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Abstract: Smartphones, today, come equipped with a wide variety of sensors and high-speed proces-
sors that can capture, process, store, and communicate different types of data. Coupled with their
ubiquity in recent years, these devices show potential as practical and portable healthcare monitors
that are both cost-effective and accessible. To this end, this study focuses on examining the feasibility
of smartphones in estimating the heart rate (HR), using video recordings of the users’ fingerprints.
The proposed methodology involves two-stage processing that combines channel-intensity-based
approaches (Channel-Intensity mode/Counter method) and a novel technique that relies on the
spatial and temporal position of the recorded fingerprint edges (Edge-Detection mode). The dataset
used here included 32 fingerprint video recordings taken from 6 subjects, using the rear camera of
2 smartphone models. Each video clip was first validated to determine whether it was suitable for
Channel-Intensity mode or Edge-Detection mode, followed by further processing and heart rate
estimation in the selected mode. The relative accuracy for recordings via the Edge-Detection mode
was 93.04%, with a standard error of estimates (SEE) of 6.55 and Pearson’s correlation r > 0.91, while
the Channel-Intensity mode showed a relative accuracy of 92.75%, with an SEE of 5.95 and a Pearson’s
correlation r > 0.95. Further statistical analysis was also carried out using Pearson’s correlation test
and the Bland–Altman method to verify the statistical significance of the results. The results thus
show that the proposed methodology, through smartphones, is a potential alternative to existing
technologies for monitoring a person’s heart rate.

Keywords: heart rate; photoplethysmography; smartphone; MATLAB

1. Introduction

Cardiovascular diseases (CVDs) remain one of the most frequent causes of early
mortality and loss of disability-adjusted life years (DALYs) globally [1]. This class of
heart-related disorders includes but is not limited to stroke, coronary artery disease, and
peripheral vascular disease and is seen as a public health issue in several countries with
heavy economic reparations [2]. In India alone, CVD made up about 27% (as of 2015) of
all deaths in the country, with such numbers only increasing in crisis-level proportions in
older demographics [3]. The significance of this issue is further underlined by the fact that
official figures such as these are often underreported in developing countries, particularly
rural regions, due to discrepancies in data collection and misclassification of asymptomatic
CVD-related deaths. Furthermore, inadequate evidence-based treatment is seen here,
leading to treatment delays that further exacerbate CVD symptoms [4]. Current practices
also necessitate regular visits or lengthy stays at costly medical institutions. All of this,
compounded by a scarcity of qualified healthcare workers, limited financial capabilities,
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and rising healthcare expenses, contributes to the hindrances in establishing good long-
term health monitoring [5]. Hence, there is a dire need for changes in the current healthcare
system. One way to strengthen the diagnostic pipeline for such diseases would be to
encourage patients to proactively keep track of their vital parameters. Contact sensors such
as electrodes in the form of chest straps or finger clips can be used to sense physiological
changes and offer a baseline insight into the functioning of our bodies. They can also reflect
symptoms of ongoing problems within. In fact, monitoring vitals has the potential to aid in
the early detection of patient deterioration, which in turn could improve rapid response
timeliness [6]. Hence, they can be used as the first line of basic diagnosis and follow-up [7].

The heart rate (HR) is one such vital sign, and it provides essential diagnostic informa-
tion about existing cardiovascular diseases. It can be measured acoustically by listening to
the heartbeats as amplified by the stethoscope. The number of beats is typically observed
for a small period and then multiplied by a factor to estimate the total beats per minute.
These observations can also be made via the pulse felt at the wrist or neck. For more
precise measurements, however, acquisition based on the electrical nature of the cardiac
activity, namely electrocardiography (ECG), is used. Here, changes in electrical potentials
from the membranes of the cardiac cells are observed via a number of strategically placed
electrodes, which, when interpreted together, produce the electrocardiogram [8]. This
technique is the gold standard for detecting and monitoring a host of cardiac conditions.
However, its measurement requires continuous sensor attachment to the chest, which can
be a source of discomfort and inconvenience in situations that require long-term monitoring.
Furthermore, it hinders patient mobility and flexibility [9].

Photoplethysmography (PPG) is another technique to measure the HR wherein an op-
tical waveform, the photoplethysmogram, is generated by measuring changes in light
absorbed or reflected by tissues due to changes in local blood volume during the cardiac
cycle. The heartbeat determines the duration of each pulse generated, while the con-
centration of various constituent parts of arterial blood and the path length of the light
traveling through the arteries determine the amplitude [10]. PPG acquisition systems are
more straightforward, cost-effective, and relatively comfortable to use and can thus be
an excellent substitute for traditional ECGs. However, they are still inconvenient to use on
a day-to-day basis and require the carrying around of extra hardware. Despite this, a major
pro of this technique would be its ability to acquire cardiac data from multiple points in
the patient’s body, such as the earlobe, wrist, forehead, ankle, torso, and fingertip [11].
Exploiting this, smart devices, such as smartwatches, today come equipped with sensors
to monitor vitals, specifically at the wrist. This is an ideal area for measurement since
cardiac activity can be detected here at minimal discomfort to the wearer in the long term.
Current models in the market, such as those by Fitbit® (San Francisco, CA, USA) and
Jawbone® (San Francisco, CA, USA), track a variety of physiological parameters in this
manner. However, physiological signals at the wrist have very low amplitude, thus smart-
watches require highly sensitive transducers to properly pick them up. Moreover, the wrist
region is also susceptible to motion artifacts due to hand movements and other everyday
activities. External environmental noise can also potentially hamper the collection of PPG
signals, thus lowering the accuracy of the estimated HR [8]. As a result, PPG’s practical
implementation and reliability in real-time monitoring use cases become limited. Moreover,
smartwatches come with an added purchase cost and may not be widely available and
accessible to everyone.

