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Abstract: Q-learning has been primarily used as one of the reinforcement learning (RL) techniques
to find the optimal routing path in wireless sensor networks (WSNs). However, for the centralized
RL-based routing protocols with a large state space and action space, the baseline Q-learning used
to implement these protocols suffers from degradation in the convergence speed, network lifetime,
and network energy consumption due to the large number of learning episodes required to learn
the optimal routing path. To overcome these limitations, an efficient model-free RL-based technique
called Least-Square Policy Iteration (LSPI) is proposed to optimize the network lifetime and energy
consumption in WSNs. The resulting designed protocol is a Centralized Routing Protocol for Lifetime
and Energy Optimization with a Genetic Algorithm (GA) and LSPI (CRPLEOGALSPI). Simulation
results show that the CRPLEOGALSPI has improved performance in network lifetime and energy
consumption compared to an existing Centralized Routing Protocol for Lifetime Optimization with
GA and Q-learning (CRPLOGARL). This is because the CRPLEOGALSPI chooses a routing path in a
given state considering all the possible routing paths, and it is not sensitive to the learning rate. More-
over, while the CRPLOGARL evaluates the optimal policy from the Q-values, the CRPLEOGALSPI
updates the Q-values based on the most updated information regarding the network dynamics using
weighted functions.

Keywords: wireless sensor network; routing; network lifetime; energy consumption; reinforcement
learning; path optimization; least-squares policy iteration

1. Introduction

A wireless sensor network (WSN) can be defined as a collection of application-specific,
low-powered, tiny devices called sensor nodes that are spatially deployed in a geographic
area to monitor, collect, process, and cooperatively communicate real-time physical or
environmental properties, such as temperature, sound, motion, pressure, humidity, etc. to
a central device called a sink using the wireless medium [1].

The advantages of WSN technology, when compared to traditional solutions of net-
working, are scalability, low costs, accuracy, reliability, flexibility, and deployment ease [2].
This has made WSNs efficient in different application fields, such as military, security,
environment, and healthcare. However, the quality of service (QoS) requirements posed by
these applications are limited by the resource constraints of the WSN, which are low power,
short transmission range, low bandwidth, low memory, and the limited processing and
computing speed of the sensor nodes [3].

Basically, a wireless sensor node is a device that consists of a power unit, sensing unit,
processing unit, and radio transceiver unit. The majority of the energy consumed in a
sensor node is due to data communication with other sensor nodes [4]. The power unit
consists of a limited energy source that supplies energy to the other units. Sensor nodes are
mostly deployed in harsh environments, which makes sensor battery replacement difficult.
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Subsequently, as the routing of data packets takes place between the sensor nodes and
the sink, the energy gets reduced. Routing means finding the best possible routes from
the sensor nodes to the sink. A routing protocol is required between source sensor nodes
which also act as routers in WSNs, to find the best paths between source nodes and the
sink for reliable communication. Routing protocols are responsible for setting up paths for
communication among sensor nodes and the sink [5].

Thus, routing in WSNs is an energy-consuming technique, which makes energy
consumption and increasing network lifetime major challenges in WSNs [6]. This implies
that if the path followed by a source sensor node to sink is not the best, more energy will
be consumed. Energy-efficient routing protocols are expected to distribute the load among
sensor nodes to reduce the energy consumption in WSNs and prolong the network lifetime.

Route optimization methods, therefore, play a vital role in WSNs, as optimal routing
leads to less energy consumption and thus prolongs the network lifetime. Route optimiza-
tion algorithms in WSNs consider multiple metrics, which include path length, energy, and
network lifetime. Thus resulting in a multi-objective optimization problem. Moreover, the
dynamically changing topology of WSNs, resulting from sensor nodes stopping activities
due to battery expiration from energy consumption, makes route optimization in WSNs an
NP-hard problem.

This makes routing that uses traditional route optimization techniques based on
a deterministic algorithm or Dynamic Programming (DP) such as Dijkstra and Floyd–
Warshall not suitable for complex and highly changing conditions of WSNs. This is because
of the huge assumptions regarding network condition changes and traffic flows. Artificial
intelligence, such as Reinforcement Learning (RL) and Genetic Algorithms (GA), can be
applied to find sub-optimal solutions by taking into consideration changing network
conditions as they appear in practice [7].

