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Abstract: Parkinson’s disease (PD) is a serious movement disorder that may eventually progress
to mild cognitive dysfunction (MCI) and dementia. According to the Parkinson’s foundation, one
million Americans were diagnosed with PD and almost 10 million individuals suffer from the
disease worldwide. An early and precise clinical diagnosis of PD will ensure an early initiation of
effective therapeutic treatments, which will potentially slow down the progression of the disease and
improve the quality of life for patients and their caregivers. Machine and deep learning are promising
technologies that may assist and support clinicians in providing an objective and reliable diagnosis of
the disease based upon significant and unique features identified from relevant medical data. In this
paper, the author provides a comprehensive review of the artificial intelligence techniques that were
recently proposed during the period from 2016 to 2022 for the screening and staging of PD as well as
the identification of the biomarkers of the disease based on Electroencephalography (EEG), Magnetic
Resonance Imaging (MRI), speech tests, handwriting exams, and sensory data. In addition, the author
highlights the current and future trends for PD diagnosis based machine and deep learning and
discusses the limitations, challenges, potential future solutions, and recommendations for a reliable
application of machine and deep learning for PD detection and screening.

Keywords: machine and deep learning; artificial neural networks; convolutional neural networks;
Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminergic
neurons (i.e., neurotransmitters essential for movement) in the substantia nigra region of
the brain [1]. People with PD may experience several symptoms including bradykinesia
(i.e., slowness of movement), dysarthria (i.e., speech difficulty), anxiety, depression, sleep
behavior disorders, and cognitive impairment. By the time the symptoms arise, 60% to 80%
of the dopamine-producing cells in the substantia nigra have been depleted [1]. Therefore,
an early diagnosis of PD is critical in order to better assess the disease and eventually
ensure a better quality of life for the patients and their caregivers. PD is evaluated by
medical specialists using the Unified Parkinson’s Disease Rating Scale (UPDRS) [2] which
consists of 42 items in four subscales. It was also shown that the accuracy of the clinical
diagnosis of PD performed by movement disorders experts was limited (i.e., 79.6% during
the initial assessment stage and 83.9% during the follow-up assessment stage) [3].

Machine and deep learning [4–16] approaches have been recently introduced for the
automated detection and classification of PD [17–19] based upon Electroencephalogra-
phy (EEG) [20–32], Magnetic Resonance Imaging (MRI) [33–35], speech patterns [36–41],
handwriting exams, and dynamics, and sensory data [42–56]. Although there are multiple
modalities that have been recently experimented with for the application of deep learning
and the potential detection of Parkinson’s disease, until now, the observation of motor
system abnormalities is the current means of clinical diagnosis despite being subjective
and prone to human error. Further, there are currently no unique or established clinical
biomarkers of the disease or its complications.
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Generally, this study is not meant to be a systemic review. However, it is considered a
technical and focused survey that mainly highlights the current and future trends in the
area of machine and deep learning in PD diagnosis, staging, and biomarkers detection
within the period from 2016 to 2022 [20–56] as well as the challenges, limitations, and
solutions to improve the generalizability, reliability, and scope of these techniques. The
remainder of this paper is organized as follows. Section 2 presents an overview on the
standard machine and deep learning approaches followed with a literature review of the
aforementioned techniques in the area of PD diagnosis, screening, staging, and biomarker
identification in Section 3. A discussion of the current trends and limitations in the area of
PD diagnosis based machine and deep learning is provided in Section 4. Section 5 presents
a brief overview on the future trends and potential solutions. Finally, the summary and
conclusions are provided in Section 6.

2. Machine and Deep Learning

Machine and deep learning methods aim at producing complex mathematical models
that are capable of extracting unique features from photographs or instrumentation data
and further classify, segment, reconstruct, or detect targets based on the identified features.
These models have proven to be very promising and can potentially outperform human
graders. Machine and deep learning techniques are generally classified into supervised
and unsupervised techniques. Supervised techniques require human supervision during
the training process of the models via providing adequate labelled data. Examples of
supervised learning are support vector machine (SVM) [4], decision tree [5], artificial neural
networks (ANNs) [6], convolutional neural networks (CNNs) [7], and recurrent neural
networks (RNNs) [12].

