between groups with a
minimum number of parameters. The FBNet series [143–145] was a lightweight network
series based entirely on the NAS method. FBNet [143] combined DNAS and resource
constraints. FBNetV2 [144] added a channel and input resolution search. FBNetV3 [145]
used accuracy prediction to perform a fast network structure search. Currently, DNN
performance optimization is carried out to improve the following three areas.

• Increase the width of the network.
• Increase the depth of the network.
• Increase the resolution of input images.

Computers 2023, 12, 60 14 of 22

It is easy to directly improve the accuracy of a network by revising one dimension.
However, revising two or three dimensions of the network at the same time requires tedious
manual tuning and is difficult to optimize. To address these problems, Tan et al. [146]
proposed a hybrid scaling method for model scaling that could better select the width,
depth, and resolution dimensional scaling, thus enabling the model to achieve higher
accuracy. Han et al. [147] proposed a Ghost module to extract more features using fewer
parameters. First, the Ghost module used the output with the fewest raw convolution
operations for the output. Then a series of simple linear operations were used on the output
to generate more features. GhostNet was proposed based on the Ghost module, replacing
the original convolution layer with the Ghost module. The experimental results showed
that GhostNet compressed well and maintained good accuracy. Ma et al. [148] proposed a
simple and efficient dynamic generative network, WeightNet, which integrated the features
of squeeze and excitation networks (SENet) [16] and CondConv [149] in the weight space.
WeightNet dynamically generated convolutional kernel weights based on sample features
and adjusted the hyperparameters to achieve a compromise between accuracy and speed.
Li et al. [150] proposed MicroNet, which contained micro-factorized convolution and dy-
namic shift-max. Micro-factorized convolution maintained the input–output connectivity
and reduced the number of connections through low-rank decomposition. Dynamic shift-
max compensated for the performance degradation caused by the reduced network depth
by dynamically fusing features between groups to increase node connectivity and improve
non-linearity. Radosavovic et al. [151] proposed RegNet, which was a new network design
paradigm that combined the advantages of manually designed networks and NAS. Finally,
self-supervised representation learning (SSL) has received significant attention. However,
recent studies have concluded that when the model size decreased, its performance de-
creased substantially.Since current SSL methods rely heavily on contrast learning to train a
network, Gao et al. [134] proposed a simple and effective method called distillation contrast
learning (DisCo) to alleviate this problem. DisCo aligned the final embedded constraints of
lightweight students with those of teachers, maximizing the transfer of teacher knowledge.

7. Discussion

With the rapid development of hardware, DNNs have become the dominant algorithm
for computer vision tasks. The growth in overall computational power has improved the
data-processing power of DNNs, which has substantially improved the generalization
ability of the models. Furthermore, DNN architecture design is a hotspot in the research
and may become one of the most widely used artificial intelligence techniques in the
future. In addition, deploying models on edge devices facilitates the development of model
compression techniques. For the application of DNNs on edge devices, lightweight network
architecture is one of the mainstream research topics. In this survey, we summarized the
research achievements in recent years. The challenges and prospects of DNN development
are as follows.

In model-pruning algorithms, most existing approaches remove redundant connec-
tions or neurons from the network. This low-level pruning introduces unstructured risks.
Therefore, it is important to propose more effective methods to evaluate the impact of
pruned objects on their models.

Parameter quantization greatly reduces the size of the model. However, the quan-
tization operation increases the complexity of the operation. During the quantization
process, some special processing is required. Otherwise, the accuracy loss is more severe.
In addition, quantization usually results in a loss of accuracy. An appropriate quantization
strategy reduces the complexity of the model while minimizing the loss of accuracy. In
addition, mixed accuracy quantization strategies have been used to reduce the size of the
parameters to a reasonable level on a contribution basis.

Low-rank decomposition speeds up the computational process of the model, and the
mathematical principles of the decomposition process are more helpful for explaining the
optimization mechanism of the network structure. However, low-rank decomposition

Computers 2023, 12, 60 15 of 22

is not effective in accelerating models with small convolutional kernels, and it cannot
compress the size of the network model.

Knowledge distillation guides the training of student networks by teacher networks.
However, the training difficulty varies for different student network architectures. There-
fore, building a student network architecture requires designers to have a richer theoretical
foundation and nuclear engineering experience.

Currently, the determination of hyperparameters relies on manual expertise and abla-
tion experiments. Over the course of experiments, small changes in hyperparameters have
led to inconsistent results overall. Therefore, a standardized design approach for hyperpa-
rameter optimization is needed. A neural architecture search algorithm is also necessary to
design a network, as it automatically searches for the correct network architecture.

