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Abstract: Although traumatic brain injury (TBI) is a global public health issue, not all injuries
necessitate additional hospitalisation. Thinking, memory, attention, personality, and movement can
all be negatively impacted by TBI. However, only a small proportion of nonsevere TBIs necessitate
prolonged observation. Clinicians would benefit from an electroencephalography (EEG)-based
computational intelligence model for outcome prediction by having access to an evidence-based
analysis that would allow them to securely discharge patients who are at minimal risk of TBI-related
mortality. Despite the increasing popularity of EEG-based deep learning research to create predictive
models with breakthrough performance, particularly in epilepsy prediction, its use in clinical decision
making for the diagnosis and prognosis of TBI has not been as widely exploited. Therefore, utilising
60s segments of unprocessed resting-state EEG data as input, we suggest a long short-term memory
(LSTM) network that can distinguish between improved and unimproved outcomes in moderate TBI
patients. Complex feature extraction and selection are avoided in this architecture. The experimental
results show that, with a classification accuracy of 87.50 ± 0.05%, the proposed prognostic model
outperforms three related works. The results suggest that the proposed methodology is an efficient
and reliable strategy to assist clinicians in creating an automated tool for predicting treatment
outcomes from EEG signals.

Keywords: traumatic brain injury; electroencephalography; prognostic outcomes; long short-term
memory

1. Introduction

Traumatic brain injury (TBI) is one of the most common and costly health and so-
cioeconomic problems worldwide. The incidence of TBI is higher than those of complex
diseases such as breast cancer, AIDS, multiple sclerosis, and Parkinson’s disease, such that
TBI is considered the leading cause of mortality and disability in persons under 45 years of
age. In 2019, there were approximately 223,135 TBI-related hospitalizations and 64,362 TBI-
related deaths [1]. Previous studies from the United States [2] and New Zealand [3] estimate
approximately 500–800 new cases of TBI per 100,000 people per year. However, there are
few estimates of the burden of TBI in low- and middle-income countries (LMICs) [4]. Out-
comes for patients who sustain a TBI are highly variable, making it difficult for providers
to accurately predict their prognosis and long-term quality of life. The high incidence of
TBI and uncertain outcomes in these cases highlight the need to develop better tools to
support difficult decision making.
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In clinical practice, TBI is classified as mild, moderate, or severe based on clinical
guidelines. The Glasgow Coma Scales (GCS) is a standard neurologic scoring system used
to assess the severity of patients with severe injuries admitted to the emergency depart-
ment [5,6] The GCS is a 15-point behavioral observation scale that defines severity based on
eye, verbal, and motor responses [7]. Individuals with a score of 3–8 are classified as severe,
9–13 as moderate, and those between 14 and 15 as mild TBI [8,9]. Mild TBIs are defined
as temporary changes in consciousness resulting from an external force applied to the
skull and account for more than 70% of reported brain injuries, including concussions [10].
In most people, symptoms resolve completely within 3 months of a mild TBI, despite
evidence of chronic pathologic changes in brain tissue [10]. Unlike mild traumatic brain
injury, severe TBI is associated with persistent loss of consciousness (>24 h) and a mor-
tality rate of 24%, with 43% of surviving patients having chronic physical and emotional
disabilities [11,12].

Previous studies of moderate TBI have found that about 60% of patients had an in-
tracranial head injury on admission as detected by computed tomography (CT) [13,14],
20–84% were admitted to an intensive care unit (ICU) [13,15], and about 15% under-
went surgery for a mass lesion or skull fracture [14], and the mortality rate was low
(0.9–8%) [14,15]. Moreover, the vast majority of patients were only moderately or not at all
disabled, indicating independence in daily life (74–85%) [15,16], and many even recovered
well, indicating no disability (55–75%) [13–15]. Although the prognosis is better in moder-
ate than in severe TBI, early and accurate prognosis using a predictive model is critical so
that patients’ families can make an informed decision about whether to discontinue life
support or continue supportive care.