On the other hand, unsupervised methods aim at clustering data into groups or
creating association rules that better describe the underlying data structures without the
need of expert-level labels during the training process of the models. Examples include
K-Means clustering [13], autoencoders [14], deep belief networks [15], and self-organizing
maps [16]. ANNs, CNNs, RNNs, and autoencoders are widely used in medical applications.
ANNs were first introduced in 1958. The network, as shown in Figure 1, consists of an
input layer, one or several hidden layers, and an output layer providing a prediction [6].
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ANNs are used for classifying or analyzing one-dimensional signals such as speech or
EEG signals. The nodes of the network are fully connected and the connections between
the nodes are strengthened or weakened using weights updated via the backpropagation
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algorithm. CNNs are other forms of neural networks that are useful for handling two-
dimensional as well as multi-dimensional signals such as digital images and videos. The
main advantage of CNNs over ANNs is that CNNs are scalable where the number of
learning parameters is independent on the input data size. As shown in Figure 2, CNNs
consist mainly of convolutional layers that extract low- or high-level features from different
regions of the image. Pooling layers are used to reduce the dimensionality of the extracted
features by the convolutional layers and hence reduce the computational complexity of the
network. Fully connected layers are deployed at the end of the network for the purpose
of classifying the input based on the features generated by the convolutional and pooling
layers.
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LeNet was the first successful CNN introduced by LeCun et al. in 1989 to classify
and identify handwritten numbers in 28 × 28 images of the MINIST dataset [7]. LeNet
consists of two convolutional layers, where each is succeeded by a pooling layer and three
fully connected layers. Following the success of the LeNet, AlexNet was introduced in
2012 by Krizhevsky et al. [8] to classify a subset of the ImageNet dataset consisting of
almost 1.2 million images belonging to 1000 different classes at a top-5 error of 15.3%.
AlexNet consists mainly of five convolutional layers and three fully connected layers.
Due to the relatively large size of the network, data augmentation as well as drop out
operations (i.e., dropping or turning off a certain number of neurons in the network during
the training process of the model) were adopted to reduce model overfitting. In 2014,
Google researchers introduced the GoogleNet/Inception network consisting of 22 layers
including convolutional, pooling, and fully connected layers and achieving a top-5 error
of 6.67% in classifying the ImageNet dataset (i.e., 8.63% improvement over the accuracy
achieved by AlexNet with the same dataset) [9].

In the same year, the Visual Geometry Group Network (VGGNet) consisting of 16 con-
volutional layers was introduced and achieved a top-5 error of 7.3% using the same Im-
ageNet dataset [10]. In 2015, the Residual Neural Network (ResNet) with 152 layers was
introduced by He et al. achieving a top-5 error of 3.57% with the ImageNet dataset [11].
This network introduced the concept of skip connections where the output of one layer can
be connected to latter layers of the network bypassing several layers. Due to the relatively
high accuracy of the VGGNet and ResNet networks, the models have been widely adopted
in many medical applications including PD screening and staging where the models that
have been pre-trained on the ImageNet dataset were then fine-tuned on the PD datasets.
This transfer of knowledge from a computer vision application (i.e., ImageNet dataset) to a
medical application is called transfer learning.

RNNs are variations of CNNs and ANNs that are beneficial in analyzing sequential or
time-series data such as EEGs and genomic sequences [12]. RNNs are composed of several
CNN/ANN units where the decision of a certain unit depends on the internal state of a
previous unit offering a “short memory” feature of the data context as shown in Figure 3.
Since exploding or vanishing gradients may occur during the training process of RNNs,
LSTMs were introduced to keep track of long-term dependencies among sequential data
and address the exploding and vanishing gradients dilemma.
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Autoencoders are unsupervised learning techniques consisting of a pair of encoder
and decoder units as shown in Figure 4 [14]. Generally, autoencoders are used to compress
or transform high-dimensional data into low-dimensional signatures.
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Inputs to autoencoders can be one-dimensional data that is partially corrupted with noise
as in de-noising autoencoders or multi-dimensional data as in convolutional autoencoders.

3. Literature Review

In recent studies, several dataset modalities have been exploited by efficient deep
learning methods for the diagnosis of PD, staging of the disease, and the identification
of biomarkers. Figure 5 shows the taxonomy of the related work that has been recently
introduced during the period from 2016 to 2022 [20–56].
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3.1. EEG for PD Detection

Using EEG data to diagnosis and monitor PD has grown in popularity over the last
several years. This modality has gained traction as a non-invasive way to reveal significant
information about the brain. Current literature points to the promising intersection of EEG
with machine and deep learning techniques.

Vanegas et al. proposed three machine learning frameworks to identify the EEG
biomarkers of PD. The first model (i.e., extra tree classifier) achieved a 99.4% Area Under
Curve (AUC) of the Receiver Operative Characteristic (ROC) curve based on the EEG
spectral amplitudes of the posterior occipital area of the brain during visual stimulation
of 29 PD subjects and 30 controls [20]. The other two models (i.e., logistic regression
and decision tree) achieved 94.9% and 86.2% AUC of ROC, respectively. The weights of
the logistic regression along with the decision nodes of the decision tree pinpointed the
frequency bins that have the strongest influence on the differentiation between PD subjects
and controls. It was also found that the most influential frequency bins span from the theta,
alpha, to beta range.

Oh et al. proposed a 13-layer CNN to classify subjects into PD and controls based on
resting-state EEGs acquired from 20 PD subjects and 20 controls [21]. The model achieved
an accuracy of 88.3%, a sensitivity of 84.7%, and a specificity of 92%. In [22], Wagh et al.
proposed an 8-layer graph CNN applied on 8 × 6 feature matrices extracted from 10 s EEG
segments from 1,385 patients with neurological diseases including PD and 208 healthy
subjects. Each feature matrix represents the total power of each of the six wave bands (i.e.,
delta, theta, alpha, lower beta, higher beta and gamma) at eight different spatial channels of
the EEGs. The model achieved an AUC of ROC of 85% in detecting neurological diseases.