Training DNN models requires powerful hardware resources. Therefore, the deploy-
ment of DNN models on mobile devices needs to be explored. Most model-acceleration
methods implement optimization for image recognition tasks, and few are dedicated to
accelerating tasks in other areas of computer vision. Furthermore, the evaluation system
of network compression algorithms is rather weak and generally focuses on comparing
network parameters and running time. As a future research direction, researchers should
balance the size and speed of a network and provide a network performance evaluation
system for different scenarios.

Model compression significantly reduces model size, improves model inference speed,
and reduces computational demands. Many model compression techniques have achieved
model compression by removing some parameters, which results in the loss of model
performance. In addition, model compression increases the training time and may also lead
to model over-fitting. Therefore, these limitations should be considered before performing
model compression to ensure the accuracy and stability of the model. According to the
survey of lightweight model designs, the application of neural architecture search technol-
ogy increased the speed in the lightweight model designs. For example, both MnasNet
and RegNet utilized a neural architecture search approach. Therefore, in the process of
designing a lightweight model, it is necessary to consider methods to reduce the resource
consumption during neural architecture searches.

8. Conclusions and Future Work

This paper provided a survey of deep neural network model compression. Five deep
neural network model compression methods were discussed. Structured and unstruc-
tured pruning were discussed from the perspective of model pruning. The advantages
and disadvantages of the two quantization methods, quantization-aware training and
post-training quantization, were compared. The method of low-rank decomposition was
introduced. Three applications of knowledge distillation in model compression were
presented. Lightweight models achieved performance improvements by designing effi-
cient architectures and have become the dominant model-compression and -acceleration
methods in recent years. By analyzing and discussing areas related to model compres-
sion, this literature review intended to provide researchers with new information and
research directions and to promote the further development of deep neural network model
compression.

In future work on deep neural network model compression, model size should be
reduced by utilizing hybrid precision without losing model performance. Model pruning
and low-rank decomposition reveal hidden information in the model (e.g., the importance
of layers and channels), which facilitates a better understanding of the model and provides
insights for model design. Knowledge distillation transfers knowledge between different
models, resulting in a shorter training time and better performance. In addition, model
compression has been achieved faster and more efficiently by merging multiple model com-
pression methods. For example, by merging knowledge distillation and neural architecture
search, a lightweight model is obtained faster. As neural architecture search technology

Computers 2023, 12, 60 16 of 22

develops, more lightweight models will be discovered. Therefore, neural architecture
search will play a crucial role in the design of future lightweight models.

Author Contributions: Conceptualization, L.M. and H.L.; methodology, Z.L.; software, Z.L.; vali-
dation, Z.L. and H.L.; formal analysis, Z.L.; investigation, Z.L.; resources, L.M.; data curation, Z.L.;
writing—original draft preparation, Z.L.; writing—review and editing, H.L. and L.M.; visualization,
Z.L.; supervision, Z.L.; project administration, L.M.; funding acquisition, L.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, T.; Liu, W.; Han, J.; Lombardi, F. High Performance CNN Accelerators Based on Hardware and Algorithm Co-Optimization.

IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 250–263. [CrossRef]
2. Barinov, R.; Gai, V.; Kuznetsov, G.; Golubenko, V. Automatic Evaluation of Neural Network Training Results. Computers 2023, 12,

26. [CrossRef]
3. Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2022, 56,

1905–1969. [CrossRef]
4. Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR Target Image Classification Based on Transfer Learning and Model Compression.

IEEE Geosci. Remote Sens. Lett. 2019, 16, 412–416. [CrossRef]
5. Chandio, A.; Gui, G.; Kumar, T.; Ullah, I.; Ranjbarzadeh, R.; Roy, A.M.; Hussain, A.; Shen, Y. Precise single-stage detector. arXiv

2022, arXiv:2210.04252.
6. Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A deep learning-based object detection algorithm for empty-dish

recycling robots. Machines 2022, 10, 294. [CrossRef]
7. Ge, Y.; Yue, X.; Meng, L. YOLO-GG: A slight object detection model for empty-dish recycling robot. In Proceedings of the 2022

International Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 59–63.
8. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A

Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [CrossRef]
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM

2017, 60, 84–90 [CrossRef]
10. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
11. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
12. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA,
7–12 June 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 1–9.

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Washington,
DC, USA, 2016; pp. 770–778.

14. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; IEEE Computer
Society: Washington, DC, USA, 2017; pp. 2261–2269.

15. Xie, S.; Girshick, R.B.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; IEEE
Computer Society: Washington, DC, USA, 2017; pp. 5987–5995.

16. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22 June 2018; IEEE Computer Society: Washington, DC, USA, 2018;
pp. 7132–7141.