The energy-efficient utilization of sensor nodes can be achieved using three control
techniques, which are decentralized control, distributed control, and centralized control [8].
In decentralized control, the nodes are divided into clusters. Each cluster has a central
node that coordinates the activity of the nodes in each cluster. The activity of the nodes is
therefore determined by the interaction of the central node of each cluster. For distributed
control, each node makeslocal decisions with its partial knowledge of the entire network.
This normally results in non-optimal routes in terms of energy consumption. By contrast,
in centralized control, the network’s global knowledge is known by the sink by means of
its centralized database. The sink carries out the routing decisions. The centralized method
can lead to optimal routes.

The global knowledge of the sink in the centralized control approach enables the use
of optimal routing paths considering the constraint problem of energy efficient routing in
the WSN while maximizing the network lifetime. In the centralized control approach, the
routing and load balancing decisions of the network are made by the sink since the sensor
nodes have no intelligence. Therefore, the sensor nodes send data packets to the sink in
a multi-hop manner using the routing path selected by the sink and stored as the sensor
nodes’ routing table. The possible routing tables of the sensor nodes can be the possible
Minimum Spanning Trees (MSTs) generated by the sink after the network initialization [9].

However, the traditional centralized control approach for WSNs is limited by the sink
using a predetermined routing path to receive data packets from the sensor nodes. Since
the predetermined routing path is selected, not taking into consideration the optimization
problem of finding the best routing path(s) to balance the residual energy of sensor nodes
during data transmission, the network lifetime is degraded. This is because the usage of the
predetermined routing path does not consider the energy consumed by the sensor nodes to
send packets to the sink.

This challenge of learning an energy-efficient way of selecting the best routing path(s)
for the WSN’s centralized control technique can be obtained by making the sink intelligent.
One way of making the sink intelligent is to deploy artificial intelligence, such as RL, at the
sink.
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RL is a category of machine learning that solves a problem by learning with the trial-
and-error method [10]. The Lifetime-Aware Centralized Q-routing Protocol (LACQRP) [9]
uses an All-MSTs algorithm [11] to generate all the possible routing paths in the WSN.
However, the problem of generating all the MSTs of a network graph is NP-hard. This
makes LACQRP unfeasible in practice for very large WSNs. GA, a type of evolutionary
and search-based adaptive heuristic algorithm [12], can be deployed at the sink to alleviate
the NP-hardness associated with generating all the MSTs of large-scale WSN graphs using
the All-MSTs algorithm. The Centralized Routing Protocol for Lifetime Optimization using
Genetic Algorithm and Reinforcement Learning (CRPLOGARL) [13] enables the sink to
generate a subset of MSTs for a large-scale WSN graph in polynomial time. The subset
MSTs are then used as routing tables by the sensor nodes to send data packets to the sink.
The LACQRP and the CRPLOGARL use Q-learning [14] to learn the routing tables that
maximize the lifetime of the WSNs.

However, due to the large state space and action space of these protocols, the baseline
Q-learning used to implement these protocols suffers from degradation in the convergence
speed and network lifetime due to the large number of learning episodes required to learn
the optimal routing path. Moreover, Q-learning is very sensitive to parameter settings;
for example, changes in the learning rate affect the network lifetime. To overcome these
limitations, a highly efficient model-free RL-based technique called Least-Squares Policy
Iteration (LSPI) [15] is used to replace Q-learning, because LSPI chooses a routing path in
a given state considering all possible routing paths, and it is not sensitive to the learning
rate. Moreover, while Q-learning evaluates the optimal policy from the Q-values, the
LSPI updates the Q-values based on the most updated information regarding the net-
work dynamics using weighted functions. Therefore, this paper presents the design of a
Centralized Routing Protocol for Lifetime and Energy Optimization using GA and LSPI
(CRPLEOGALSPI) for WSNs.

The design of the proposed protocol is carried out by first representing the WSN
that consists of a set of sensor nodes and a sink as a weighted graph. After the network
initialization, the sink constructs the possible MSTs that are used as the routing tables (RTs)
using a GA. The construction of the MSTs is repeated by the sink after the death of sensor
node(s) during the round of data transmission until the network graph is disconnected. The
sink then uses LSPI to learn the optimal or near-optimal MST(s) during the round of data
transmission so as to maximize the network lifetime while minimizing the network energy
consumption. The performance analysis of the CRPLEOGALSPI is carried out by means of
a simulation using the network lifetime, the number of alive nodes (NAN), network energy
consumption, and computation time as performance metrics. The novelty of this paper is
as follows:

(i) Formulation of a reward function for the joint optimization of the lifetime and
energy consumption for WSNs.