In [23], Koch et al. used a random forest model to classify PD subjects into patients
with good or poor cognition. The model was trained and tested on sets of clinical and
automated features extracted from EEG data and related to 20 PD subjects with good
cognition and 20 patients with poor cognition. The model achieved the best AUC of ROC
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of 91% when both the clinical and automated features were provided to the model. Shi et al.
and Lee et al. proposed hybrid CNN–RNN models to detect PD from EEG data [24,25].
In [24], the authors proposed two hybrid models, 2D-CNN-RNN and 3D-CNN-RNN, to
classify subjects into PD patients and controls based on an EEG dataset for 40 PD and 30
healthy individuals with the 3D-CNN–RNN model achieving the best accuracy of 82.89%.
In [25], the proposed hybrid model consisting of a CNN and LSTM was able to classify
subjects into PD and controls at an accuracy of 96.9%. The model was also shown to
learn features closely related to the clinical features of PD such as disease severity and
dopaminergic levels.

Khare et al. used different machine learning methods including the Least Squares
Support Vector Machine (LSSVM) on five different features extracted from the tunable
Q-factor wavelet transform (TQWT) of a resting-state EEG dataset related to 15 PD subjects
and 16 controls in order to discriminate healthy controls (HC) from PD subjects with and
without medications at an accuracy of 96% and 97.7%, respectively [26]. In [27], Khare
et al. have also applied a 10-layer CNN on the smoothed pseudo-Wigner Ville distribution
(SPWVD) transformation of two EEG datasets representing 35 PD subjects and 36 controls
achieving a validation accuracy of 99.9% and 100%, respectively. Loh et al. further applied
a 2D-CNN on the Gabor transform of a resting-state EEG dataset of 15 PD subjects and 16
controls in order to classify subjects into HC and PD with and without medications at an
accuracy of 99.5% [28].

Shaban has also developed a deep learning framework based on three 13-layer ANN
models applied on the Oz, P8, and FC2 channels of a 32-channel resting state EEG dataset for
15 PD subjects and 16 controls [29]. The framework achieved a testing accuracy, sensitivity,
and specificity of 98%, 97%, and 100%, respectively, for distinguishing subjects with PD
from HC when a majority voting scheme was applied on the prediction of the models. In
addition, Shaban et al. have recently used a Wavelet-based CNN approach where a 20-layer
CNN structure was applied directly to the Morlet wavelet transform [30,31] and the second-
order derivative of the wavelet transform [32] of a resting-state EEG time-series with an
accuracy, sensitivity, and specificity of up to 99.9% achieved at CP5 in order to classify
subjects into PD patients or controls. Figure 6 shows an example of the Scalogram for a
resting-state EEG signal captured for a healthy control and PD subject where the horizontal
dimension represents time and the vertical dimension represent scale (i.e., reciprocal of
Fourier frequency).
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As shown in Figure 6, the values of the scalogram for the EEG related to PD exhibits
relatively lower intensities as compared with the health controls’ EEG scalogram especially
at the mid and high scales [30,31]. Table 1 presents a summary of the machine and deep
learning techniques used to exploit the EEG dataset modality for PD along with the objective
and the aim, performance, and limitations of the methods.



Computers 2023, 12, 58 7 of 19

Table 1. A summary of the state-of-the-art machine and deep learning methods applied on the EEG
dataset modality for PD diagnosis and biomarker identification.

Method Main Objective Dataset Machine/Deep
Learning Performance Limitations

Vanegas et al. [20] PD Biomarkers
Identification

EEG (29 PD and
30 Controls)

Extra Tree, Logistic
Regression,
Decision Tree

AUC: 99.4%, 94.9%,
86.2%

Small dataset, need
for visual
stimulation for
subjects to achieve
best results

Oh et al. [21] PD Detection EEG (20 PD and
20 Controls) 13-Layer CNN Accuracy: 88.25%

Small dataset,
limited
performance

Wagh et al. [22]

Detection of
Neurological
Diseases including
PD

EEG (1385
Diseased and
208 Healthy
Subjects)

8-Layer Graph
CNN AUC: 90%

Not specific to PD
detection, dataset
recorded using
different systems
and under
different
conditions

Koch et al. [23] PD Cognition
Level Detection

EEG (20 Good
Cognition and
20 Poor Cognition)

Random Forest AUC: 91%
Small dataset, need
for manual feature
extraction

Shi et al. [24] PD Detection EEG (40 PD and
30 Controls)

Two- and Three-
Dimensional
CNN–RNN

Accuracy: 81%,
83%

Model complexity,
limited
performance

Lee et al. [25] PD Detection EEG (20 PD and
22 Controls) CNN–LSTM Accuracy: 97% Model complexity,

small dataset

Khare et al. [26,27] PD Detection EEG (35 PD and
36 Controls)

Tunable Q-factor
Based LSSVM,
SPWVD-Based
CNN

Accuracy: 97.7%,
99.5%

Model complexity,
small dataset

Loh et al. [28] PD Detection EEG (15 PD and
16 Controls)

Gabor-Transform-
Based 8-Layer
CNN

Accuracy: 99.5% Model complexity,
small dataset

Shaban et al.
[29–32] PD Detection EEG (15 PD and

16 Controls)

13-Layer ANN,
Wavelet-Based
12-Layer CNN

Accuracy: 98%,
99.9%, 99.9%

Model complexity,
small dataset

It is clear from Table 1 that the machine and deep learning methods [26–32] exhibit the
best performance among the-state-of-the-art methods applied on the EEG dataset modality;
however, this is at the expense of the increased computational complexity where a time—
frequency transformation stage precedes the application of machine and deep learning.
Further, another drawback of these methods is related to the small and limited size of the
datasets used in training and testing the models which may restrict their generalizability.