Despite advances in prognostication management of TBI (i.e., inpatient rehabilitation
services), about 50% of people with moderate TBI will either experience further deteriora-
tion in their daily lives or die within five years after their injury. According to the TBI Model
System (TBIMS) National Database [17], 22% of TBI patients died, 30% deteriorated, 22%
remained in the same condition, and only 26% of survivors experienced full neurological
recovery. Even years after recovery, hardly any formerly employed patients return to
full-time employment. Despite regaining full consciousness, patients with moderate TBI
continue to have difficulty reintegrating into society [18]. In Malaysia, TBI due to road traf-
fic accidents is the fourth leading cause of death among young people (15–40 years; 16.8%)
and children (0–14 years; 3.0%) [19], and the sixth leading cause (7.20%) of hospitalization
in Malaysian government and private hospitals, due to injuries and other consequences of
external causes [20].

TBI is a disruption of brain function caused by a blow to the head [21]. TBI neg-
atively leads to a broad spectrum of structural and functional brain injuries, especially
electrophysiologic changes, because of both missing and interrupted brain circuits and
alterations to surviving structures. The prediction of outcome for patients with TBI is a
complicated but important task during early hospitalization. Some clinical predictors have
been proposed and predictive models have been developed [22–25]. Most studies have
used traditional regression techniques to determine these characteristics [26,27]. Severity,
diagnosis, and outcome level, as measured by the Glasgow Outcome Scale (GOS) [28], were
defined as the most relevant clinical indicators for predicting the outcome of TBI, despite a
poor implementation in clinical practice. In this context, great efforts have been made in
recent years to implement and develop artificial intelligence tools. Clinicians would benefit
significantly from an electroencephalography (EEG)-based artificial intelligence model for
outcome prediction, as this would give them access to evidence-based analysis that would
allow them to safely discharge patients who are at minimal risk of TBI-related mortality.

The machine learning (ML) technique, particularly supervised ML, has also been
used to predict clinical outcomes after TBI. According to research by Haveman et al. [29],
random forest (RF), which uses clinical variables and quantitative EEG predictors to predict
moderate to severe TBI outcomes, has an area under the receiver operating characteristic
curve (AUC) of 0.94–0.81. van den Brink et al. [30] used linear discriminant analysis (LDA)
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to predict each patient’s chances of recovery, based on spectral amplitude and connectivity
features, with an accuracy of 75%. In our previous work [31,32], a prediction model for the
recovery of TBI patients was developed based on the RUSBoost model to cope with the
highly imbalanced EEG dataset. The RUSBoost model performed best in discriminating
between two outcomes, with an AUC of 0.97–0.95. Noor and Ibrahim [33], in a review,
supported the use of quantitative EEG predictors and ML models to predict the recovery
outcomes of moderate to severe TBI patient groups. The review in [33] showed that the
performance of traditional ML algorithms, including support vector machine (SVM), RF,
and boosting algorithms (i.e., Adaboost, RUSBoost), when combined with signal processing
techniques (short time Fourier transform (STFT), power spectral density (PSD), coherence,
and connectivity), requires sufficient hand-crafted features to train ML classifiers to achieve
satisfactory classification accuracy.

Recent developments in ML and the availability of huge EEG datasets have driven
the development of deep learning architectures, especially for the analysis of EEG signals.
The robust and reliable classification of EEG signals is a critical step in making the use
of EEG more widely applicable and less dependent on experienced experts. EEG is an
electrophysiological monitoring method that records the electrical activity of the brain. The
method is usually noninvasive, as the electrodes are placed on the patient’s scalp; it has a
high temporal range, and it is relatively inexpensive [21]. Because of these advantages, EEG
has become widely used in neuroscience, including brain–computer interface (BCI) [34],
sleep analysis [35–37], and seizure detection [38–41]. As pointed out in [42], despite the
exponential increase in the number of publications using EEG and DL, EEG is not as widely
used for TBI diagnosis and prognosis.