(ii) Design of a centralized routing protocol using a GA and an LSPI for WSNs to
improve their lifetimes and energy consumption performances.

The remaining of the paper is presented as follows: Section 2 is the literature review.
Section 3 explains the design of the CRPLEOGALSPI. Section 4 is the simulation and
discussion of results, and Section 5 is the conclusion.

2. Literature Review
2.1. Fundamental Concepts

RL is a type of machine learning that makes an agent learn the dynamic behavior
of its environment by taking actions based on its current state, which improves learning
with time (maximizing the cumulative reward concept) using trial-and-error interaction
with the environment [10]. For example, a sink interacts with all the sensor nodes in the
network to make routing decisions for the sensor nodes. In this case, the agent is the sink,
the environment is the sink’s neighborhood, the state is the current unicast tree the nodes
are using to send data packets, and the action is the selection of the next unicast tree to
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be used by all the nodes to send data packets. An RL problem is solved by modeling the
problem as a Markov Decision Process (MDP), as shown in Figure 1. The MDP is made up
of four tuples (S, A, P, R), where S denotes the states set, A is the actions set, P is the state
transition probability matrix, and R is the reward function. P and R combined together are
used to describe the model of the environment. The probability of being in a given state
St+1 = ŝ from a current state St = s by taking action At = a, and getting a reward Rt+1 = r
is known as the transitional probability, given in Equation (1) [16].

p(ŝ, r|s, a) = Pr(St+1 = ŝ, Rt+1 = r|St = s, At = a) (1)

Figure 1. RL Model as an MDP [10].

The reward function enables the environment to provide feedback as a form of reward
to the agent. The reward is the measurement of the effect of the recently taken action by
the agent from its current state. The two methods of RL problems are model-free and
model-based methods. In the model-free method, the agent enhances its policy without
inferential knowledge of the model of the environment. That is, the matrix of the state
transition probabilities is not needed.

Whereas, in the model-based method, the agent learns the model of the environment
by computing the matrix of the state transition probabilities and then enhances its policy to
approach optimality. The model-based methods learn faster than the model-free methods
because the information stored in their internal model is reused.

However, the model-based methods are not generally used in practice due to their
dependency on the initial environment model’s accuracy and the larger size of storage costs
and computations. Consequently, in both methods, the role of the agent is to maximize
a discounted global reward received over time while finding a policy that maps states to
actions. A policy πt determines the learning behavior of an agent at a given instance of
time t.

In RL, what is bad or good in an immediate sense is depicted by a reward function,
whereas what is bad or good in the long run is depicted by a value function. There are
two types of Q-value functions, which are the action-value function and the state-value
function. The action-value function computes how good it is for an agent in a given state
to take a given action. At the same time, the state-value function computes how good it
is for an agent to be in a given state. The majority of the work carried out on RL to solve
unicast routing problems in networks used model-free methods [17]. This is because they
do not need the network’s environment models, which are difficult to get as a result of their
dynamically changing properties like the residual battery capacities, lifetime of nodes, etc.,
in WSNs.

In RL, the quality of taking an action, At = a from a state, St = s, is given using a
Q-value, Q(s, a), which is known as the state–action-value function. The aim of finding
a solution to an MDP is to learn an optimal policy that maps states to actions in order to
maximize the cumulative reward. The aim of finding a solution to an MDP is the same as
finding the Q-fixed points given by the Bellman equation as shown in Equation (2).

Qπ(s, a) = r(s, a) + γ ∑̂
s

p(ŝ|s, a)max
â
{Qπ(ŝ, â)} (2)
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where Qπ(s, a) is the expected, discounted total reward when taking action a at state s,
and thereafter following policy π, r(s, a) is the expected reward obtained immediately by
taking an action a when in a state s, and it is calculated as in Equation (3):

r(s, a) = ∑̂
s

p(ŝ|s, a)R(s, a, ŝ) (3)

where p(ŝ|s, a) is the probability transition model that gives the probability of being in a
state ŝ, after taking an action a when in state s. R(s, a, ŝ) is the immediate reward obtained
when an agent takes an action a when at state s in transit to state ŝ. The last term in
Equation (2) is the expected maximum future reward. γ is the discount factor and models
the fact that the future reward is less valuable than the immediate reward.