However, there is one other smart device that is not only ubiquitously used today but
can also be exploited for patient monitoring at no added cost to the user: the smartphone.
There are currently 3.8 billion smartphone users worldwide, with these figures only pro-
jected to increase in the coming years [12]. Incremental developments in sensor, battery,
and display technologies have paved the way for modern mobile devices to become an
essential part of our entertainment, health and fitness, productivity, and social lives today.
Smartphones today are also embedded with a wide variety of sensors such as cameras,
ambient light sensors, global positioning system (GPS) sensors, accelerometers, and mi-
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crophones [13]. These sensors can continuously monitor several health parameters, thus
making the smartphone a practical, portable healthcare system alternative for recurrent
daily usage [14]. This study focuses on developing a PPG-like measurement system to
calculate HR via existing smartphone hardware. As described earlier, the key motivation
for utilizing smartphone PPG over other wearable sensors is that it requires minimal hard-
ware. Given the widespread availability of smartphones with built-in cameras, utilizing
them to acquire health data is an excellent option when ECGs or other medical devices
are unavailable [15]. Most of today’s cellular phones include high-resolution cameras, pro-
cessors, and light-emitting diode (LED) flashes. This hardware is similar to PPG imaging
technology. Instead of utilizing a smartphone only to store and display data, it can also
directly be used to capture information and measure readings. Moreover, as per studies
conducted in [16–18], the average HR obtained using smartphone PPG is comparable to
those obtained using gold standard ECGs. In this manner, heart rate observations can be
made in a robust, low-cost manner that is easily accessible to users worldwide and comes
at minimal cost and discomfort to them.

However, the studies previously cited are based solely on changes in mean channel
intensity and produce varying results depending on the RGB channel chosen. The dis-
tribution of green and blue channel pixels also varies vastly from smartphone model to
smartphone model [19]. The works [20–22] also involve cropping of the central portion
of the recorded video to decrease the added computational complexity that comes with
full frame processing. This could potentially lead to a loss in signal information and thus
potentially hinder robust results. As a result, we choose to modify these existing method-
ologies with the addition of a novel fingerprint edge-based HR calculation technique. This
edge-based technique is less susceptible to issues due to color differences between different
smartphone models.

Thus, the study conducted introduces a two-stage mechanism to estimate a person’s
heart rate using the back camera of a smartphone. A novel method for heart rate calculation
based on the change in the spatial position of the fingerprint ridges is described here. This
technique is coupled with a channel-intensity-based technique that offers an alternative
to the former method in situations with incompatible hardware. Validation techniques
have also been included in the overall heart rate calculation architecture in order to select
the appropriate method based on the data recorded. The contributions of this study are
summarized as follows:

1. Developing of a novel two-stage mechanism to calculate user’s heart rate via their
smartphone.

2. Providing a detailed analysis of the results so obtained via relative performance
accuracy and standard error of estimates (SEE).

3. Performing agreement analysis between actual and calculated heart rates using Pear-
son’s correlation and the Bland–Altman method, to validate results.

This paper is organized as follows: Section 2 presents a survey of recent work in the
area of this study. Section 3 provides a detailed explanation of the proposed methodology,
including dataset acquisition and preparation. The experimental results and comparative
performance of both stages of the proposed methodology are enumerated in Section 4.
Discussion involving the statistical analysis of the results is given in Section 5. Finally,
Section 6 concludes the paper and discusses the future scope of the work.

2. Related Works

It has been shown that continuous heart rate signals can be extracted from video
cameras and then be processed to monitor additional vital indicators such as breathing rate
and heart rate variability.

Pelegris et al. [23] suggested a novel approach for detecting heart rate using a Nokia
N95 smartphone. This paper recommended analyzing the brightness information of the
grayscale component of each video frame recorded while the user’s finger remained on the
lens. To guarantee acquisition reliability, the input signal was matched to a rudimentary
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heartbeat pattern. The proposed algorithm was able to estimate the user’s heart rate
with an average error of 4.67% for their dataset. Jonathan and Leahy [20] measured
pulse rates with a Nokia E63 smartphone and concluded that the green channel delivers
a more significant PPG signal than the red channel. A central region of interest measuring
10 × 10 pixels was chosen to compute the mean intensity value, and a Fourier transform
spectral analysis was used to determine the heart rate. An Android application was
created by Gregoski et al. [24], and exploratory testing was carried out on a Motorola Droid
smartphone to compare the performance to a Nonin Onyx II model 9560BT ambulatory
finger pulse oximeter under different conditions of monitoring: sitting, reading, and
playing video games. It was found that the smartphone heart rates were highly correlated
with those from the pulse oximeter under all conditions (rs ≥ 0.99, SEE ≤ 2.09 bpm).
Scully et al. [25] created a method for monitoring physiological parameters using optical
recordings from a smartphone. A Motorola Droid smartphone was used to capture the
movies, and the PPG value was calculated at each frame as the 50 × 50 pixel average of
the green channel region. A heart rate signal was generated from the recordings and peak
detection was carried out. The mean ± SD was 92.3 ± 5.9 bpm. An Android smartphone
was used to check a proposed algorithm’s robustness by Hoan et al. [22]. Researchers
collected 400 recorded samples to test the system, and a medical device called the Beurer
BC08 was simultaneously used as a reference to validate the accuracy of the results. The
proposed algorithm gave an r value of 0.9525 and an SEE of 2.448.