To address this gap, we propose a binary EEG-based deep learning approach (i.e., long
short-term memory (LSTM)) that can discriminate between improved and unimproved
outcomes in patients with moderate TBI by using raw resting EEG data as input to the
model. Our research aims to develop an easy-to-use deep learning prognostic model
(LSTM-based network) as a tool for the early prediction of outcomes in moderate TBI,
supporting clinical decision making (clinical care of patients). The existing knowledge
gap is a significant barrier to improving clinical care for patients with moderate TBI. To
our knowledge, the potential of deep learning LSTM-based EEG networks specifically for
predicting outcomes in moderate TBI has not been explored. Despite the high temporal
resolution of EEG, modern techniques ignore the temporal dependence of the signal. The
LSTM network [43] was developed in order to solve the problem of long-term dependence
of the recurrent neural network (RNN), which is primarily used to predict time series data,
and is therefore perfectly suited to discovering the temporal aspects of EEG. To evaluate
the performance of the proposed prediction model, it is compared with three other similar
works on predicting TBI outcomes from EEG signals.

2. Methodology
2.1. Participants

EEG recordings for this study were obtained from 14 male nonsurgical moderate TBI
patients recruited from Universiti Sains Malaysia Hospital in Kubang Kerian, Kelantan.
The study procedure was approved by the Universiti Sains Malaysia Human Research
Ethics Committee under approval number USM/JEPeM/1511045. Inclusion criteria were
patients aged 18 to 65 years with moderate TBI (Glasgow Coma Scale (GCS) of 9 to 13) due
to traffic accidents [44]. The initial impact involved the left or right brain, as confirmed
by CT scan in the emergency department. Exclusion criteria included injuries resulting in
severe scalp and skull abnormalities, bone fractures, and illicit drug use that could interfere
with research compliance. Each participant signed an informed consent form before the
start of the experiment. The consent form briefly described the purpose of the project, and
side effects and inconveniences associated with the procedures.
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2.2. Patients’ Outcome Assessment

Clinicians assessed patient recovery by telephone call between 4 weeks, 6 months, and
1 year after injury. The GOS [45] was used as the primary outcome, and the results were
divided into good (GOS score of 5) and poor outcomes (GOS score of 1–4) approximately
12 months after injury. In this study, an expert (i.e., a neurosurgeon) from our team
evaluated the neurological outcomes of patients with moderate TBI using the GOS scores
(see Table 1) corresponding to the specific degree of improvement of each patient.

Table 1. Description of GOS score for outcome judgment.

GOS Score Functional Meaning Outcome

1 Death Poor

2 Persistent vegetative state; patient unresponsive and speechless for
weeks or months Poor

3 Severe disability; patients dependent on daily support Poor
4 Moderate disability; patients independent in daily life Poor

5 Good recovery; resumption of everyday life with minor neurological
and physiological deficits Good

Note: Details in Jennett et al. [46] and Jennett and Bond [47].

2.3. EEG Data Acquisition

Stimulus-free EEG was performed entirely in the EEG laboratory. The patients were
instructed to relax in a quiet, semidark environment, sit comfortably, and close their
eyes while their resting-state EEG data were recorded for approximately 5 min and 50 s.
Real-time EEG data were acquired throughout using a 64-channel EEG cap (ANT Neuro,
Enschede, The Netherlands). All 64 gel sensors were attached to the EEG head helmet,
referenced to the connected mastoids (M1–M2), and grounded at 10% anterior Fz (see
Figure 1). Impedance was kept below 10 kΩ. A SynAmps programmable direct current
(DC) broadband amplifier with gain up to 2500 and accuracy of 0.033/bit was used to
record brain signals at 55 millivolt (mV) at DC 70 Hz. The EEG signals were digitized
to 1 kHz using 16-bit AC converters (AC)–DC. The CPz channel was configured as an
electrooculography (EOG) channel to capture gaze and blink artifacts. Therefore, only
63 EEG channels were used to record brain signals and served as input data for our
prediction model.