In the context of a centralized learning routing technique, each minimum spanning
tree (MST) is a state s, and for each of the other MSTs, which is a possible next state ŝ, is an
action a with transition probability p(ŝ|s, a) = 1. Taking action a, at state s means the sink
sends the selected MST as the routing table to the sensor nodes for data transmission to
the sink. This enables getting the optimal routing path from a succession of table look-up
processes. This challenge of learning the optimal routing policy is similar to solving the
Bellman equation given in Equation (2).

2.1.1. Q-Learning

Watkins (1989) proposed a model-free learning technique called Q-learning to solve
the Bellman equation deterministically when the state probability and reward system are
known [14]. Q-learning is an off-policy temporal-difference control algorithm that enables
the direct approximation of the Bellman equation. Q-learning has been mostly used for
solving unicast routing RL problems in networks. This is because the technique was proven
to converge to the optimum action values with one as the probability if, and only if, all
actions are continuously sampled in all of the states. In Q-learning, the quality of selecting
action a ∈ A when in a state s ∈ S is based on the calculated state–action-value function
called Q-value. The Q-values give the measure of accumulated rewards an agent gets from
all pairs of state–action. The estimate of the state–action-value function Q(s, a) that an
agent used to learn the best action in a particular state is achieved by storing the Q-values
Q(st, at) of pairs of state–action with the iterative update rule in Equation (4).

Q(st, at) = (1− α)Q(st, at) + α

[
Rt+1 + γ ∗max{Q(st+1, a)}

]
(4)

where 0 < α ≤ 1 represent the learning rate and 0 ≤ γ ≤ 1 represent the discount factor.
The learning rate gives the degree to which the later learned Q-value impacts the former
Q-value. The nearer the magnitude of α is to one, the more the effect of the later calculated
Q-value on the former one. If α is one, then the later computed Q-value replaces the former
Q-value totally. The discount factor manages the agent’s appreciation for hereafter rewards
with respect to the recent reward. If γ is 1, both the recent reward and the hereafter reward
are regarded equally.

Q-learning, as a model-free off-policy RL technique, is appropriate for learning optimal
routing rules in WSNs because of its simplicity and non-requirement for any knowledge
of the underlying transition and reward mechanism. However, Q-learning suffers the
following drawbacks if it is used in learning optimal routing rules in WSNs.

(i) A large number of iterations are required to learn the optimal routing path; this
leads to the degradation of the convergence speed and routing performance.

(ii) It is very sensitive to parameter settings; for example, changes in the learning rate
affect the routing performance.



Computers 2023, 12, 22 6 of 28

2.1.2. Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) is a model-free, off-line, and off-policy approxi-
mation policy iteration RL technique proposed by Lagoudakis and Parr (2003) [15]. LSPI
addresses the challenges associated with Q-learning by replacing the direct evaluation of
the optimal state–action value function of the Bellman equation by approximating Q-values
for each policy using a linear weighted function approximator, That is, a set consisting of
k state–action-dependent basic functions ϕ(s, a) provides the information of the selected
state–action pair features as given in Equation (5).

F =

{
ϕj(s, a) : S× A 7→ R, j = 1, . . . , k

}
(5)

The basic functions are fixed and manually designed. The state–action value function
is therefore approximated as the weighted linear combination of the k basic functions as
given in Equation (6).

Q̂π(s, a) =
k

∑
j=1

ϕj(s, a)wj = ϕ(s, a)Tw (6)

where wj is the weight associated with the jth basic function. From the approximated form
of Equation (2), using Equation (6), the matrix form of Equation (2) can be written as in
Equation (7).

Ψw ≈ R + γPπΨw (7)

where Ψ is a matrix of basic functions for each state–action pair and is of size |S||A| × k.
Equation (7) can be reformulated as Equation (8) for a linearly dependent column of Ψ.