3.2. MRI for PD Identification

MRI data are often used in the diagnosis of neurological diseases. Several researchers
have explored the possibility of using machine and deep learning techniques with MRI to
detect PD which cannot be seen on an MRI by the naked eye.

Zhang et al. proposed a novel approach for screening de novo PD patients at an
accuracy of 76.46% using deep neural networks applied on 102 two-view MRI data: AXI
and SAG data [33]. The two-view data were preprocessed using image augmentation
techniques based on Wasserstein Generative Adversarial Networks (WGANs). Further,
two ResNeXt networks were applied to the two-view data jointly, and the hidden layer
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outputs from the two ResNeXt networks were conjugated in a vector and fed into a Softmax
classification layer. Figure 7 shows two views of the axial susceptibility weighted imaging
(SWI) MRI images for a PD patient (age: 60 years, gender: male).
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Ramirez et al. proposed spatial, spatial variational, and dense variational autoencoder
models to detect de novo PD subjects based on Diffusion Tensor Imaging (DTI) MRI
data for 129 PD subjects and 57 controls [34]. Two clinical features including the mean
diffusivity and the fractional anisotropy were used and the authors hypothesized that the
reconstruction error would be significantly higher for PD subjects with respect to healthy
controls. The spatial autoencoder achieved the best AUC of ROC of 83%.

Prasuhn et al. used a binary Support Vector Machine (bSVM) and Multiple-Kernal
Learning (MKL) to detect PD based on DTI MRI [35]. The approach included the pre-
processing of a DTI MRI dataset related to 162 PD subjects and 57 controls in order to
select clinical diffusion metrics as well as to calculate additional diffusion metrics. The
bSVM was applied to each of the five selected diffusion metrics and the MKL to various
concatenations of the diffusion metrics. The results showed no more than 60% AUC of
ROC and overall, the authors suggested that DTI-based analysis is not useful for correctly
classifying PD patients. Table 2 presents a summary of the MRI-based machine and deep
learning techniques for PD diagnosis and screening.

Table 2. A summary of the-state-of-the-art machine and deep learning methods applied on MRI
dataset modality for PD diagnosis and identification.

Method Main Objective Dataset Machine/Deep
Learning Performance Limitations

Zhang et al. [33] Prodromal PD
Detection 102 AXI/SAG MRI WGAN/ResNeXt Accuracy: 76.5%

Limited
performance,
complexity of
approach

Ramirez et al. [34] De Novo PD
Detection

DTI MRI (129 de
novo PD and
57 Controls)

Convolutional
Autoencoder AUC: 83%

Limited
performance, small
dataset

Prasuhn et al. [35] PD Detection DTI MRI (162 PD
and 70 Controls) bSVM, MKL AUC: 58%, 60% Low performance

It is obvious that all the machine and deep learning methods that have been proposed
to exploit the MRI dataset modality for PD detection exhibit relatively low performance
compared with the EEG-based machine and deep learning techniques [20–32]. Further, the
models have been validated on small MRI datasets limiting their generalizability.
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3.3. Speech as a Modality for PD Screening

Frid et al. developed a 4-layer CNN to classify raw speech related to 43 PD subjects and
9 controls [36]. The proposed model proved to be able to distinguish between various stages
of PD with a high accuracy up to 85%. In [37], Tsanas et al. deployed both support vector
machine and random forest models in order to classify speech signals of 33 PD patients
and 10 controls based on 132 dysphonia measures. A classification accuracy of 99% was
achieved using only 10 dysphonia features to detect PD. However, this method was based
on speech data of patients whose disease was graded based upon a subjective UPDRS.

Rasheed et al. proposed a Back Propagation Algorithm with Variable Adaptive Mo-
mentum (BPVAM) for the detection of de novo PD using vocal data for 23 PD subjects
and 8 controls [38]. The voice data were first preprocessed using the principal component
analysis (PCA) method in order to select the best features for classification. Using the
15 most discriminative features, an accuracy of 97.5% was achieved. However, due to
the use of PCA and BPVAM, the time delay taken to classify speech took almost 7 s on a
CPU workstation.

In [39], Gunduz et al. introduced two deep learning frameworks in order to classify
speech data for 188 PD subjects and 64 controls. In the first framework, different features
extracted from voice data were concatenated before being fed to a 9-layer CNN. For the
second framework, feature sets of speech data were provided in parallel with each set going
through two convolutional layers before entering a merging layer. The merged features
were then classified using a 10-layer CNN consisting of four successive convolutional layers
with each two convolutional layers followed with a max pooling layer, one fully connected
layer, and a final output layer. The first and second frameworks achieved an accuracy of
84.5% and 86.8%, respectively.

In [40], Karabayir et al. used both the Light Gradient Boosting (GB) and the Extreme
GB to detect PD from 256 features of vocal data related to 40 PD subjects and 40 Controls.
Further, the seven most relevant features were determined using feature analysis tech-
niques. The classification accuracy based on the seven most relevant features was almost
82%. In [41], Zhang et al. introduced a machine learning system consisting of a stacked
autoencoder and k-nearest neighbors (KNN) algorithm applied on the time–frequency
features of vocal data. The model achieved an accuracy ranging from 94% to 98% for
detecting PD based on Oxford and Istanbul datasets. Table 3 presents a summary of the
speech test-based machine and deep learning techniques for PD diagnosis and staging.