2.4. EEG Dataset Preparation

Continuous EEG data were collected from patients with moderate TBI who underwent
follow-up. The first measurement (4 to 10 weeks after the accident) provided eighteen
moderate TBI data. The second measurement (i.e., six months after the accident) provided
eleven EEG data. The third measurement (one year after the accident) contributed to three
EEG data points. Patients who did not participate in the follow-up EEG measurements
within the specified time period were disqualified. The raw, unfiltered EEG data were
exported for future studies. In total, 32 EEG recordings were obtained from the 14 patients.
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Figure 1. Topographical placement of 64 gel-based electrodes using the international system
10–20 configuration.

2.5. EEG Data Processing and Input EEG Signal Representation

To eliminate transient artifacts due to contamination at the beginning of data collection,
the first 60 s of data points were removed. It was found that patients were less comfortable
during the initial phase of recording. The remaining data were neither re-referenced nor
further filtered or processed to remove artifacts due to line noise, eye blinks and movements,
or electromyogram (EMG) contamination. Resting-state EEG data were acquired in raw
format and converted to Matlab (.mat) format for further processing and analysis using
EEGLAB [48]. The EEG signals were downsampled from 1000 Hz to 100 Hz using the
EEGLAB function pop_resample() (using the integer factor D of 10), because processing
signals with excessive temporal resolution resulted in an additional and perhaps not useful
computational burden [49–51]. Therefore, the following 60-second sets (60 one-second
segments) of synchronous segment were extracted from each of the 63-channel time series
comprising each subject’s raw resting-state EEG dataset. The input signals were arranged
as a matrix M (i.e., channel amplitude versus time) [52], as shown in Equation (1):

M =


m1

1 m2
1 · · · mk

1
...

...
. . .

...
m1

j m2
j · · · mk

j

 (1)

where k is the number of data samples and j is the number of EEG channels. In this
experiment, j = 63 and k = (60 s × 100 data points/s = 6000 data points). Therefore, a
63 × 6000 matrix represented one EEG of each subject. After the data processing phase,
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each column of the matrix (i.e., 63 × 6000) was fed as an input feature to the LSTM module,
which consisted of LSTM cells as shown in Figure 2.

Figure 2. LSTM cell structure.

2.6. Long Short-Term Memory

LSTM [43] is a variation of recurrent neural network (RNN) that overcomes the
difficulties of gradient vanishing and exploding. An RNN uses past knowledge to predict
output and captures a temporal correlation between the previous state and the current
input during training. Due to its short memory, an RNN cannot recover past information
for long time series. During backpropagation, the gradient is reduced to such a minimal
value that no parameters are appreciably changed, so that RNNs cannot learn from the
data. Details on RNN networks can be found in Salehinejad et al. [53]. In the present work,
LSTM networks were used to address the vanishing gradient problem and allow our model
to learn long sequences. The distinguishing feature of LSTMs that makes them a better
choice than RNNs is their internal architecture, which is shown in Figure 2.

An LSTM cell consists of four gates: the forget gate ft, the input gate ut, the cell
candidate gate ct, and the output gate ot. The LSTM essentially consists of four stages. The
first stage is the forget gate layer, represented by Equation (2). In this stage, the sigmoid
layer decides which information to forget.

ft = σ
(

W f [at−1, xt] + b f

)
(2)

where xt is the input vector of the LSTM unit, at−1 is the previously hidden state vector
that can be considered as the output vector of the previous LSTM unit, W f denotes the
weight matrices, b f denotes the bias vector parameters for the forget layer that need to be
optimized during model training, and σ is a sigmoid function that returns values (y-axis)
between 0 and 1. Next, the LSTM unit chooses between 0 and 1 to forget.