ΨT(Ψ− γPπΨ)wπ = ΨT R (8)

Solving the linear system in Equation (8) leads to the extraction of the weights associ-
ated with Q̂π(s, a) in Equation (6). The equation for extracting the weights can be written
as in Equation (9).

wπ = X−1y (9)

where X and y are given in Equations (10) and (11), respectively.

X = ΨT(Ψ− γPπΨ) (10)

y = ΨT R (11)

LSPI, as a model-free off-policy learning algorithm, learns X and y using sampling
from the environment. Subsequently, the learned X and y are used to learn the weights to
approximate the state-value function Qπ of a fixed policy π from the obtained samples using
Least-Squares Temporal-Difference Learning (LSTDQ) [15]. The LSTDQ is an algorithm
similar to the least-squares temporal-difference learning algorithm (LSTD) [18] and learns
the approximate state–action-value function of a fixed policy, therefore allowing action
selection and policy improvement without a model.
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Therefore, with a set of samples D =

{
(si, ai, ri, ŝi)|i = 1, 2 . . . , M

}
obtained from

the environment, the approximated versions of Ψ, PπΨ, and R are constructed using
Equations (12)–(14), respectively.

Ψ̂ =



Ψ(s1, a1)
T

...
Ψ(si, ai)

T

...
Ψ(sM, aM)T

 (12)

ˆPπΨ =



Ψ(ŝ1, π(ŝ1))
T

...
Ψ(ŝi, π(ŝi))

T

...
Ψ( ˆsM, π( ˆsM))T

 (13)

R̂ =



r1
...
ri
...

rM

 (14)

Therefore, the approximated X̂ and ŷ can be given as in Equations (15) and (16),
respectively.

X̂ =
Ψ̂T(Ψ̂− γ ˆPπΨ)

M
(15)

ŷ =
Ψ̂T R̂

M
(16)

Since in a practical evaluation of X̂ and ŷ, M is finite, the solution to the system will
not be affected if the factor 1/M is dropped. If X̂ and ŷ combined can be obtained in a
single sample, then constructing an iteration update rule for X̂ and ŷ is feasible.

Assuming X̂0 = 0 and ŷ0 = 0 initially, the current learned approximates of X and y
for a fixed policy π, will be X̂i and ŷi, respectively. Therefore, Equations (17) and (18) will
give the approximated values of X̂i+1 and ŷi+1, respectively for a new sample (si, ai, ri, ŝi).

X̂i+1 = X̂i + ϕ(si, ai)

[
ϕ(si, ai)− γϕ(ŝi, π(ŝi))

]T

(17)

ŷi+1 = ŷi + ϕ(si, ai)ri (18)

The weight is updated as the iteration procedure repeats with the improved policy
until the optimal policy is reached. That is, the weights of policies between successive
iterations do not differ significantly. Therefore, the learning agent in a given state chooses
its action in each learning round using the learned policy given in Equation (19).

π(s|wπ) = argmax
a

(ϕ(s, a)Twπ) (19)
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2.2. Review of Similar Works

The first hop-by-hop routing protocol to utilize RL is called Q-routing, proposed
by Boyan and Littman [19]. Q-routing minimizes the packet delivery delay. However,
Q-routing is limited by drawbacks that include Q-value freshness, sensitivity to parameter
settings, and slow convergence to the optimal routing rules. Different works have consid-
ered the design of RL routing protocols to minimize energy consumption or/and maximize
the lifetime of WSNs. These works are presented in the sequel.

Zhang and Fromherz [20] designed RL-based constrained flooding for WSNs to opti-
mize the number of packets transmitted when sending data packets from source nodes to
the sink. The cost of flooding was reduced by using Q-learning to learn the packet sending
cost, which can be a delivery delay, hop counts, etc., thus enabling energy saving. The
estimated cost of the sender, which is captured in the Q-value, is encapsulated in each
data packet. The RL-based constrained flooding action is packet broadcasting using either
constrained propagation, differential delay, or probabilistic retransmission without using
control packets. The RL-based constrained flooding has improved energy efficiency when
compared with direct routing [21] and a backbone tree [22] that uses direct diffusion [23]
with simulations. However, direct routing has a better packet delivery delay than RL-based
constrained flooding.

Wang and Wang [24] proposed a routing algorithm called Adaptive Routing for
WSNs, using RL (AdaR) to maximize the network lifetime. The protocol uses multiple
factors including hop count, residual energy, link reliability, and the number of routing
paths crossing a node to determine the optimal routing path. AdaR converges faster
than Q-routing to the optimal solution and does not suffer from the problem of initial
parameter setting.