17. Yue, X.; Li, H.; Fujikawa, Y.; Meng, L. Dynamic Dataset Augmentation for Deep Learning-based Oracle Bone Inscriptions
Recognition. J. Comput. Cultural Heritage 2022, 15, 1–20. [CrossRef]

18. Wen, S.; Deng, M.; Inoue, A. Operator-based robust non-linear control for gantry crane system with soft measurement of swing
angle. Int. J. Model. Identif. Control 2012, 16, 86–96. [CrossRef]

http://doi.org/10.1109/TCSI.2020.3030663
http://dx.doi.org/10.3390/computers12020026
http://dx.doi.org/10.1007/s10462-022-10213-5
http://dx.doi.org/10.1109/LGRS.2018.2876378
http://dx.doi.org/10.3390/machines10050294
http://dx.doi.org/10.1109/TPAMI.2021.3059968
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3532868
http://dx.doi.org/10.1504/IJMIC.2012.046699

Computers 2023, 12, 60 17 of 22

19. Ishibashi, R.; Kaneko, H.; Yue, X.; Meng, L. Grasp Point Calculation and Food Waste Detection for Dish-recycling Robot.
In Proceedings of the 2022 International Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20
December 2022; pp. 41–46.

20. Li, Z.; Meng, L. Research on Deep Learning-based Cross-disciplinary Applications. In Proceedings of the 2022 International
Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 221–224.

21. Li, H.; Wang, Z.; Yue, X.; Wang, W.; Tomiyama, H.; Meng, L. A Comprehensive Analysis of Low-Impact Computations in Deep
Learning Workloads. In Proceedings of the GLSVLSI ’21: Great Lakes Symposium on VLSI, Virtual Event, 22–25 June 2021;
pp. 385–390.

22. Matsui, A.; Iinuma, M.; Meng, L. Deep Learning Based Real-time Visual Inspection for Harvesting Apples. In Proceedings of the
2022 International Conference on Advanced Mechatronic Systems (ICAMechS), Toyama, Japan, 17–20 December 2022; pp. 76–80.

23. Lawal, M.O. Tomato detection based on modified YOLOv3 framework. Sci. Rep. 2021, 11, 1–11. [CrossRef] [PubMed]
24. Marcel, B.; Eldert, V.H.; John, B.; John, R.; Deng, M. IEEE robotics and automation society technical committee on agricultural

robotics and automation. IEEE Robot. Autom. Mag. 2013, 20, 20–23.
25. Zhang, X.; Wang, Y.; Geng, G.; Yu, J. Delay-Optimized Multicast Tree Packing in Software-Defined Networks. IEEE Trans. Serv.

Comput. 2021, 16, 261–275. [CrossRef]
26. Hanson, S.; Pratt, L. Comparing Biases for Minimal Network Construction with Back-Propagation. In Proceedings of the

Advances in Neural Information Processing Systems, Denver, CO, USA, 1 January 1988; Volume 1.
27. LeCun, Y.; Denker, J.; Solla, S. Optimal Brain Damage. In Proceedings of the Advances in Neural Information Processing Systems,

Denver, CO, USA, 27–30 November 1989; Volume 2.
28. Hassibi, B.; Stork, D. Second order derivatives for network pruning: Optimal Brain Surgeon. In Proceedings of the Advances in

Neural Information Processing Systems, Denver, CO, USA, 30 November–3 December 1992; Volume 2.
29. Luo, J.; Zhang, H.; Zhou, H.; Xie, C.; Wu, J.; Lin, W. ThiNet: Pruning CNN Filters for a Thinner Net. IEEE Trans. Pattern Anal.

Mach. Intell. 2019, 41, 2525–2538. [CrossRef]
30. Zhou, H.; Alvarez, J.M.; Porikli, F. Less Is More: Towards Compact CNNs. In Proceedings of the Computer Vision—ECCV

2016—14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9908, pp. 662–677.
31. Wang, X.; Yu, F.; Dou, Z.; Darrell, T.; Gonzalez, J.E. SkipNet: Learning Dynamic Routing in Convolutional Networks. In

Proceedings of the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; Volume
11217, pp. 420–436.

32. Xiang, Q.; Wang, X.; Song, Y.; Lei, L.; Li, R.; Lai, J. One-dimensional convolutional neural networks for high-resolution range
profile recognition via adaptively feature recalibrating and automatically channel pruning. Int. J. Intell. Syst. 2021, 36, 332–361.
[CrossRef]

33. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.
arXiv 2016, arXiv:1611.06440.

34. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. In Proceedings of the 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

35. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA 16–20 June
2019; pp. 4340–4349.

36. Li, Q.; Li, H.; Meng, L. Feature Map Analysis-Based Dynamic CNN Pruning and the Acceleration on FPGAs. Electronics 2022, 11,
2887. [CrossRef]

37. Lin, S.; Ji, R.; Li, Y.; Wu, Y.; Huang, F.; Zhang, B. Accelerating Convolutional Networks via Global & Dynamic Filter Pruning. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19
July 2018; Volume 2, pp. 2425–2432.