The second stage is the input gate of Equation (3) and the tanh layer of Equation (4).
The sigmoid layer selects which values to update, and the tanh layer generates a new
candidate value for c̃t, a cell input activation vector. Finally, the values from the two layers
are combined and appended to the cell state. The sigmoid function is used as the activation
function for gate input, and the hyperbolic tanh function is used as the activation function
for block input and output.

ut = σ(Wi[at−1, xt] + bi) (3)

c̃t = tanh(Wc[at−1, xt] + bc) (4)
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The third step is to create a new cell state by updating the previous state, as shown in
Equation (5). First, the information selected for deletion by the forget gate is discarded, and
then the information to be added is appended.

ct = ( ft × ct−1) + (ut × c̃t) (5)

The final step is to decide which value to output, using Equation (6) with the output
gate layer. The output gate layer determines which part of the cell state should be exported
via sigmoid for the input data, and then the generated value is multiplied by the cell state
via the tanh layer, as indicated in Equation (7).

ot = σ(Wo[at−1, xt] + bo) (6)

at = ot tanh(ct) (7)

The architecture of the LSTM network used in this work is shown in Figure 3. The
proposed LSTM network was fed with a 63 × 6000 matrix representing 60 s of raw EEG
recording (i.e., 1 s recording = 100 data points). For each time step (i.e., 1 s), 100 data points
were passed to the LSTM.

Figure 3. Moderate TBI outcome prediction architecture.

The LSTM was trained for 60 time steps (i.e., 60 s of EEG recordings). The LSTM
was set to contain 243 hidden units followed by a dropout layer, a fully connected layer,
and a classification layer, namely SoftMax, to classify the 2 classes of output as shown in
Figure 3. The number of neurons in the SoftMax layer represented the number of classes
(i.e., improved vs. unimproved). In addition, the model was regularized by applying a
dropout layer to avoid overfitting the model by a factor of 50% [54].

Five hyperparameters were kept constant throughout the training of the proposed
LSTM architecture. The parameters and their values are listed in Table 2. The learning rate
was set to 0.001 followed by a minibatch size of 3, L2 regularization was set to 0.0005 to
prevent overfitting, and there were 30 training repetitions per epoch. The training iteration
was set to a modest value to avoid overfitting the network with a higher training iteration.
On the other hand, if each iteration was too short, there might not be enough training
repetitions to properly feed the network with training data. Adaptive Moment Estimation
(Adam) was used as an optimizer because it was appropriately suited for a learning rate of
0.001 for better accuracy. The NVIDIA GeForce GTX 1060 6GB GPU was used to train the
LSTM model.
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Table 2. Network training parameters and values.

Parameter Setting

Learning rate 0.001
Minibatch size 3
L2 regularization 0.0005
Optimizer Adam
Training repetitions per epoch 30

2.7. Data Augmentation Approach for Imbalanced Dataset

A data augmentation technique was applied to the training set to minimize overfit-
ting [55]. Our dataset included EEGs from eight patients with unimproved and 24 patients
with improved group outcomes. One underrepresented class was a positive class (i.e.,
unimproved) and was of primary interest from a learning standpoint. The other class,
which was abundant, was designated a negative class (i.e., improved), and these two
groups constituted the entire dataset. The ratio between the two classes is referred to
as the imbalanced ratio (IR). The dataset had an imbalanced ratio of 1:3 (unimproved:
improved outcomes). The performance of the classifier would be affected by the class
imbalance. During training, learning algorithms that are insensitive to the class imbalance
could classify all samples into the majority class to minimize the error rate [56].

To overcome the problem of the unbalanced dataset, a data augmentation method
(a random oversampling method) was performed, in which the positive class (unimproved)
was randomly replicated to match the negative class (improved). Finally, the amounts of
unimproved and improved data in the training set were balanced. Other oversampling
methods, such as the synthetic minority oversampling technique (SMOTE) and the adap-
tive synthetic approach (ADASYN) [57,58], work by generating synthetic samples of the
majority class instead of oversampling with replacement. Both of these algorithms generate
artificial instances based on features rather than the data space [59]. In the case of EEG data,
both oversampling methods are best suited for EEG data features [60]. Since the actual EEG
signal was used as input, it was not possible to generate synthetic EEG epochs. Therefore,
the negative class was duplicated to be numerically equal to the majority class.