Nurmi (2007) proposed an energy-aware and selfish RL-based routing protocol for
ad hoc networks [25]. The protocol uses RL, function approximation, and stochastic
approximation to choose the next forwarder. The protocol provides a generic model to
evaluate the node energy consumption, ratio of packet re-forwarding, and selfishness.
This enables the dynamic association of a forwarding probability to each of the nodes’
neighbors. However, the selfishness and energy function were not provided since the
protocol was generic.

Dong et al. [26] proposed a Reinforcement Learning Based Geographical Routing
Protocol (RLGR) for ultra-wideband sensor networks. The protocol seeks to improve the
network lifetime by reducing packet delivery delay and distributing energy consumption
among nodes uniformly. The RLGR considers hop counts to the sink and residual energy
of nodes when choosing the next forwarder. The RLGR improves the network lifetime by
at least 75 percent when compared with Greedy Perimeter Stateless Routing (GPSR) in a
simulation [27].

Arroyo-Valles et al. [28] proposed a geographical routing algorithm for WSNs called Q-
Probabilistic routing (Q-PR). Q-PR uses RL and a Bayesian decision model to make routing
decisions based on a delayed reward of previous actions and the immediate interaction
between neighboring nodes. Q-PR maintains the trade-off between network lifetime and
the expected number of re-transmissions while increasing the packet delivery ratio.

Naruephiphat and Usaha [29] proposed a routing protocol for a Mobile ad hoc net-
work (MAGNET) to balance the tradeoff between minimizing energy consumption and
maximizing network lifetime. This is achieved by using RL to select routing paths based on
the energy consumption of paths and residual energy of nodes. The protocol yields a high
ratio of packet delivery using low network energy consumption and thereby promotes, in
the long run, network lifetime.

Forster and Murphy [30] designed a distributed multicast routing algorithm based
on RL called E-FROMS. E-FROMS balanced the energy consumption in a multiple-sink
WSN by learning the optimal spanning tree that minimizes the energy-based reward. The
reward is a function of the hop counts of a path and the minimum sensor nodes’ residual
energy on the path for sending packets from a source node to multiple mobile sinks. Each
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sensor node is an agent with its state as a set of sinks, and for each sink, the set of paths to
that sink. The action is to select the next hop to send packets to multiple destinations using
the epsilon-greedy exploration policy. The strength of E-FROMS is that the communication
overhead is low, which enables the achievement of good bandwidth utilization. However,
the state space and action space overhead are high and very high, respectively.

Hu and Fei [31] proposed a Q-learning-based energy-efficient and lifetime-aware
routing (QELAR) for an underwater sensor network (UWSN) to find the optimal routing
path from each source sensor node to the sink. QELAR increases the lifetime of the network
by distributing the residual energy of each sensor node evenly. This is achieved by each
sensor node learning the optimal routing path using a reward function that considers
the sensor node’s residual energy and a group of sensor nodes’ distribution energy while
forwarding data packets by each sensor node.

Yang et al. [32] proposed a reinforcement learning-based routing protocol between sen-
sor nodes and mobile sinks, which are vehicles. The protocol enables the direct interaction
between the sensor nodes and the mobile sinks taking multiple metrics such as residual
energy and hop count in learning the routing paths.

Oddi et al. [33] modify the Q-Routing protocol, designed for wired networks, to enable
the application for WSNs. The proposed routing protocol, called optimized Q-Routing
(OPT-Q-Routing), optimizes the network lifetime by balancing the routing load among the
sensor nodes, taking into consideration the sensor nodes’ current residual energies while
minimizing the control overhead.

Jafarzadeh and Moghaddam [34] proposed a routing protocol for WSNs called Energy-
aware QoS routing RL-based (EQR-RL). EQR-RL minimizes the energy consumption in
WSNs while ensuring the packet delivery delay. EQR-RL selects the next forwarder of data
packets using the probability distribution-based exploration strategy. The reward function
considered in designing EQR-RL is the combination of the weighted metrics of the residual
energy of the selected forwarder, the ratio of packets between the packet sender to the
selected forwarder, and link delay.