38. Li, H.; Yue, X.; Meng, L. Enhanced mechanisms of pooling and channel attention for deep learning feature maps. PeerJ Comput.
Sci. 2022, 8, e1161. [CrossRef]

39. Kuang, J.; Shao, M.; Wang, R.; Zuo, W.; Ding, W. Network pruning via probing the importance of filters. Int. J. Mach. Learn.
Cybern. 2022, 13, 2403–2414. [CrossRef]

40. Li, H.; Yue, X.; Wang, Z.; Chai, Z.; Wang, W.; Tomiyama, H.; Meng, L. Optimizing the deep neural networks by layer-wise refined
pruning and the acceleration on FPGA. Comput. Intell. Neurosci. 2022, 2022, 8039281. [CrossRef] [PubMed]

41. Li, H.; Yue, X.; Wang, Z.; Wang, W.; Tomiyama, H.; Meng, L. A survey of Convolutional Neural Networks—From software to
hardware and the applications in measurement. Meas. Sens. 2021, 18, 100080. [CrossRef]

42. Sawant, S.S.; Bauer, J.; Erick, F.; Ingaleshwar, S.; Holzer, N.; Ramming, A.; Lang, E.; Götz, T. An optimal-score-based filter pruning
for deep convolutional neural networks. Appl. Intell. 2022, 52, 17557–17579. [CrossRef]

43. Evci, U.; Gale, T.; Menick, J.; Castro, P.S.; Elsen, E. Rigging the lottery: Making all tickets winners. In Proceedings of the
International Conference on Machine Learning, ICML, Virtual Event, 13–18 July 2020; pp. 2943–2952.

44. Huang, Q.; Zhou, K.; You, S.; Neumann, U. Learning to prune filters in convolutional neural networks. In Proceedings of the 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 709–718.

45. Chu, Y.; Li, P.; Bai, Y.; Hu, Z.; Chen, Y.; Lu, J. Group channel pruning and spatial attention distilling for object detection. Appl.
Intell. 2022, 52, 16246–16264. [CrossRef]

http://dx.doi.org/10.1038/s41598-021-81216-5
http://www.ncbi.nlm.nih.gov/pubmed/33446897
http://dx.doi.org/10.1109/TSC.2021.3106264
http://dx.doi.org/10.1109/TPAMI.2018.2858232
http://dx.doi.org/10.1002/int.22302
http://dx.doi.org/10.3390/electronics11182887
http://dx.doi.org/10.7717/peerj-cs.1161
http://dx.doi.org/10.1007/s13042-022-01530-w
http://dx.doi.org/10.1155/2022/8039281
http://www.ncbi.nlm.nih.gov/pubmed/35694575
http://dx.doi.org/10.1016/j.measen.2021.100080
http://dx.doi.org/10.1007/s10489-022-03229-5
http://dx.doi.org/10.1007/s10489-022-03293-x

Computers 2023, 12, 60 18 of 22

46. Chang, J.; Lu, Y.; Xue, P.; Xu, Y.; Wei, Z. Automatic channel pruning via clustering and swarm intelligence optimization for CNN.
Appl. Intell. 2022, 52, 17751–17771. [CrossRef]

47. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision, ICCV Venice, Italy, 22–29 October 2017; pp. 2736–2744.

48. Anwar, S.; Hwang, K.; Sung, W. Structured Pruning of Deep Convolutional Neural Networks. ACM J. Emerg. Technol. Comput.
Syst. 2017, 13, 1–18. [CrossRef]

49. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, ICML, Lille, France, 6–11 July 2015; Volume 37,
pp. 448–456.

50. Yang, T.J.; Chen, Y.H.; Sze, V. Designing energy-efficient convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR Honolulu, HI, USA, 21–26 July 2017;
pp. 5687–5695.

51. Fan, Y.; Pang, W.; Lu, S. HFPQ: Deep neural network compression by hardware-friendly pruning-quantization. Appl. Intell. 2021,
51, 7016–7028. [CrossRef]

52. Chen, T.; Ji, B.; Ding, T.; Fang, B.; Wang, G.; Zhu, Z.; Liang, L.; Shi, Y.; Yi, S.; Tu, X. Only Train Once: A One-Shot Neural Network
Training And Pruning Framework. In Proceedings of the Advances in Neural Information Processing Systems, NeurIPS, Denver,
CO, USA, 6–14 December 2021; Volume 34, pp. 19637–19651.

53. Chung, G.S.; Won, C.S. Filter pruning by image channel reduction in pre-trained convolutional neural networks. Multimed. Tools
Appl. 2021, 80, 30817–30826. [CrossRef]

54. Chen, T.; Zhang, H.; Zhang, Z.; Chang, S.; Liu, S.; Chen, P.Y.; Wang, Z. Linearity Grafting: Relaxed Neuron Pruning Helps
Certifiable Robustness. arXiv 2022, arXiv:2206.07839.

55. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and
Huffman Coding. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, 2–4 May 2016.

56. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the
Advances in Neural Information Processing Systems, NeurIPS, Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143.

57. Molchanov, P.; Mallya, A.; Tyree, S.; Frosio, I.; Kautz, J. Importance Estimation for Neural Network Pruning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 16–20 June 2019; pp. 11264–11272.

58. Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Proceedings of the
Advances in Neural Information Processing Systems, NeurIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 4857–4867.

59. Risso, M.; Burrello, A.; Pagliari, D.J.; Conti, F.; Lamberti, L.; Macii, E.; Benini, L.; Poncino, M. Pruning In Time (PIT): A
Lightweight Network Architecture Optimizer for Temporal Convolutional Networks. In Proceedings of the 58th ACM/IEEE
Design Automation Conference, DAC, San Francisco, CA, USA, 5–9 December 2021; pp. 1015–1020.

60. Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. NetAdapt: Platform-Aware Neural Network
Adaptation for Mobile Applications. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 289–304.

61. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. Adv. Neural Inf. Process. Syst. 2016, 29.
62. Neill, J.O.; Dutta, S.; Assem, H. Aligned Weight Regularizers for Pruning Pretrained Neural Networks. arXiv 2022,

arXiv:2204.01385.
63. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.
64. Yue, X.; Li, H.; Meng, L. An Ultralightweight Object Detection Network for Empty-Dish Recycling Robots IEEE Trans. Instrum.

Meas. 2023, 72, 1–12.
65. Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; van Baalen, M.; Blankevoort, T. A White Paper on Neural Network

Quantization. arXiv 2021, arXiv:2106.08295.
66. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
67. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828
68. Courbariaux, M.; Bengio, Y.; David, J. BinaryConnect: Training Deep Neural Networks with binary weights during propagations.

In Proceedings of the Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 3123–3131.

69. Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks. arXiv 2016, arXiv:1605.06402.
70. Gysel, P.; Pimentel, J.J.; Motamedi, M.; Ghiasi, S. Ristretto: A Framework for Empirical Study of Resource-Efficient Inference in

Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5784–5789. [CrossRef]
71. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks. In Proceedings of the Advances

in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona,
Spain, 5–10 December 2016; pp. 4107–4115.

72. Lin, X.; Zhao, C.; Pan, W. Towards Accurate Binary Convolutional Neural Network. In Proceedings of the Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA,
4–9 December 2017; pp. 345–353.

http://dx.doi.org/10.1007/s10489-022-03508-1
http://dx.doi.org/10.1145/3005348
http://dx.doi.org/10.1007/s10489-020-01968-x
http://dx.doi.org/10.1007/s11042-020-09373-9
http://dx.doi.org/10.1109/TNNLS.2018.2808319

Computers 2023, 12, 60 19 of 22

73. Lin, Z.; Courbariaux, M.; Memisevic, R.; Bengio, Y. Neural Networks with Few Multiplications. In Proceedings of the 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

74. Ni, R.; Chu, H.; Castañeda, O.; Chiang, P.; Studer, C.; Goldstein, T. WrapNet: Neural Net Inference with Ultra-Low-Resolution
Arithmetic. arXiv 2020, arXiv:2007.13242.

75. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural
Networks. In Proceedings of the Computer Vision—ECCV 2016—14th European Conference, Amsterdam, The Netherlands,
11–14 October 2016; Volume 9908, pp. 525–542.

76. Tailor, S.A.; Fernández-Marqués, J.; Lane, N.D. Degree-Quant: Quantization-Aware Training for Graph Neural Networks. arXiv
2020, arXiv:2008.05000.

77. Cai, Y.; Yao, Z.; Dong, Z.; Gholami, A.; Mahoney, M.W.; Keutzer, K. ZeroQ: A Novel Zero Shot Quantization Framework. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
13–19 June 2020; pp. 13166–13175.

78. Fang, J.; Shafiee, A.; Abdel-Aziz, H.; Thorsley, D.; Georgiadis, G.; Hassoun, J. Near-Lossless Post-Training Quantization of Deep
Neural Networks via a Piecewise Linear Approximation. arXiv 2020, arXiv:2002.00104.

79. Fang, J.; Shafiee, A.; Abdel-Aziz, H.; Thorsley, D.; Georgiadis, G.; Hassoun, J. Post-training Piecewise Linear Quantization for
Deep Neural Networks. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Volume 12347,
pp. 69–86.