3. Methods and Materials

The proposed work consists of two modes for HR calculation, namely the Edge-
Detection mode and the Channel-Intensity mode. Depending on the type of video data
acquired and the smartphone model used to acquire them, processing is carried out in either
one of these modes. Initially, the video is validated to see if the Edge-Detection mode is
enough to produce the HR readings. It involves frame-wise pre-processing and Canny edge
detection, followed by a reference frame selection which is used to determine count value
for HR measurement. If the edge-detection technique cannot be employed, a measurement
based on mean channel intensity is performed. Here, the mean red channel intensity of
each frame is used to produce a raw PPG-like signal, to which peak detection is applied
after pre-processing. The heart rate is then calculated by finding the mean distance between
the identified peaks. The Edge-Detection mode algorithm was developed to demonstrate
a proof of concept for heart rate estimation using image processing techniques. The working
of this mode is then compared and contrasted with the Channel-Intensity mode, which
makes use of traditional signal processing methods. Both methods are described in detail in
Section 3.2, respectively. All processing in the proposed work was carried out in MATLAB,
version r2021a. Block diagram of the entire study is depicted in Figure 1.

3.1. Dataset Collection and Description

This section presents the data acquisition method that is subsequently used for de-
veloping the HR measurement system. Mimicking the functioning of traditional PPG
acquisition systems, our design utilizes the camera sensor of the smartphone as a photodi-
ode and the camera flash of the smartphone as the LED light source, to produce a set of
video recordings.

The data were collected using the camera application on 2 consumer-grade smartphone
models: One plus 7 and Xiaomi Redmi 7A. Their specifications are detailed in Table 1. It
was experimentally determined that, for good fingerprint edge detection in later stages, the
camera flash of the smartphone needed to be located below the back camera and not next
to it on the side. It was also important that in newer smartphone models with multiple
different types of back camera lenses, the macro lens was not located immediately above the
flash. This is because, in both these cases, it was difficult to observe the spatial movement
of the fingerprint ridges with time and estimate the HR. As a result, recordings from iPhone
models have not been included in this dataset. However, users with such smartphone
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models can still make use of the methodology proposed in this work by opting to use the
second stage of processing, as described in Section 3.3.

During the data acquisition stage, subjects were instructed to place their right index
finger lightly over both the back camera of the smartphone and camera flash, in such
a manner that the upper tip of the finger fully covered the camera lens, while the central
portion of the finger rested on the flash. With the camera application opened, and the flash
turned on, the illuminated finger was then recorded. These recordings were carried out
with the subjects sitting down to ensure minimal movement during the acquisition process.
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Figure 1. The block diagram shows an overview of the validation, processing, and HR calculation
stages for the entire model. The Edge-Detection mode and the Channel-Intensity mode are the
two HR calculation methods proposed in the study. Processing is carried out in one of these modes
depending on the kind of video data that were recorded and the smartphone model that was used to
acquire them. In the Edge-Detection mode, if the edges, and hence the reference frame, cannot be
detected, processing is switched to the Channel-Intensity method. If neither method can validate the
video for heart rate calculation, the video is discarded. In this manner, the proposed algorithm helps
circumvent processing issues caused due to subject gestures and finger orientations.

Table 1. Smartphone Model Specifications.

Smartphone
Model

Frame
Rate

Color
Format

Video
Resolution

Camera
Specification File Format

One plus 7 30 fps sRGB 1080 × 2340 5 MP .mp4
Xiaomi Redmi 7A 30 fps sRGB 720 × 1440 12 MP .mp4

Simultaneously, a commercial pulse oximeter (Vandelay C101H1) was attached to
the subject’s left hand to measure the heart rate of the subject during the acquisition
process. This was carried out to validate the calculated measurements later on. The
camera settings, as described in Table 1, and ambient lighting remained fixed to ensure
consistency between recording sessions among the subjects. The video data used here were
collected for 6 participants, with ages ranging from 21 to 52. Of the 2 male and 4 female
participants, each provided 2 to 7 recordings, as described in Table 2. Each video recorded
was resized to have a resolution of 720 × 1440 with a sampling rate of 30 fps, for a duration
of 3–5 s. It was also ensured that acquisition sessions were spaced out (from 10–15 min) to
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obtain different ranges of heart rates. A total of 32 video files were recorded and saved as
an .mp4 file.

Table 2. Subject-wise data acquisition details.

Subject Number Number of Recordings
Provided

Average Heart Rate during
Recording (bpm)

Subject—1 2 90 bpm
Subject—2 6 72 bpm
Subject—3 6 81 bpm
Subject—4 5 87 bpm
Subject—5 7 98 bpm
Subject—6 6 76 bpm

3.2. Edge-Detection Mode

This initial stage of the proposed methodology calculates the HR from the video
recordings based on an edge-detection mechanism. This mechanism is independent of
channel-intensity processing, and involves a pre-processing stage where the fingerprint
ridges are detected followed by a counter mechanism based on the RMSE value between
the video frames.

The working of the Edge-Detection mode can be summarized as follows (see Figure 2):
each video sample is first broken down into its respective frames which are then cropped.
Next, the video sample is assessed to see if it meets the requirements to be analyzed by
this mode. To do this, each frame is first converted to grayscale and then contrast-adjusted
and sharpened. After this, the Canny edge-detection algorithm is employed to detect
fingerprint ridges on each frame. If we are able to clearly observe the ridges on each frame,
we use this algorithm for heart rate calculation. If not, the video is then processed using
the Channel-Intensity mode algorithm (Section 3.3).

3.2.1. Pre-Processing and Edge Detection

A copy of each recorded video was first made and then broken down into its individual
frames using the VideoReader function in MATLAB. The frame rate was then reduced
to 20 fps via the same function and the extra frames were discarded. This was carried
out to maintain uniformity in HR calculation. Block diagram for Edge-Detection mode is
described in Figure 2.
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All videos were cropped to dimensions of 720 × 1440 so that they could be processed
independently of the smartphone model. Each of these frames was saved as a numbered
.PNG file, in order of their temporal occurrence. To determine whether these recordings
were made in accordance with the requirements of this algorithm, the pre-processing and
filtering stages were carried out as follows:

The frames were first converted to grayscale by retaining only the luminance informa-
tion and eliminating saturation and hue. This was carried out using the standard formula
to convert from the RGB to NTSC format [26]. Through this, a weighted sum of the R, G,
and B channel components was produced as per Equation (1):

0.2989R(x,y) + 0.5870G(x,y) + 0.1140B(x,y) = P(x,y) (1)
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Here, R(x,y), G(x,y), and B(x,y) refer to the red, green, and blue channel intensities,
respectively, for a pixel with position (x, y) and intensity P(x,y) in a frame.