Table 3. A summary of the state-of-the-art machine and deep learning methods applied on speech
dataset modality for PD diagnosis and staging.

Method Main Objective Dataset Machine/Deep
Learning Performance Limitations

Frid et al. [36] PD Detection and
Staging

Speech data (43 PD
and 9 Controls) 4-Layer CNN Maximum Accuracy:

85% Small dataset

Tsanas et al. [37] PD Detection Tele-monitoring Data
(33 PD, 10 Controls) SVM, Random Forest Accuracy: 99%

Small dataset,
subjective UPDRS
staging

Rasheed et al. [38] De Novo PD
Detection

Voice data (23 PD, 8
Controls) BPVAM Accuracy: 97.5% Small dataset,

classification delay

Gunduz et al. [39] PD Detection Speech data (188 PD,
64 Controls)

9-Layer CNN, 2 Conv
Layer–1 Merge
Layer–10 Layer CNN

Accuracy: 84.5%,
86.8%

Limited performance,
computationally
complex

Karabayir et al. [40] PD Detection Speech data (40 PD,
40 Controls) GB, Extreme GB Accuracy: 82% Limited performance,

small dataset

Zhang et al. [41] PD Diagnosis

Speech Data (Oxford:
23 PD, 8 Controls),
(Istanbul: 20 PD, 20
Controls)

Stacked Autoencoder,
KNN Accuracy: 94–98% Small datasets
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As shown in Table 3, most of the speech data-based machine and deep learning
techniques were used for PD detection with the exception of the method proposed by Frid
et al. [36] for distinguishing the stages of PD. Further, the methods were fully trained and
tested on small datasets with the exception of the dataset of 252 subjects used by Gunduz
et al. [39]. The best performing methods were SVM and random forest used by Tsanas et al.
and the worst performing methods were the GB and Extreme GB introduced by Karabayir
et al. [40].

3.4. Sensory and Handwriting Data for PD Classification

Wearable sensors have become popular for collecting data related to movement disor-
ders such as PD. The following researchers have used this modality to assess or diagnose
PD. Moon et al. used several machine learning methods including ANNs, SVM, KNN,
decision tree, random forest, and gradient boosting to differentiate between essential tremor
(ET) and PD where both diseases have similarities in their clinical characteristics including
movement and gait [42]. The authors used Synthetic Minority Oversampling Technique
(SMOTE) to mitigate the effect of their highly unbalanced dataset. In addition, the Mobility
Lab software was used to automatically compute gait and balance features. Using the
selected features, it was shown that neural networks would be useful for classification but
a larger and more balanced dataset was needed to confirm findings.

In [43], el Maachi et al. proposed a deep learning framework to extract relevant
information in diagnosing PD using gait classification. The first part of the network consists
of 18 parallel 1D-CNNs, each composed of four convolutional layers, two max-pooling
layers and one fully connected layer. The second part of the proposed framework is a fully
connected network that connects the concatenated outputs of the 1D-CNNs to obtain a
final classification. The fully connected network consists of two fully connected layers and
an output layer with one neuron for classifying data into PD and controls or five neurons to
classify the PD data into five different stages. The proposed framework was able to achieve
98.7% accuracy for differentiating PD from controls and an accuracy of 85.3% to predict
the UPDRS severity of subjects. In [44], Zeng et al. proposed to model the gait dynamics
of 93 PD subjects and 73 controls via a Radial Basis Function (RBF) neural network. The
proposed method achieved an overall accuracy of 96.7%.

Muniz et al. proposed the use of the performance of logistic regression, probabilistic
neural network (PNN), and SVM in diagnosing PD when ground reaction force (GRF) was
considered as the input and the effectiveness of PD treatments were compared [45]. The
authors gathered data from 30 healthy controls and 15 PD patients using DBS-STN implants.
Further, the authors observed that DBS-STM alone performed better than medication alone,
with both used together providing the closest to normal gait. Further, SVM provided the
best accuracy in discriminating PD subjects from controls (i.e., 94.6%).

Pfister et al. proposed a CNN to classify PD into three motor states (i.e., ON, OFF,
Dyskinesia) using data collected from 30 patients from wearable sensors [46]. The data
were gathered while the patients did day-to-day activities, and a movement disorder
expert shadowed each patient to create annotations for the dataset (OFF, ON, DYS motor
states). The CNN achieved a three-class accuracy of 0.654. Drotar et al. proposed the
use of feature selection and SVM methods to distinguish between 37 PD patients and 38
controls based on handwriting movements [47]. It was demonstrated that the classification
of in-air trajectories when the hand moves in air from one stroke to another outperforms
the on-surface movements classification where computed accuracies were found to be 84%
and 78%, respectively.