80. Garg, S.; Jain, A.; Lou, J.; Nahmias, M.A. Confounding Tradeoffs for Neural Network Quantization. arXiv 2021, arXiv:2102.06366.
81. Garg, S.; Lou, J.; Jain, A.; Nahmias, M.A. Dynamic Precision Analog Computing for Neural Networks. arXiv 2021,

arXiv:2102.06365.
82. Lee, J.H.; Ha, S.; Choi, S.; Lee, W.; Lee, S. Quantization for Rapid Deployment of Deep Neural Networks. arXiv 2018,

arXiv:1810.05488.
83. Li, Y.; Gong, R.; Tan, X.; Yang, Y.; Hu, P.; Zhang, Q.; Yu, F.; Wang, W.; Gu, S. BRECQ: Pushing the Limit of Post-Training

Quantization by Block Reconstruction. In Proceedings of the 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, 3–7 May 2021.

84. Naumov, M.; Diril, U.; Park, J.; Ray, B.; Jablonski, J.; Tulloch, A. On Periodic Functions as Regularizers for Quantization of Neural
Networks. arXiv 2018, arXiv:1811.09862.

85. Shomron, G.; Gabbay, F.; Kurzum, S.; Weiser, U.C. Post-Training Sparsity-Aware Quantization. In Proceedings of the Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
6–14 December 2021; pp. 17737–17748.

86. Banner, R.; Nahshan, Y.; Soudry, D. Post training 4-bit quantization of convolutional networks for rapid-deployment. In
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 7948–7956.

87. Finkelstein, A.; Almog, U.; Grobman, M. Fighting Quantization Bias with Bias. arXiv 2019, arXiv:1906.03193.
88. Meller, E.; Finkelstein, A.; Almog, U.; Grobman, M. Same, Same But Different: Recovering Neural Network Quantization Error

Through Weight Factorization. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long
Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 4486–4495.

89. Nagel, M.; van Baalen, M.; Blankevoort, T.; Welling, M. Data-Free Quantization Through Weight Equalization and Bias Correction.
In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, 27
October–2 November 2019; pp. 1325–1334.

90. Choukroun, Y.; Kravchik, E.; Yang, F.; Kisilev, P. Low-bit Quantization of Neural Networks for Efficient Inference. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, ICCV Workshops 2019, Seoul, Republic of
Korea, 27–28 October 2019; pp. 3009–3018.

91. Zhao, R.; Hu, Y.; Dotzel, J.; Sa, C.D.; Zhang, Z. Improving Neural Network Quantization without Retraining using Outlier
Channel Splitting. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA,
9–15 June 2019; Volume 97, pp. 7543–7552.

92. Nagel, M.; Amjad, R.A.; van Baalen, M.; Louizos, C.; Blankevoort, T. Up or Down? Adaptive Rounding for Post-Training
Quantization. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, Vienna, Austria, 13–18 July
2020; Volume 119, pp. 7197–7206.

93. Hubara, I.; Nahshan, Y.; Hanani, Y.; Banner, R.; Soudry, D. Improving Post Training Neural Quantization: Layer-wise Calibration
and Integer Programming. arXiv 2020, arXiv:2006.10518.

94. Li, H.; Wang, Z.; Yue, X.; Wang, W.; Tomiyama, H.; Meng, L. An architecture-level analysis on deep learning models for
low-impact computations. Artif. Intell. Rev. 2022, 55, 1–40. [CrossRef]

95. Lin, S.; Ji, R.; Chen, C.; Tao, D.; Luo, J. Holistic CNN Compression via Low-Rank Decomposition with Knowledge Transfer. IEEE
Trans. Pattern Anal. Mach. Intell. 2019, 41, 2889–2905. [CrossRef]

96. Rigamonti, R.; Sironi, A.; Lepetit, V.; Fua, P. Learning Separable Filters. In Proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2754–2761.

http://dx.doi.org/10.1007/s10462-022-10221-5
http://dx.doi.org/10.1109/TPAMI.2018.2873305

Computers 2023, 12, 60 20 of 22

97. Denton, E.L.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting Linear Structure Within Convolutional Networks for
Efficient Evaluation. In Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; pp. 1269–1277.

98. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank Expansions. In
Proceedings of the British Machine Vision Conference, BMVC 2014, Nottingham, UK, 1–5 September 2014.

99. Lebedev, V.; Ganin, Y.; Rakhuba, M.; Oseledets, I.V.; Lempitsky, V.S. Speeding-up Convolutional Neural Networks Using
Fine-tuned CP-Decomposition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, 7–9 May 2015.

100. Tai, C.; Xiao, T.; Wang, X.; E, W. Convolutional neural networks with low-rank regularization. In Proceedings of the 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

101. Yu, X.; Liu, T.; Wang, X.; Tao, D. On Compressing Deep Models by Low Rank and Sparse Decomposition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 67–76.

102. Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.; de Freitas, N. Predicting Parameters in Deep Learning. In Proceedings of the
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems,
Lake Tahoe, NV, USA, 5–8 December 2013; pp. 2148–2156.