Following this, frame-wise contrast adjustment was carried out such that the bottom
1% and top 1% pixel intensity values were rescaled, as per Equation (2):

P(x,y) =

{
0,

255,
i f P(x,y) < 200
i f P(x,y) > 225

(2)

In this particular use-case, it was found that the majority of the pixels (98%) had
an intensity range from 210–215. The 1% of pixels having intensity values below this were
assigned black, while the top 1% pixels with a range above this were assigned white. Finally,
the pixels falling within the majority range were rescaled from 0 to 255. The contrast of the
resulting image was increased in this manner.

These frames were then sharpened using an unsharp marking operator, as described
in [27]. This operator enhances the fingerprint ridges in the frame by first subtracting
a blurry (unsharp) version of the frame from the original frame, I(x, y), to produce the
edge-description frame, Ie(x, y). The blurry frame, Iblurred (x, y), is obtained by passing the
original frame through a Gaussian low-pass filter to introduce a smoothening effect, as
shown in Equation (3).

Ie(x, y) = I(x, y)− Iblurred (x, y) (3)

Isharp(x, y) = I(x, y) + kIe (x, y) (4)

To produce the final sharpened image, Isharp(x, y), the original frame was added to
a scaled version of the edge-description frame, as in Equation (4). Here, k is the scaling
constant, which ranges from 0–2. It is set as 1.2 (default value).

At this stage, edge detection was carried out on each of the processed frames to
visualize the fingerprint ridges in the recorded video. Five different edge-detection methods,
namely Sobel, Prewitt, Roberts, Laplacian of Gaussian (LoG), and Canny, were compared
to determine the best performing one. During this process, the grayscale frames were
automatically binarized as result of the filter, and each pixel was classified as an ‘edge pixel’
or a ‘non-edge pixel’. Frame-wise fingerprint pre-processing is described in Figure 3.
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Ultimately, the Canny method was chosen to perform frame-wise detection of the
fingerprint ridges. A visual comparison of their performance and further discussion
regarding the selection of the edge operator can be seen in Section 5.
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Despite this, if the angle in which the finger is placed is not proper or if the pressure
exerted on the lens and flash is too much or too little, the edges may not be properly
detected. This can be seen in Figure 4. Hence, it is important to ensure that users record
the video clips only after proper finger placement to obtain accurate results. However, in
cases where such recordings are produced, they are not immediately discarded. Instead
of further processing in the Edge-Detection stage, the video frames are passed on to the
second stage of the processing architecture, the Channel-Intensity stage, as described in
Section 3.3, wherein another round of validation is performed to see if the recorded data
are still usable.
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correct placement of finger resulting in proper edge detection.

3.2.2. Heart Rate Calculation

Once pre-processing within this stage was carried out, frames that had the fingerprint
edges labeled on them were generated. Since these frames follow a temporal order, when
played back it is possible to see the spatial movements of the ridges with respect to time.
The spatial locations of the ridges follow an approximately cyclical pattern, wherein the
ridges move up and down periodically. It is through the monitoring of this cyclical motion
that the HR of the subject is calculated.

Firstly, a reference frame is selected within the first observed full cycle, i.e., within the
first 20 recorded frames. Given a cycle, a frame is considered to be the reference frame if its
lower-most detected ridge is located closest to the base of the frame, compared to other
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frames in that cycle. This type of frame marks the beginning of a new cycle. This is shown
for the sample video recording in Figure 5, wherein the difference in bottom-most ridge
distance between the selected reference frame and another frame for a particular cycle can
be seen. Hence, edge detection is carried out primarily as a means to visually identify the
reference frame.

Once a reference frame was selected, the root mean squared error (RMSE) between
the grayscale version of this frame and all other grayscale frames temporally located after
the reference frame was tabulated. Comparison of finger placement styles is described in
Figure 4.

The RMSE value tells us the difference in spatial positions of the ridges between the
reference frame and all other frames in a recording. The smaller the RMSE value, the
more similar the given frame is to the reference frame. This can be calculated as shown in
Equation (5):

RMSEr−j =

√
∑N

j=1
(

Ir(x, y)− Ij(x, y)
)2

N
(5)

Here, Ir(x, y) and Ij(x, y) refer to the intensity distribution of the reference frame and
the remaining frames, respectively, while N refers to the total number of pixels per frame.

Using this technique, we can determine the ongoing stage of the cycle in each frame.
As a result of these calculations, we observe a contiguous and cyclical pattern of zero
and non-zero error scores corresponding to each video frame. A counter was set such
that the number of times this error value switched to and from the zero baseline could be
counted. This count value is analogous to the mean distance calculation in PPG-based HR
measurements after systolic peak detection. Figure 5 describes the reference frame selection.

Finally, the HR of the subject is calculated using Equation (6):

Heart Rate =
60× Counter Value

Video Duration
(6)
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Figure 5. Reference frame selection; left: here, the distance between the lowest edge and the base of
the frame is not minimal, hence this is not selected as the reference frame; right: the distance between
the lowest edge and the frame’s base is (relatively) minimal, hence this is taken as the reference frame.