Guo et al. [35] designed an intelligent routing protocol for WSNs built on RL named the
reinforcement-learning-based lifetime optimization (RLLO) routing protocol. The reward
function used by RLLO to update the Q-values of the agents is the sensor node’s residual
energy and the hop counts of the sensor nodes to the sink. The performance analysis of
RLLO is carried out with simulations and the result showed that RLLO had improved
network lifetime and packet delivery delay when compared with energy-aware routing
(EAR) [36] and improved energy-aware routing (I-EAR) [37].

Debowski et al. [38] proposed a hybrid protocol called Q-Smart Gradient-based rout-
ing protocol (QSGrd). QSGrd minimizes the energy consumed by the sensor nodes in the
WSNs by jointly using Q-learning and a transmission gradient. In QSGrd, each sensor node
neighbor is associated with successful transmission probability, which is a function of the
distance between nodes and maximum transmission range. The success transmission prob-
abilities of the sensor node’s neighbors cause a transmission gradient. Subsequently, the
Q-values are updated by the success transmission probabilities. The optimal routing paths
are calculated with the mean smaller number of packet transmissions to the destination,
which is the sink and the residual energy of the next hop with Q-learning.

Renold & Chandrakala [39] proposed a routing protocol for WSNs called Multi-agent
Reinforcement Learning-based Self-Configuration and Self-Optimization (MRL-SCSO). In
this protocol, the reward function is defined using the buffer length and the node residual
energy. The next forwarder selected is the neighbor with the maximum reward value.
The protocol also incorporates the sleeping scheduling scheme to decrease the energy
consumption of nodes. The network lifetime of MRL-SCSO is higher than that of the
Collect Tree Protocol (CPT) [40] when compared using a simulation.

Geo et al. [41] proposed a Q-learning routing protocol for WSNs called Reinforcement
Learning-Based Routing (RLBR) to optimize the network lifetime. RLBR searches for
optimal paths for transmitting packets from each node to the sink, taking into consideration
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of hop count, link distance, and residual energy in its reward function. RLBR utilizes a
transmit power adjusting and data packet carrying feedback scheme to increase packet
delivery, balance energy consumption, and reduce overall energy consumption. RLBR
performs better than EAR, Balanced energy-efficient routing (BEER) [37], Q-Routing, and
MRL-SCSO in terms of network lifetime and energy efficiency.

Bouzid et al. [42] proposed a routing protocol to optimize lifetime and energy con-
sumption. R2LTO learns the optimal paths to the sink by considering the hop count,
residual energy, and transmission energy (distance) between nodes. R2LTO consists of two
processes, which are the discovery process to know the network topology and the contin-
uous learning routing process. The effectiveness of R2LTO is carried out by comparison
with Q-routing and RLBR using a simulation, and the results show that R2LTO performs
better in terms of network lifetime and energy efficiency.

Sapkota and Sharma [43] designed an RL-based routing protocol to optimize the
network lifetime in WSN. The agents, which are the sensor nodes, choose the next forwarder
with Q-learning by using the inverse of the distance between connected sensor nodes as
the reward function. Simulation results showed that the proposed protocol had improved
performance when compared with the baseline direct diffusion protocol [44].

Mutombo et al. [45] proposed an RL-based Energy Balancing Routing (EBR-RL) pro-
tocol for WSNs. EBR-RL protocol balances the energy consumed between sensor nodes
and thereby maximizes the lifetime of the WSN. The EBR-RL protocol works in two phases.
The first phase is the network setup and initialization, while the second phase is learning
the optimal path for data transmission with RL. The EBR-RL protocol has improved perfor-
mance in terms of the lifetime of the network and energy consumption when compared
with baseline energy-efficient routing protocols.

Obi et al. [9] designed a lifetime aware centralized Q-routing protocol (LACQRP)
for WSNs. The sink generates all possible MSTs of the network, which are used as the
RTs. Q-learning is deployed on the sink to learn the optimal RT that maximizes the
network lifetime. Simulation results show that the LACQRP converges to the optimal
RT and has a better network lifetime when compared with RLBR and R2LTO. However,
the LACQRP’s computational complexity increases exponentially with the number of
network sensor nodes. This makes the LACQRP inapplicable for large WSNs.