103. Sainath, T.N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; Ramabhadran, B. Low-rank matrix factorization for Deep Neural Network
training with high-dimensional output targets. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, Vancouver, BC, Canada, 26–31 May 2013; pp. 6655–6659.

104. Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; Feris, R.S. Fully-Adaptive Feature Sharing in Multi-Task Networks with
Applications in Person Attribute Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 1131–1140.

105. Swaminathan, S.; Garg, D.; Kannan, R.; Andrès, F. Sparse low rank factorization for deep neural network compression.
Neurocomputing 2020, 398, 185–196. [CrossRef]

106. Guo, G.; Han, L.; Han, J.; Zhang, D. Pixel Distillation: A New Knowledge Distillation Scheme for Low-Resolution Image
Recognition. arXiv 2021, arXiv:2112.09532.

107. Qin, D.; Bu, J.; Liu, Z.; Shen, X.; Zhou, S.; Gu, J.; Wang, Z.; Wu, L.; Dai, H. Efficient Medical Image Segmentation Based on
Knowledge Distillation. IEEE Trans. Med Imaging 2021, 40, 3820–3831. [CrossRef] [PubMed]

108. Hinton, G.E.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
109. Bucilă, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 535–541.

110. Ba, J.; Caruana, R. Do Deep Nets Really Need to be Deep? In Proceedings of the Advances in Neural Information Processing
Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27, pp. 2654–2662.

111. Urban, G.; Geras, K.J.; Kahou, S.E.; Aslan, Ö.; Wang, S.; Mohamed, A.; Philipose, M.; Richardson, M.; Caruana, R. Do Deep
Convolutional Nets Really Need to be Deep and Convolutional? In Proceedings of the 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

112. Chen, Z.; Zhang, L.; Cao, Z.; Guo, J. Distilling the Knowledge From Handcrafted Features for Human Activity Recognition. IEEE
Trans. Ind. Inform. 2018, 14, 4334–4342. [CrossRef]

113. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. FitNets: Hints for Thin Deep Nets. In Proceedings of the
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

114. Huang, Z.; Wang, N. Like What You Like: Knowledge Distill via Neuron Selectivity Transfer. arXiv 2017, arXiv:1707.01219.
115. Ahn, S.; Hu, S.X.; Damianou, A.C.; Lawrence, N.D.; Dai, Z. Variational Information Distillation for Knowledge Transfer. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June
2019; pp. 9163–9171.

116. Heo, B.; Lee, M.; Yun, S.; Choi, J.Y. Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons. In
Proceedings of the The Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 3779–3787.

117. Zagoruyko, S.; Komodakis, N. Paying More Attention to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, 24–26 April 2017.

118. Yim, J.; Joo, D.; Bae, J.; Kim, J. A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer
Learning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, 21–26 July 2017; pp. 7130–7138.

119. Lee, S.; Song, B.C. Graph-based Knowledge Distillation by Multi-head Attention Network. In Proceedings of the 30th British
Machine Vision Conference 2019, BMVC 2019, Cardiff, UK, 9–12 September 2019; p. 141.

120. Liu, Y.; Cao, J.; Li, B.; Yuan, C.; Hu, W.; Li, Y.; Duan, Y. Knowledge Distillation via Instance Relationship Graph. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 16–20 June 2019; pp. 7096–7104.

121. Tung, F.; Mori, G. Similarity-Preserving Knowledge Distillation. In Proceedings of the 2019 IEEE/CVF International Conference
on Computer Vision, ICCV 2019, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1365–1374.

http://dx.doi.org/10.1016/j.neucom.2020.02.035
http://dx.doi.org/10.1109/TMI.2021.3098703
http://www.ncbi.nlm.nih.gov/pubmed/34283713
http://dx.doi.org/10.1109/TII.2018.2789925

Computers 2023, 12, 60 21 of 22

122. Yu, L.; Yazici, V.O.; Liu, X.; van de Weijer, J.; Cheng, Y.; Ramisa, A. Learning Metrics From Teachers: Compact Networks for
Image Embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA,
USA, 16–20 June 2019; pp. 2907–2916.

123. Bengio, Y.; Courville, A.C.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

124. Lyu, B.; Li, H.; Tanaka, A.; Meng, L. The early Japanese books reorganization by combining image processing and deep learning.
CAAI Trans. Intell. Technol. 2022, 7, 627–643. [CrossRef]

125. Tian, Y.; Krishnan, D.; Isola, P. Contrastive Representation Distillation. arXiv 2019, arXiv:1910.10699.
126. Lee, S.H.; Kim, D.H.; Song, B.C. Self-supervised Knowledge Distillation Using Singular Value Decomposition. In Proceedings of

the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; Volume 11210, pp.
339–354.