Eskofier et al. experimented with the use of state-of-the-art machine learning methods
and CNN to classify inertial measurement unit data for 10 idiopathic PD patients in order
to detect bradykinesia. The data were acquired using wearable sensors (i.e., accelerometers)
attached to the right and left limbs of the patients [48]. It was shown that a 7-layer CNN
outperformed the machine learning algorithms including SVM and KNN by at least 4.6%
in terms of classification accuracy.
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Ricci et al. used three machine learning frameworks including Naïve Bayes, SVM,
and KNN to detect de novo PD based on wearable sensor data [49]. Data were collected
by having participants perform various tasks while connected to the sensors. To identify
statistically relevant motor features from the data, a t-test was performed to investigate the
differences between PD and HC participants’ motor features. Spearman’s rank correlation
coefficient was then computed to determine the correlation between clinical scores and
the statistical features. A subset of 35 motor features was provided to the three machine
learning methods. The best accuracy of 95% was achieved by the SVM method.

Talitckii et al. used several machine learning approaches including random forest,
logistic regression, SVM, light GBM, and a stacked ensemble model to differentiate PD from
other neurological disorders characterized by motor differences using wearable sensors [50].
The features were provided to the models in two sets: the tremor features alone, and the
tremor and bradykinesia features. The best accuracy of 85% was achieved using both
feature sets with accuracy dropping to 80% when the tremor features alone were used as
an input to the machine learning models.

Pereira et al. created a data set called “HandPD” based on handwriting exams for
74 PD subjects and 18 controls [51]. Approximately 90% of the dataset was used for training
Naive Bayes, Optimum-Path Forest, and SVM while 10% was used for testing the models
in order to classify the subjects into PD or controls. Further, the authors developed a
CNN architecture to classify the “HandPD” dataset into one of two categories (i.e., PD
or Controls) [52] and meta-heuristic optimization techniques were used to fine tune the
hyper-parameters. Classification accuracy was relatively improved (i.e., 90%) compared
with their past work [51]. Moreover, Pereira et al. introduced several CNN architectures
for classifying handwriting dynamics obtained from a smart pen equipped with a series
of sensors for 224 PD patients and 84 controls [53]. The results obtained from the CNN
architectures were compared with the raw data classified by baseline classification methods
and showed to be very promising as the accuracy reached 95%.

In [54], Shaban investigated the use of a fine-tuned pre-trained VGG-19 to distinguish
between PD and controls based on wave and spiral handwriting datasets. The proposed
model achieved an elevated accuracy and sensitivity of over 88% and 86%, respectively.
Figure 8 shows the spiral drawing created by a healthy control and a PD subject.
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It is clear from Figure 8 that the spiral drawing made by a PD subject shows the
motor symptom manifestation of the disease (i.e., tremor, muscle stiffness, and slowness
of movement).

In [55], Naseer et al. proposed a deep learning approach based upon AlexNet deploy-
ing transfer learning, data augmentation, and freeze and fine-tuning to identify PD subjects
based on handwriting data. This approach achieved an accuracy of 98.28% when applied
on the PaHaW dataset collected from 36 PD subjects and 36 controls. In [56], Kamran
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et al. introduced a deep learning framework based upon fine-tuned pre-trained networks
including AlexNet, GoogleNet, VGG-16, VGG-19, ResNet-50, and ResNet-101 along with
the same models trained from scratch in order to classify subjects into controls and patients
with PD. Multiple datasets including PaHaW, HandPD, NewHandPD, and Parkinson’s
drawings were used in this study. Further, multiple data augmentation strategies were used
such as flipping, rotation, illumination, contrast, and thresholding. The highest accuracy of
99.2% was achieved using the fine-tuned AlexNet on three different handwriting datasets.
This represents an enhancement over the state-of-the-art methods.

Table 4 presents a summary of the machine and deep learning techniques used to
exploit the handwriting and sensory data modality for PD diagnosis and staging.

Table 4. A summary of the-state-of-the-art machine and deep learning methods applied on handwrit-
ing and sensory datasets for PD diagnosis and staging.

Method Main Objective Dataset Machine/Deep
Learning Performance Limitations

Moon et al. [42] ET Versus PD
48 Balance and Gait
Features (524 PD,
43 ET)

ANN, SVM, KNN,
Decision Tree,
Random Forest,
Gradient Boosting

Best F-1 Score (ANN):
61%

Low performance,
unbalanced dataset

el Maachi et al. [43] PD Detection and
Staging

Sensory Data (93 PD,
73 Controls)

18 parallel 1D-CNNs,
Fully Connected
Network

Accuracy: 98.7%,
85.3%

Small dataset,
subjective UPDRS
staging

Zeng et al. [44] PD Detection Gait Features (93 PD,
73 Controls)

RBF Neural
Networks Accuracy: 96.4% Small dataset

Muniz et al. [45] PD Detection Gait Features (15 PD,
30 Controls)

Logistic Regression,
PNN, SVM

Maximum Accuracy
(SVM): 94.6% Small dataset

Pfister et al. [46] PD Diagnosis Sensory Data (30 PD) CNN Accuracy: 65.4% Limited performance,
small dataset

Drotar et al. [47] PD Detection
Handwriting
Movements (37 PD,
38 Controls)

SVM
Maximum Accuracy
(In-Air Trajectories):
84%

Limited performance,
small dataset

Eskofier et al. [48] Bradykinesia
Detection Sensory Data (10 PD) SVM, KNN, 7-Layer

CNN
Maximum Accuracy
(CNN): 91% Small dataset

Ricci et al. [49] De Novo PD
Detection

35 Motor Features
(30 De Novo PD,
30 Controls)

Naïve Bayes, SVM,
KNN

Maximum Accuracy
(SVM): 95% Small dataset

Talitckii et al. [50]
PD Versus
Neurological
Disorders

Sensory Data
(56 Patients)