As mentioned earlier, if there is an issue with edge detection or reference frame
selection because of finger placement or the smartphone model used, due to which HR
calculation via the Edge-Detection stage cannot be carried out, the recorded video is sent to
the Channel-Intensity stage, as described in the following section, for further validation.
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Edge-detected frames generated for one cycle for a sample video in the dataset are shown
in Figure 6.
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Figure 6. Edge-detected frames generated for one cycle for a sample video in the dataset are shown
here. Frame 6 is selected here as the reference frame. A frame is regarded as the reference frame
for a cycle if, in comparison to other frames in that cycle, its bottom-most detected ridge is situated
closest to the base of the frame. The start of a new cycle is signaled by this style of frame. This figure
shows reference frame selection in context of other frames for a given video sample.

3.3. Channel-Intensity Mode

This stage involves processing of the video frames based on variations in recorded
channel intensity, as summarized in Figure 7, and is thus used in case processing is not
possible in the previous stage. A different type of pre-processing scheme is used here
followed by a peak-detection mechanism and HR measurement. The functioning of the
Channel-Intensity stage is explained in detail in the following sections.

3.3.1. Pre-Processing

Here, the copy of the video recording created for the Edge-Detection stage is discarded
and the original video, with its initial frame rate, is used for further processing.
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However, before using the video recording for the generation of a PPG-like signal, its
frames are first validated to see if the finger placement on the camera and illumination
condition provided by the flash are sufficient. This is carried out by comparing the mean red
channel intensity against a threshold range. The frame validation criterion is as described
in Equation (8):

µR =
∑x,y R(x,y)

N
(7)
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f ramei =

{
Accepted, i f
Rejected, i f

220 > µR ≥ 180
otherwise

}
(8)

Here, R(x,y) refers to the red channel intensity of a pixel with position (x, y) for a given
f ramei while N refers to the total number of pixels in the frame. The threshold range for
comparison was experimentally determined to be 180–220. If more than 10% of the frames
in the recording fell below this threshold, the recording was discarded and the subject was
prompted to re-record the video. Poor video quality could be a result of a gap between
camera lens and finger or unintentional finger movement, thus creating artifacts. The red
channel was particularly selected for processing in this stage as recordings in this channel
tend to have uniformity across a wide variety of smartphone brands, thus ensuring minimal
variation in HR calculation [19].

Once a suitable number of video frames met the threshold criteria, the mean red
channel intensities calculated as per Equation (7) were plotted as a function of frame
number to generate a PPG-like signal. This is demonstrated for a sample recording in
Figure 8. Reflection mode PPG devices commonly make use of a green LED light source, as
its wavelength has ideal tissue penetration capabilities. The camera flash on smartphones,
however, produces white light and thus leads to noisier measurements [28]. As a result, the
pre-processing stage is vital to generate an accurate PPG-like signal for accurate processing
in later stages. Raw PPG-like signal generated from the frame-wise mean red channel
intensity for sample video is described in Figure 8.

To this end, the amplitude of the raw signal, s(n), was first normalized to range
between [–1,1] to ensure more accurate peak detection during the following stages of
processing. This was carried out as described in Equation (9):

snorm(n) = 2
(

s(n)−min(s(n))
max(s(n))−min(s(n))

)
− 1 (9)
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This normalized signal, snorm(n), is then detrended using a detrending filter to remove
background noise and stationary components in the raw signal [29]. The ‘trend’, which is
the line of best fit for the signal, is subtracted from the elements of the original signal as
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in Equations (10) and (11). Detrending forces the signal mean to zero, thus decreasing the
overall variation.

ytrend(n) = mn + c (10)

sdetrended (n) = snorm(n)− ytrend(n) (11)

Here, the trend line, ytrend(n), is defined by its slope m and its y-intercept c. To the de-
trended signal, sdetrended (n), a 5-point moving average filter is applied to suppress existing
motion artifacts. This filter not only smoothens the signal by averaging out unnecessary
fluctuations in the data but also retains the sharp step response, thus highlighting the peaks
in the signal [30].

Different window sizes were compared to empirically determine the best fit for this
application. It was found that a 3-point window did not offer enough signal smoothening,
while anything above a 7-point window size appeared to completely suppress the peaks in
the raw PPG-like signal, thus making it unusable for further processing. Hence, a window
size of 5 was found to be most suitable for our use-case. Note, odd window sizes were
chosen for comparison to create a symmetric window for calculation. The output of the
moving average filter is given as Equation (12):

sMA(n) =
1
5

4

∑
i=0

sdetrended(n− i) (12)

These steps produce a signal that can be used for peak detection and HR measurement.
Effect of ‘N’-point moving average filter on the signal for different values of ‘N’ is described
in Figure 9. The effect of pre-processing on the raw signal can be seen in Figure 10.
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Figure 9. Effect of ‘N’-point moving average filter on the signal for different values of ‘N’. Here,
N = 3, 5, 7, and 11 have been plotted for comparing the effect of window width on signal smoothing.

3.3.2. Heart Rate Calculation

In this step, a peak-detection algorithm is first utilized to determine the local maxima
in the pre-processed signal as in [22]. These peaks are analogous to the systolic peaks
observed in PPG signals. A peak is considered to be a local maximum if its amplitude is
larger than or equal to 5 data samples before and after it. This was implemented using the
findpeaks() function.
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Figure 10. Pre-processing for the Channel-Intensity mode; 1st row: raw PPG-like signal—this is
generated by plotting the average red channel intensity per frame as a function of frame number;
2nd row: normalized PPG-like signal—this is carried out by detrending the signal to decrease overall
variation in the signal; 3rd row: detrended PPG-like signal; 4th row: PPG-like signal after applying
5 pt. MA filter—this smoothens the signal by averaging out unnecessary fluctuations in the data
while retaining the sharp step response, thus highlighting the peaks in the signal.