127. Zhang, C.; Peng, Y. Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation
for Video Classification. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, Stockholm, Sweden, 13–19 July 2018; pp. 1135–1141.

128. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. arXiv 2016, arXiv:1602.07360.

129. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

130. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22
June 2018; pp. 6848–6856.

131. Gholami, A.; Kwon, K.; Wu, B.; Tai, Z.; Yue, X.; Jin, P.; Zhao, S.; Keutzer, K. SqueezeNext: Hardware-Aware Neural Network
Design. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 1638–1647.

132. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018.

133. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 122–138.

134. Gao, Y.; Zhuang, J.; Li, K.; Cheng, H.; Guo, X.; Huang, F.; Ji, R.; Sun, X. DisCo: Remedy Self-supervised Learning on Lightweight
Models with Distilled Contrastive Learning. arXiv 2021, arXiv:2104.09124.

135. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA,
USA, 16–20 June 2019; pp. 2820–2828.

136. Huang, G.; Liu, S.; van der Maaten, L.; Weinberger, K.Q. CondenseNet: An Efficient DenseNet Using Learned Group Convolutions.
In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22
June 2018; pp. 2752–2761.

137. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.G.; Hajishirzi, H. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for
Semantic Segmentation. In Proceedings of the Computer Vision—ECCV 2018—15th European Conference, Munich, Germany,
8–14 September 2018; Volume 11214, pp. 561–580.

138. Mehta, S.; Rastegari, M.; Shapiro, L.G.; Hajishirzi, H. ESPNetv2: A Light-Weight, Power Efficient, and General Purpose
Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
Long Beach, CA, USA, 16–20 June 2019; pp. 9190–9200.

139. Gao, H.; Wang, Z.; Ji, S. ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2570–2581. [CrossRef] [PubMed]

140. Zhang, T.; Qi, G.; Xiao, B.; Wang, J. Interleaved Group Convolutions. In Proceedings of the IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 4383–4392.

141. Xie, G.; Wang, J.; Zhang, T.; Lai, J.; Hong, R.; Qi, G. Interleaved Structured Sparse Convolutional Neural Networks. In Proceedings
of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8847–8856.

142. Sun, K.; Li, M.; Liu, D.; Wang, J. IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks. In
Proceedings of the British Machine Vision Conference 2018, BMVC Newcastle, UK, 3–6 September 2018; p. 101.

143. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, Long Beach, CA, USA, 16–20 June 2019; pp. 10734–10742.

144. Wan, A.; Dai, X.; Zhang, P.; He, Z.; Tian, Y.; Xie, S.; Wu, B.; Yu, M.; Xu, T.; Chen, K.; et al. FBNetV2: Differentiable Neural
Architecture Search for Spatial and Channel Dimensions. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020; pp. 12962–12971.

http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1049/cit2.12104
http://dx.doi.org/10.1109/TPAMI.2020.2975796
http://www.ncbi.nlm.nih.gov/pubmed/32091991

Computers 2023, 12, 60 22 of 22

145. Dai, X.; Wan, A.; Zhang, P.; Wu, B.; He, Z.; Wei, Z.; Chen, K.; Tian, Y.; Yu, M.; Vajda, P.; et al. FBNetV3: Joint Architecture-Recipe
Search Using Predictor Pretraining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2021, Nashville, TN, USA, 19–25 June 2021; pp. 16276–16285.

146. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, ICML, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114.

147. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586.

148. Ma, N.; Zhang, X.; Huang, J.; Sun, J. WeightNet: Revisiting the Design Space of Weight Networks. In Proceedings of the
Computer Vision—ECCV 2020—16th European Conference, Glasgow, UK, 23–28 August 2020; Volume 12360, pp. 776–792.

149. Yang, B.; Bender, G.; Le, Q.V.; Ngiam, J. CondConv: Conditionally Parameterized Convolutions for Efficient Inference. In
Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 1305–1316.

150. Li, Y.; Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Yuan, L.; Liu, Z.; Zhang, L.; Vasconcelos, N. MicroNet: Improving Image Recognition
With Extremely Low FLOPs. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal,
QC, Canada, 10–17 October 2021; pp. 468–477.

151. Radosavovic, I.; Kosaraju, R.P.; Girshick, R.B.; He, K.; Dollár, P. Designing Network Design Spaces. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 10425–10433.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Contributions of This Paper
	Organization of This Paper

	Model Pruning
	Structured Pruning
	Unstructured Pruning

	Parameter Quantization
	Quantization-Aware Training
	Post-Training Quantization

	Low-Rank Decomposition
	Knowledge Distillation
	Response-Based Knowledge
	Feature-Based Knowledge
	Relation-Based Knowledge

	Lightweight Model Design
	Discussion
	Conclusions and Future Work
	References