Random Forest,
Logistic Regression,
SVM, Light GBM,
Stacked Ensemble
Model

Maximum Accuracy
(Tremor and
Bradykinesia
Features): 85%

Limited performance,
small dataset

Pereira et al. [51–53] PD Detection

Handwriting Data:
(HandPD: 74 PD,
18 Controls),
Handwriting
Dynamics Data
(224 PD, 84 Controls)

Naive Bayes,
Optimum-Path
Forest, SVM,

Maximum Accuracy
(CNN): 95% Small dataset

Shaban [54] PD Detection
102 Spiral/Wave
Handwriting Data
(55 PD, 55 Controls)

VGG-19 Maximum Accuracy
(Wave Patterns): 88% Small dataset

Naseer et al. [55] PD Detection Handwriting Data
(36 PD, 36 Controls)

AlexNet
(Freeze/Fine-
Tuning)

Accuracy: 98.3%
Small dataset,
complex training
process

Kamran et al. [56] PD Detection

Handwriting Data
(PaHaw: 37 PD,
38 Controls),
(HandPD: 74 PD,
18 Controls),
(NewHandPD: 31 PD,
35 Controls)

AlexNet, GoogleNet,
VGG-16, VGG-19,
ResNet-50,
ResNet-101

Maximum Accuracy
(AlexNet): 99.2%

Model training
complexity



Computers 2023, 12, 58 13 of 19

From Table 4, we observe that almost the majority of the methods use deep learning
techniques directly on sensory or handwriting data. The best performing technique with the
highest accuracy of 99.2% was achieved by Kamran et al. and that may be justified due to
the use of four different datasets and the adoption of various data augmentation techniques
that have improved the convergence and accuracy of the fine-tuned CNN methods.

4. Current Trends and Limitations

In this paper, we have surveyed the state-of-the-art machine and deep learning tech-
niques that have been proposed for PD diagnosis and screening, PD staging and grading,
as well as biomarkers for disease identification.

As shown in Figure 9, it is clear that most of the related work invested in the detection
of PD or classification of subjects into PD and healthy controls. Few works have addressed
the identification of PD biomarkers as well as classification of PD into one of the five stages
which have significant clinical implications and help further support the clinical diagnosis
and progression monitoring of the disease.
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Further, datasets used for the detection and classification of PD have ranged from the
EEG voltage signals to MRI scan images, handwriting images, and speech signals. We have
therefore mapped the related work proposed to the used data type or modality in Figure 10,
the majority of these studies have extensively used either EEG, or motion/sensory data
to screen and diagnose PD. This may show a promising potential benefit for EEG and
handwriting/sensory data to detect PD features and biomarkers, although they have not
been clinically proven for disease diagnosis.
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In addition, the majority of the adopted machine and deep learning techniques pro-
posed in the literature were based on neural networks such as ANNs, CNNs, as well as
typical machine learning methods including SVM and KNN as shown in Figure 11. This
also shows the widespread and superior performance benefits of neural network tech-
nologies compared with traditional feature extraction and classification techniques where
features are automatically extracted without any human intervention.
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Although the state-of-the-art methods [20–56] are considered promising and have the
potential to offer an objective and accurate diagnosis and staging of PD using machine and
deep learning, the aforementioned techniques suffer several limitations as follows:

• The size and availability of Parkinson’s disease datasets are crucial for training gen-
eralized machine and deep learning models with minimal overfitting. EEG, MRI,
handwriting, and speech datasets may include potential features and biomarkers of
the disease. However, most of the aforementioned dataset modalities are limited
in size restricting the generalizability and depth of the machine learning network
required to avoid overfitting and guarantee regularization.

• Further, most of the dataset modalities that have been used for testing deep and
machine learning approaches are not used by clinicians for appropriate clinical diag-
nosis and disease staging. It is known that the observation of the motor symptoms of
the disease, the use of UPDRS scales, and DatScan imaging are the adopted tools to
confirm the diagnosis of PD.

• The task of classifying subjects into PD and healthy controls or classifying PD into
one of the five stages is important and useful to support clinicians and provide an
objective diagnosis based on a huge number of samples that have been graded by a
large pool of experts. However, it is also crucial to visualize, interpret, and explain
the different features captured by the different layers of the machine or deep learning
models. Further, understanding which samples or batches of samples are significant
in the diagnosis and the model classification decision helps in understanding the
nature of the disease. Providing a prediction along with an explanation will be more
convincing to the medical community and provides more confidence in the tools.

• The availability and accuracy of the annotations provided by medical experts based
on different datasets and modalities is an important factor for the successful training
of supervised deep learning models. However, this may not be feasible and cost
inefficient especially for large and diverse datasets.

• Merging and fusing the decisions and predictions created by different deep learning
methods applied on different dataset modalities has promise and may provide further
accurate and sensitive diagnostic recommendations compared with human graders.
Clinicians usually use different diagnostic biomarkers to come up with a medical
opinion. Further, PD is a complex disease that affects different patient activities
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such as sleep, speech, motion, and mood. Therefore, the use of machine or deep
learning techniques on a single modality may not be sufficient to support the clinician’s
diagnosis and may not be medically acceptable and convincing.