This selection scheme is described in Equation (13).

peak =

{
sMA(n) > [sMA(n− 5), sMA(n− 4), sMA(n− 3), sMA(n− 2), sMA(n− 1),

sMA(n + 5), sMA(n + 4), sMA(n + 3), sMA(n + 2), sMA(n + 1)]

}
(13)

However, at this stage there is still a chance of detecting false peaks. To avoid this, can-
didate peaks are further selected from this collection of local maxima by using an exclusion
criterion that is based on peak-to-peak distance, as described in Equations (14) and (15):

dmin =
60× Framerate

HRmax
(14)

dmax =
60× Framerate

HRmin
(15)

Here, HRmin and HRmax refer to the lowest and highest value of heart rate that is
expected to be measured, respectively. The lower cap was set as 50 beats per minute while
the upper cap was set as 200 beats per minute. Initially, the distances between all successive
detected peaks were calculated. Following this, certain peaks were discarded if the distance
between them and successive peaks was lower than dmin or greater than dmax . After this,
the successive distances between the leftover peaks within the dmin − dmax range were
determined and averaged to obtain the mean peak distance value, dmean. The final output
of the peak detection on a sample video recording is shown in Figure 11.

Finally, the HR through this stage is calculated using Equation (16):

Heart Rate =
60× Frame Rate

dmean
(16)

In this manner, the HR of a subject can be calculated through fingerprint recordings
via a smartphone. The pseudocode for the full methodology is provided in Algorithm 1.
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Algorithm 1: Overview of Data Acquisition, Processing, and Measurement of Heart Rate

Input: Path to main folder with ‘N’ number of video recordings
Output: ‘N’ heart Rate measurements corresponding to ‘N’ recordings
//Save all recordings in main folder for processing

1 for i = 1–>N do
2 Extract all frames from video i
3 if smartphone model compatible == True then

//EDGE-DETECTION METHOD
4 frames_copy = duplicates of video i frames
5 Discard frames from frames_copy to reduce frame rate to 20 fps
6 for j = 1→ __ (num_frames_duplicate) do//Do for all frames in frames_copy

//Generation of edge-detected frames
7 Crop frame j to be of dimension 720 x 1440
8 //Processing before mode validation
9 Convert RGB frame j to grayscale
10 Adjust contrast of frame j
11 Sharpen frame j
12 Perform edge detection on frame j using Canny method
13 End
14 if edges clear AND spatial movement of edges visible == True then

//Heart Rate Measurement
15 Select Reference Frame
16 for j = 1→ num_frames do//Do for all edge-detected frames

17
Calculate RMSE between grayscales of reference frames and frames with temporal
position after reference frame

18 End
19 counter = number of times RMSE value switches between zero and non-zero values
20 HR = (60 × counter)/vid_length / /Video length in seconds
21 return HR
22 continue/ /Begin next iteration, i.e., calculate HR for next video
23 else/ /Validate mean red channel frame intensities
24 bad_count = 0
25 for k = 1→ num_frames_orginal do//Do for original full set of frames in video
26 if 180 <mean red channel intensity of frame k <220 then
27 bad_count = bad_count + 1
28 End
29 if bad_count < 0.1(num_frames_original) then

//CHANNEL-INTENSITY METHOD
30 Generate raw PPG-like signal
31 Normalize signal
32 Detrend signal
33 Apply 5pt. moving average filter to signal

34
Find local maxima in signal//based on amplitudes of 5 samples before and after
current sample

35 dmin = (60 × Frame rate)/50
36 dmax = (60 × Framerate)/200
37 for peak = 1→ num_local_maxima do//Candidate peak selection
39 Calculate distance between successive peaks
40 if dmin < peak_distance < dmaxthen
41 candidate_peak = peak
42 else discard peak
43 End
44 mean_distance = average distance between candidate peaks
45 HR = (60 × Framerate)/mean_distance
46 return HR
47 else discard video
48 End
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After this, the successive distances between the leftover peaks within the 𝑑  - 𝑑  range were determined and averaged to obtain the mean peak distance value, 𝑑 . 
The final output of the peak detection on a sample video recording is shown in Figure 11. 
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Figure 11. Peak detection on processed PPG-like signal for sample video data—this is carried
out as per the selection scheme described in Equation (13), followed by removal of false peaks by
thresholding the local maxima as per the peak-to-peak distances as per Equation (14).

4. Experimental Results

The proposed algorithm was evaluated for the acquired dataset, and the performance
for each recording is summarized in Table 3. Recordings wherein the users had provided
improper finger placement were discarded. The proposed algorithm also filtered out
unreliable recordings as described in the previous section.

Table 3. Sample-wise performance summary.

Video ID Predicted Heart Rate Actual Heart Rate Relative Error (%) Relative Accuracy (%) Method Used

1 66 62 6.45 93.55 Channel-Intensity
2 80 75 6.67 93.33 Edge-Detection
3 66 60 10.0 90.0 Channel-Intensity
4 93 88 5.68 94.32 Channel-Intensity
5 64 67 4.47 95.53 Channel-Intensity
6 64 72 11.11 88.89 Channel-Intensity
7 106 110 3.64 96.36 Edge-Detection
8 65 72 9.72 90.28 Edge-Detection
9 82 77 6.50 93.50 Channel-Intensity