2.8. Training Procedure and Performance Evaluation for Imbalanced Dataset

Although deep learning has achieved great success in many research applications,
there are very few approaches for classifying imbalanced EEG data, as mentioned earlier.
Directly applying deep learning models to an imbalanced dataset usually results in poor
classification performance [61]. To address this problem, we propose to extend the LSTM
network algorithm with a bootstrapping method that incorporates oversampling with
decision fusion to improve the performance of LSTM in predicting TBI outcomes with
imbalanced dataset distributions. To evaluate the performance of the proposed model for
TBI outcomes, the bootstrap method was performed with 3-fold cross-validation to test its
robustness for the classification of unseen data.

Due to the limited size of the dataset, we applied an augmentation technique (i.e.,
the bootstrap method [62]) to the training data to maximize classification accuracy and
ensure minimal overfitting. A bootstrap method is a resampling method that generates
bootstrap samples to quantify the uncertainties associated with an ML method despite a
small dataset. It can estimate the performance of a proposed ML architecture for a small
dataset by providing a percentile confidence interval (CI) of the performance measures (i.e.,
classification accuracy and precision). Bootstrap resampling allows the user to mimic the
process of acquiring a new dataset to estimate the performance of the proposed design
without creating new samples.

In this work, bootstrap resampling was performed for all 48 subjects after the EEG
dataset was balanced using random oversampling, and the resampling sample size was
fixed at 48. Efron [63] suggested that a minimum of 50 to 1000 iterations of the bootstrap
sample set could provide valid percentile intervals to achieve the optimal performance of
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the proposed architectures. Therefore, to obtain the optimal parameters of the proposed
LSTM network, 300 iterations of the resampled bootstrap sample were used.

In k-fold cross-validation, the EEG data segments were divided into k-folds, trained
with k − 1, and tested with the rest. The average result value obtained by repeating
this process k times served as the verification result of the model. For each bootstrap
sample, 3-fold cross-validation was performed, and the accuracy of the cross-validation
was recorded. The mean, standard deviation (SD), and 95% CI were determined from the
300 cross-validation accuracies recorded.

In this context, widely used classification performance metrics for imbalanced datasets,
according to Kaur et al. [64], were assigned in this work, represented by Equations (8)–(13)
based on training and testing data.

Accuracy =
∑ True Positive + ∑ True Negative

∑ Total number of datapoints
(8)

Sensitivity =
True Positive

True Positive + False Negative
(9)

Specificity =
True Negative

True Negative + False Positive
(10)

G-mean =
√

Sensitivity × Specificity (11)

Precision =
True Positive

True Positive + False Positive
(12)

F1 score =
2 × Precision × Sensitivity

Sensitivity + Precision
(13)

3. Results and Discussion

Table 3 recapitulates our experimental results. To validate the performance of the
proposed prediction model, it was compared with three similar works on predicting TBI
outcomes from the literature. We used reliable performance metrics such as accuracy,
sensitivity, specificity, G-mean, and F1 score, and included the percentage of error in
the classification results. The proposed raw LSTM model was reliable with an average
validation accuracy of 87.50% ± 0.05 and had a minimum classification error of 12.50%,
outperforming previous studies in terms of accuracy, as shown in Table 4. The results
showed a sensitivity of 91.65%, a specificity of 87.50%, and an F1 score of 87.50%. These
results indicate that our proposed approach is good at predicting and discriminating be-
tween unimproved and improved outcomes in moderate TBI. The G-mean value of 87.50%
showed balanced classification performance for both the negative class (i.e., improved
outcomes) and the positive class (i.e., unimproved outcomes). The highest percentage of
G-mean showed good performance in classifying the positive class, even when the negative
class samples were correctly classified. The percentage of G-mean is important to avoid
overfitting the negative class and underfitting the positive class [57,65].