• PD is a neurodegenerative disorder where symptoms arise when most of the nerve
cells in the brain are damaged; at this point the use of therapeutic treatments may
not be effective and the quality of life for patients may be severely lowered. Yet,
most of the available online datasets were captured from clinically diagnosed patients
with symptoms, hence the use of the recently proposed works may not be helpful.
The search for new data modalities and tools that may reveal early biomarkers for
the disease will be promising and beneficial. This will require coordination between
artificial intelligence researchers and medical professionals to find and test new models
on prospective dataset types that have been shown to reveal early biomarkers of
the disease.

5. Future Trends

Patients with PD frequently experience sleep disorders, including insomnia, rapid eye
movement (REM) sleep behavior disorder (RBD), and excessive daytime sleepiness [57,58].
In addition, PD is characterized by alterations in sleep architecture, including reductions in
REM sleep [58] which plays a vital role in consolidating procedural memory and motor
skills [59]. Recent studies have shown that both REM and non-REM (NREM) sleep exhibit
unique features in PD and PD with dementia compared to healthy controls (HC), including
lower stability, higher slowing ratio, an increase in spectral power in the δ (1–4 Hz) and θ

(4–8 Hz) bands during REM, as well as lower baseline power in σ waves (12–15 Hz) within
the parietal regions during the NREM sleep stages [60–64]. Since patients with PD have
both cognitive and motor dysfunction, alterations in sleep stages have potential clinical
implications. Mild Cognitive Impairment (MCI), which is a non-motor complication of
PD, can involve visual or spatial dysfunction, executive dysfunction, or other neurological
disorders that may occur with or without memory loss. In addition, cognitive impairment
has been related to disease morbidity, significant burden on caregivers, social and working
impairment, placement at long-term care facilities, and mortality [65]. There are currently
no established biomarkers or effective treatments for cognitive impairment, but earlier
identification of impairment may allow earlier intervention which is urgently needed to
improve the prognosis of the disease. Further, few rigorous studies have been conducted to
address the challenges of identifying cognitive dysfunction biomarkers for PD from sleep
EEGs [61]. However, the use of machine and deep learning for the detection of PD-MCI
or the prediction of the risk of progression to MCI and the identification of the disease
biomarkers in sleep EEGs have not been previously addressed and would support the early
diagnosis of the disease or at least assist clinicians in monitoring the disease progression.

Although the progress in machine and deep learning-based PD diagnosis is promising,
the exploitation of other clinical based modalities including DaTscan and sleep EEGs will
provide more insights on the disease as well as its biomarkers which can be identified
using artificial intelligence techniques including class activation mapping (CAM) [66],
gradient-weighted class activation mapping (Grad-CAM) [67], integrated gradients [68],
and explainable AI through regions (XRAI) [69].

Using innovative data augmentation techniques as well as the use and generation of
synthetic data may reduce the costs related to the acquisition and collection of the medical
data related to PD including speech signals, EEG voltage signals, and sensory data for the
patients, ensuring further privacy and expediting the use and deployment of machine and
deep learning for PD image analysis and applications.

Finally, we believe that machine and deep learning models need to be tested in a
clinical setting. Additionally, AI researchers should seek feedback and scientific opinion
from clinicians regarding the features and patterns identified by the models and their
relevance to the biology of the disease. AI can not only be useful for classification and
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segmentation purposes, but also can provide new knowledge related to PD biomarkers, its
progression risk factors, and therapeutic treatment response and efficacy.

6. Conclusions

In this paper, we have presented the state-of-the-art machine and deep learning
techniques that were proposed during the period from 2016 to 2022. The main focus of this
study was to highlight the main trends, the major machine and deep learning methods
adopted, the PD data modalities used, as well as the objectives and the aims of the state-
of-the-art works. It is clear from this survey that the most widely used machine and
deep learning techniques were neural networks and that is mainly due to their improved
performance (defined by the accuracy or the AUC of the ROC curve) with respect to
other standard machine learning methods as well as their ability to extract features in an
automated fashion. In addition, we have also found that sensory, handwriting, and EEG
data have been the most exploited data modalities for the identification of unique and
discriminative features of PD. Most of the presented studies addressed a binary problem
aiming at the screening and classification of subjects into controls and PD. Few works have
addressed the categorical problem of the staging of PD or the more useful and challenging
problem being sought after by clinicians and scientists which is the identification of the
features and early biomarkers of PD.

We have further presented the limitations of those studies including the limited size of
the datasets used for training and testing the models. This is usually because the number
of recruited subjects in clinical and experimental trials for PD is relatively low. In addition,
the inter-reader variability and the disagreements among clinicians in the diagnosis of
PD may influence the accuracy of the machine and deep learning frameworks. Further,
most of the available dataset modalities have not yet been used for the clinical diagnosis
of the disease or are useful for the early diagnosis of PD as the datasets were usually
collected for patients with confirmed diagnoses when the disease has almost progressed
and the motor symptoms have arisen. It would be beneficial to identify the current clinical
datasets that are currently adopted in and may support the clinical diagnosis of the disease
such as DaTscan or to exploit dataset modalities including sleep EEGs that may assist in a
potential early identification of the biomarkers of PD and its complications including MCI
and dementia.
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