10 78 71 9.86 90.14 Edge-Detection
11 110 115 4.35 95.65 Channel-Intensity
12 99 94 5.32 94.68 Edge-Detection
13 82 86 4.65 95.35 Edge-Detection
14 72 78 7.69 92.31 Channel-Intensity
15 88 93 5.37 94.63 Edge-Detection
16 85 80 6.25 93.75 Channel-Intensity
17 60 65 7.69 92.31 Edge-Detection
18 102 98 4.08 95.92 Channel-Intensity
19 66 72 8.33 91.66 Channel-Intensity
20 75 86 12.79 87.21 Channel-Intensity
21 109 102 6.86 93.14 Edge-Detection
22 69 74 6.75 93.25 Edge-Detection
23 75 68 10.29 89.71 Channel-Intensity
24 101 95 6.31 93.69 Channel-Intensity
25 83 86 3.48 96.52 Edge-Detection
26 77 71 8.45 91.55 Edge-Detection
27 82 77 6.49 93.51 Channel-Intensity
28 75 70 7.14 92.86 Channel-Intensity
29 76 72 5.55 94.45 Channel-Intensity
30 95 108 12.03 87.94 Edge-Detection
31 83 77 7.79 92.21 Channel-Intensity
32 101 95 6.31 93.69 Channel-Intensity
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Thirteen videos from the total dataset were processed via the Edge-Detection method
while the remaining nineteen videos made use of the Channel-Intensity method. The
average relative accuracy for videos classified via the Edge-Detection method was 93.04%,
while the average relative error was 6.54%. In the case of the Channel-Intensity method,
HR measurements had an average relative accuracy of 92.75% and an average relative error
% in this mode was 7.24%.

To describe the overall accuracy of the predictions using both modes of measurement,
the standard error of estimates (SEE) was calculated, as in Equation (17). Table 4 displays the
correlation coefficients and standard errors of estimates (SEE) for the different conditions.

SEE =

√
∑N

i=1(yi − ŷi )
2

N
(17)

Here, yi and ŷi refer to the actual and predicted HR measurements for a recording I,
respectively. N is the total number of recordings.

Table 4. Statistical analysis of results from both modes of HR calculation.

Method SEE Pearson’s
Correlation

Degree of
Freedom p Value

Edge-Detection 6.55 0.91 11 4.52 × 10−8

Channel-Intensity 5.95 0.95 17 5.34 × 10−10

Agreement Analysis

In order to examine whether the predicted HR values from the proposed methodology
and the actual recorded HR values are in agreement, Pearson’s correlation coefficient (r)
and the Bland–Altman ratio (BAR) were determined. While the correlation plots provide
insight about the strength, direction, and form of the relationship between two continuous
variables, the Bland–Altman plot is used to determine actual differences in measurements
between the two methods used [31,32].

Pearson’s correlation coefficient was calculated as per Equation (18), and describes
the magnitude or strength of linear correlation between the actual and predicted HR
measurements [17].

r = ∑N
i=1(yi − y)(ŷi − ŷ)√

∑N
i=1(yi − y)2 ∑N

i=1
(
ŷi − ŷ

)2
(18)

In order to determine the corresponding p value, a Student’s t-test was performed as
in Equation (19):

t =
r
√

n− 2√
1− r2

(19)

Here, n refers to the number of degrees of freedom which is N-2. For the Pearson
correlation coefficients calculated, a p value < 0.05 was considered statistically significant.

The predicted HR was considered to be within an acceptable range if the Pearson
correlation (r) between the actual recorded HR and the predicted HR was more than 0.9.

From Figure 11, it can be seen that in both Edge-Detection and Channel-Intensity
methods, there is an approximately linear relationship between actual and predicted values,
as shown by the positive regression lines. The strength of this linear association is given by
the r2 value (square of the Pearson correlation), and was found to be moderately strong in
both methods. This tells us that the trend line fits the data well [33], and that approximately
83% of the variability in the data can be explained by the relationship between the actual
and predicted HR measurements. The HRs from the Edge-Detection mode were highly
correlated with the pulse oximeter readings (r ≥ 0.91). Similarly, the Channel-Intensity
mode measurements also showed high correlation with the actual HR readings (r ≥ 0.95).
Hence, the null hypothesis that there is no correlation between the predicted and measured
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HR can be rejected. However, the Edge-Detection method appeared to have a slightly
strong association between the actual and predicted HR measurements compared to the
Channel-Intensity method. Nonetheless, high correlations between these two modes of
measurement do not necessarily confirm the agreement between the actual and calculated
values. They simply show that these readings happen to align on a linear plane.

To determine if adequate agreement exists between the two-stage mechanism and
the commercial-grade monitor, the Bland–Altman method, described by BAR, is also
implemented as per Equation (23). It finds the bias or the mean difference between the
two methods and considers 95% or 1.96 standard deviations from the mean as the mean
difference. In other words, 95% of the difference in measurements between the two models
will be included within 95% limits.

b =
1
N ∑N

i=1(ŷi − yi

)
(20)

SD =

√√√√ 1
N

N

∑
i=1

(ŷi − yi − b)2 (21)

MPM =
1
N

N

∑
i=1

1
2
(ŷi + yi) (22)

BAR =
0.5[(b + 1.96 SD)− (b− 1.96SD)]

MPM
(23)

Here, b± 1.96 SD refers to the upper and lower limits of agreement, where b is bias,
SD is standard deviation, and N is the total number of recordings. MPM refers to the
pair-wise means. For this use-case, the limits of agreement were taken as 20% of MPM
and two measurements were said to agree if BAR was less than 20%. The agreement via
this method for both modes of measurement can be seen in the Bland–Altman plots in
Figure 12.
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As per the Bland–Altman plot, data points closer to the mean line show a good
agreement between actual and predicted values. In both methods of measurement, it can be
seen that ≥95% of the data points lie within the upper and lower limits of agreement, thus
indicating that both methods are comparable to commercial means of HR determination.
The width of the limits of agreement was 25.26 bpm in the case of the Edge-Detection mode,
while it was 22.87 bpm for the Channel-Intensity mode. Bland–Altman plots between
actual and predicted HR values are described in Figure 13.
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5. Discussion

Smartphones make for cheap and accessible self-monitors, which without the need
for or added cost of external hardware can track vital parameters such as HR. The results
shown have established that it is possible to make use of a smartphone camera for this very
purpose, via this two-stage methodology.