Table 3. Performance metrics computed from the results of the proposed model (raw-LSTM) for
predicting moderate TBI outcomes.

Performance Metric (%) 95% CI (%)

Accuracy ± SD 87.50 ± 0.05 [CI] [87.12, 88.34]
Sensitivity ± SD 91.65 ± 0.12 [CI] [90.13, 93.12]
Specificity ± SD 87.50 ± 0.13 [CI] [82.13, 85.54]

G-mean ± SD 87.50 ± 0.10 [CI] [85.76, 88.10]
F1 score ± SD 87.50 ± 0.08 [CI] [87.02, 89.19]

Error ± SD 12.50 ± 0.05 [CI] [11.66, 12.88]

We believe that our proposed model is better than other models for several reasons.
First, it can handle imbalanced data well using random oversampling. Second, the LSTM
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block efficiently extracts relevant features during feature refinement. Finally, bootstrapping
is helpful because the prediction outcomes of the trained deep learning model using a
sample set of bootstraps always have a Gaussian distribution, and the 95% CI is necessary
to determine the accuracy and stability of our proposed prediction model.

The limitation of a small dataset has been overcome by incorporating oversampling
and bootstrapping approaches to improve the model performance of the imbalanced EEG
dataset. In neuroinformatics applications, a limited dataset often becomes a problem when
unexpected constraints, such as a small patient population, arise. A small dataset could lead
to optimistic biases in classifier evaluation, resulting in inaccurate performance estimations.
Data augmentation methods normally used in image classification are not appropriate for
classifying EEG data.

Augmentation of time-series EEG data from subjects with moderate TBI may introduce
random noise that can increase the chance of classification errors [66]. Li et al. [67] believed
that direct geometric transformation and introduction of noise may destroy the feature in
the time domain, which may have a negative effect on data augmentation. Therefore, they
performed a short-time Fourier transform (STFT) to transform time-series EEG signals into
spectral images; this is known as amplitude perturbation data augmentation. Lee et al. [68]
demonstrated the effectiveness of the data augmentation method using the borderline
synthetic minority oversampling technique (borderline-SMOTE) on EEG data from the
P300 task. The results showed that the proposed methods can increase the robustness
of decision boundaries to improve the classification accuracy of P300 based on the brain–
computer interface (BCI). We believe that the data augmentation method (bootstrapping
and oversampling) introduced to the LSTM network has the advantages of interpretability
and lower computational cost.

The results of the comparison between our proposed method and other models for
predicting TBI outcomes are shown in Table 4. Chennu et al. [69] developed a prediction
model using a support vector machine (SVM) as a classifier to discriminate between posi-
tive and negative recovery outcomes. Schorr et al. [70] determined the predictive power
using a receiver operating characteristic curve (ROC) calculated from a multivariate autore-
gression analysis of difference coherence between multiple patient groups (i.e., minimally
unconscious syndrome versus unresponsive wakefulness syndrome; unimproved versus
improved; traumatic versus nontraumatic). The developed prognostic model yielded an
accuracy of 78.03%, suggesting that coherence analysis may be a useful prognostic tool
for predicting recovery outcomes in the future. Lee et al. [71] developed a logistic regres-
sion model to calculate the percentage of correct or incorrect predictions according to a
dichotomized output of the model.

Table 4. Comparison with previous studies.

Architecture Accuracy ± SD [CI]

Support Vector Machine (SVM); 81.98 ± 5.13 [80.69, 83.27]
Chennu et al. [69]

Multivariate Auto Regression (MVAR); 78.03 ± 21.07 [73.29, 82.77]
Schorr et al. [70]

Logistic Regression (LR); 49.97 ± 2.51 [49.56, 50.37]
Lee et al. [71]

Proposed Raw-LSTM 87.50 ± 0.05 [87.12, 88.34]

Table 4 shows that the SVM performed comparably (i.e., with an accuracy of 81.98%).
However, to ensure such high performance, preprocessing and feature extraction must
be carefully performed to ensure that high quality and discriminative features can be
extracted. On the other hand, the MVAR model has a relatively modest classification
accuracy of 78.03%, and the logistic regression model shows the lowest classification
accuracy of 49.97%. Compared to these works, our proposed approach (i.e., raw-LSTM)
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shows competitive performance and provides the highest accuracy of 87.50% with the
lowest error rate of 12.50%.