Of these two methods, the Edge-Detection mode involved the use of an edge operator
to highlight the fingerprint ridges in each frame of the recording. As described in Section 3.2,
five edge operators were compared to this end in terms of their performance. Figure 14
shows a visual comparison of the performance of the different edge-detection techniques.
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Among the five edge operators, Sobel, Prewitt, and Roberts show poor performances
due to their sensitivity to noise. This is in line with findings from [34] for classical operators
wherein noise was erroneously detected as a real edge. Although the LoG and Canny
method performances look similar visually, [34] shows that that LoG has a tendency to
generate false edges, with more severe errors for edges with curvature. The study [35] also
shows poor performance of the LoG operator wherein the input image has abrupt changes
in gray-level intensities as opposed to gradual changes. Since this use-case explicitly deals
with grayscale images having curved edges and non-uniform pixel intensity, it was not
chosen. The Canny method eliminates these aforementioned issues, by (1) performing
noise suppression with the initial Gaussian filter stage and (2) ensuring that there is only
one response to each edge in the image and that there are no responses to non-edges. This
effectively minimizes the error rate and ensures that the edges are localized properly. As
a result, the Canny technique was ultimately selected to be used in the edge-detection
section of the proposed methodology work. Visual comparison of the performance of 5
edge-detection methods is described in Figure 14.
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Figure 14. Visual comparison of the performance of 5 edge-detection methods; top left: pre-processed
frame; top middle: Sobel’s method; top right: Prewitt’s method; bottom left: Roberts’s method;
bottom middle: LoG method; bottom right: Canny method.

According to prior studies, HR monitors are believed to be reliable if the correlation
coefficients are ≥0.90 and the SEEs are ≤5 beats per minute (bpm) [36]. However, Ref. [37]
allows for a higher SEE limit of ±6 bpm for 95% of the data, for the proposed methodology
to be valid, while [38] considers the monitor to be ‘excellent’ if r > 0.93. Although the
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proposed methodology is reliable as per [37,38], the two-stage methodology in this work
overshoots this limit slightly, with the Edge-Detection mode having an SEE of 6.55 bpm
and the Channel-Intensity mode having an SEE of 5.95 bpm, as per [36]. Reduced error
percentages can also be seen in [39] and [40], thus indicating the need for further work in
the acquisition as well as pre-processing stages of this methodology to ensure improved
results. Table 5 compares the proposed methodology with existing work in terms of root
mean squared error (RMSE) and mean absolute error (MAE) in bpm.

Although [41,42] have relatively better MAE values, both modes of the proposed
methodology outperform the cited papers in terms of RMSE. The studies [41,42] employ
a different non-contact mode of data acquisition for heart rate estimation that potentially
affects the calculated error values. The study [43] makes use of similar video recording
acquisition techniques as in our paper, and we can show a reasonable improvement in MAE.
Despite this, for this particular use-case, the RMSE appears to be the more appropriate
metric as it is an indication of the reduced occurrence of large outliers in the estimations.
This speaks to the merits of the proposed methodology.

Table 5. HR Calculation via Smartphone: Performance Comparison.

Author RMSE (bpm) MAE (bpm)

Ayesha et al. (2021) [43] - 7.01
Niu et al. (2019) [41] 8.14 5.3

Jaiswal and Meenpal (2022) [42] 7.21 5.23

Current work 6.31 (Edge-Detection mode)
5.88 (Channel-Intensity mode)

5.84 (Edge-Detection mode)
5.63 (Channel-Intensity mode)

6. Conclusions

Smartphones, today, offer a cheap, accessible, and portable alternative to current
medical monitoring devices. A wide variety of physiological signals can be tracked through
them, thus making them suitable for remote telemedicine applications. The work proposed
in this report describes a way of determining the HR of a subject using data acquired from
a smartphone. A novel technique that makes use of the spatial and temporal location of the
fingerprint was also proposed here, which is used alongside channel-intensity techniques.
Data are acquired by making the subject record a video of their finger covering the back
camera and flash. The recording is then broken down into frames, validated, pre-processed,
and put through the Canny edge operator for ridge detection. A reference frame is then
selected and used to calculate the counter value, which in turn is used to determine the HR.
If, during the frame validation process, it is found that the Edge-Detection method cannot
be used, measurement based on mean channel intensity is carried out. Here, a raw PPG-like
signal is generated from the red channel of each frame, followed by pre-processing and
peak detection based on fixed constraints. The mean distances between the detected peaks
are then used to calculate the HR. The average relative accuracy for recordings via the
Edge-Detection mode was 93.04%, with a standard error of estimates (SEE) of 6.55, while
the Channel-Intensity mode showed an average relative accuracy of 92.75%, with an SEE
of 5.95. Both modes of HR calculation show statistically significant results and can be
considered as viable alternatives to current HR monitoring technologies.

Future Scope

The future scope for this proposed methodology involves developing a smartphone-
based application that performs a real-time reading of the subject’s HR with lowered error
rates. The application should be made to be suitable for all existing operating systems,
regardless of the model’s hardware and software specifications. Future work can include
analysis on the effect of a varying environment during the acquisition stage and its impact
on processing as well as error rates, on a larger dataset. Moreover, clinical physiological
signals are generally recorded at much higher sampling rates than standard recordings
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produced by smartphones. In order to counter this, future work will look into the effect of
the acquisition environment as well as the usage the ‘slow-mo’ capture mode available in
current smartphone models in the market. This mode of video recording captures videos
at higher sampling rates, thus providing more context for processing. Further work will
also be carried out to standardize acquisition techniques to be suitable specifically for the
Edge-Detection method. Currently, the method only works for Android-based smartphones
that have their flash located below the back camera lens. Developing acquisition protocols
for a broader range of smartphone models will not only improve accessibility for users, but
will also ensure reliability of the results.
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