To the best of our knowledge, no existing binary classification approach uses deep
learning to predict moderate TBI outcomes. Therefore, the proposed approach using LSTM
would be beneficial to overcome the limitations of ML approaches (i.e., SVM, MVAR, and
logistic regression). These MLs are very sensitive to noise and artifacts, which can easily
affect the training of the classifier and lead to incorrect classification. The conventional ML
model also ignores the dependency of EEG channels and assumes that individual features
are not correlated. Therefore, more effort must be expended to eliminate the noise and
artifacts in order to successfully train the classifier. The main advantage of an LSTM-based
network is its ability to detect temporal correlations between channels, which can ensure
robust LSTM training. This is the first case of a high-performing, less time-consuming
EEG-based platform for automatic classification of TBI outcomes that relies only on easily
obtained raw resting-state EEG data.

Furthermore, our results provide preliminary evidence of the importance of devel-
oping a prognostic model for initial clinical management in the moderate TBI patient
group. This is because patients with moderate TBI, who are in a dangerous situation
and at high risk of neurological deterioration (ND), are usually associated with a poor
prognosis [9,15,72]. Despite the possibility of deterioration and the need for critical care, a
substantial proportion of patients with moderate TBI are treated in nontrauma centers.

It should be noted here that, according to Watanitanon et al. [57], some TBI patients
with a GCS of 13, who are typically considered to be at lower risk, are in fact still at risk
for serious adverse outcomes, and that there are many patients with moderate TBI who
may also benefit from treatment for severe TBI if their condition worsens [73]. We believe
that the high discriminative ability of our proposed model demonstrates its potential for
classifying the outcomes of moderate TBI by risk of ND using easily obtained, task-free
raw EEG data. This was not explored in the current work but could be explored in future
work. ND usually leads to a fatal outcome or severe disability and is a prognostic factor
associated with an unfavorable outcome. If patients with moderate TBI who are at high
risk for ND can be identified in advance, then they can be provided with a high level of
monitoring and treatment, including neurologic assessment and intensive care.

4. Conclusions

A novel deep learning approach for predicting moderate TBI outcomes based on EEG
signal recordings was proposed. The prediction model uses an LSTM-based network to
accurately discriminate EEG signals for unimproved and improved recovery outcomes.
The proposed model works directly with raw EEG signals, without requiring feature
extraction. The use of oversampling methods to overcome the imbalanced EEG dataset
and the inclusion of a bootstrapping method with 300 iterations improved the system’s
performance, resulting in the highest accuracy of 87.50%. To test the classification accuracy
of the system and ensure its robustness and stability, 3-fold cross-validation was used. A
comparison between our proposed approach and previous studies using ML techniques
shows that the proposed system outperforms previous work in terms of classification
accuracy, even though it uses raw EEG signals. The proposed system takes advantage
of an LSTM-based network, which is ideal for processing sequential data points such as
EEG time series data. This also proves that deep learning networks form a robust classifier
for EEG signals that outperforms traditional learning techniques. The present model also
provides a solid foundation for future work on predicting TBI outcomes, and its high
performance suggests that this method has potential for clinical application. Future work
may focus on improving LSTM networks with an attention mechanism in a transformer
LSTM, using an encoder–decoder LSTM model for predicting moderate TBI outcomes.
Finally, the application of novel deep learning feature fusion techniques to predict TBI
outcomes based on EEG signals may be worth mentioning as one of the directions for
future work.
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