Obi et al. [13] proposed a Centralized Routing Protocol for Lifetime Optimization
using a Genetic Algorithm and Reinforcement Learning (CRPLOGARL) that solves the
problem of NP-hardness in the LACQRP. The CRPLOGARL also uses Q-learning to
learn the MSTs that maximize the network lifetime. Simulation results show that the
CRPLOGARL can provide a suboptimal routing path when compared to the LACQRP
with less computational time. However, due to the large state space and action space
of the LACQRP and CRPLOGARL, the baseline Q-learning used to implement these
protocols suffers from degradation in the convergence speed and network lifetime due
to the large number of learning episodes required to learn the optimal routing path.

The comparison of the related works is shown in Table 1.
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Table 1. Comparison of the related works.

Routing
Protocol Objective RL

Technique
Control
Technique Drawback

Q-Routing [19]
Learns the optimal
paths to minimizes
the packet delivery delay.

Q-learning Distributed

i. Requires Q-value
freshness.
ii. Sensitivity to
parameter setting.
iii. Slow convergence
to optimal routing paths.

RL-based
constrained
flooding [20]

Optimizes the cost
of constrained flooding
(delivery delay, hop count).

Q-learning Distributed

Degradation in
packet delivery delay
when compared
with direct routing.

AdaR [24]

Maximizes network
lifetime taking into
consideration
the hop count,
node residual
energy, link reliability,
and the number
of paths crossing a node.

LSPI Distributed

i. No explicit definition
of the network lifetime.
ii. High computation
complexity.

Energy-aware
selfishness
RL-based
routing [25]

Minimizes the energy
consumption. Q-learning Distributed

The selfishness and
energy functions
were not provided.

RLGR [26]

Improved the network
lifetime by learning
the optimal routing
paths with factors such
as hop count and node
residual energy.

Q-learning Distributed
Slow convergence
to the optimal
routing paths.

Q-PR [28]

Maintains the trade-off
between network lifetime
and the expected the number of
retransmissions
while increasing
the packet delivery ratio.

Q-learning Distributed

i. The message’s importance is
not balanced with the energy
cost of using a constant
a discount factor of one.
ii. The selection of the next
forwarder requires
the requisites of neighbors.
iii. Non-refinement of the
estimation of the
residual energy
of the sensor nodes.

RL-based
balancing
energy
routing [29]

Balancing the trade-off
of minimizing energy
consumption and
maximizing the
network lifetime by
selecting routing paths
based on the energy
consumption of paths
and residual
energy of nodes.

Q-learning Distributed

The network lifetime
is the time when the
the first node depletes
its energy source,
however, sensing
is still possible
unless the node is the sink.

E-FROMS [30]

Balances the energy
consumption in
multiple sinks
by learning the
optimal spanning
tree that minimizes
the energy-based reward.

Q-learning Distributed

The state space and
action space overhead
are high and very
high respectively.

QELAR [31]

Increases the network
lifetime by finding
the optimal routing path
from each sensor
node to the sink and
distribute the residual
the energy of each
sensor node evenly.

Q-learning Distributed

i. High overhead
due to control packets.
ii. Slow convergence to
the optimal routing paths.
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Table 1. Cont.

Routing
Protocol Objective RL

Technique
Control
Technique Drawback

RL-based
routing
interacting
with WSN
with moving
vehicles [32]

Learn the routing paths
between sensor nodes
and moving sinks
taking into consideration of
hop count and energy
signal strength to maximize
the network lifetime.

Q-learning Distributed High overhead due
to control packets.

OPT-EQ-Routing [33]

Optimizes the network
lifetime while
minimizing the
control overhead by
balancing the routing
load among the sensor
nodes taking into
consideration the
sensor nodes’ current
residual energies.

Q-learning Distributed
Requires too many
iterations to converge
to the optimal paths.

EQR-RL [34]

Minimizing the network
energy consumption
while ensuring
the packet delivery
delay by learning
the optimal routing path
taking into consideration
the residual energy of the
next forwarder, the ratio of
packets between the packet
sender to the selected
forwarder, and link delay.

Q-learning Distributed High convergence time
to the optimal route.

RLLO [35]

Maximizing the
network’s lifetime
and packet delay by
learning the routing paths
using the node
residual energy
and hop counts
to the sink in the
reward function.

Q-learning Distributed Very high probability
of network isolation.

QSGrd [38]

Minimizing the energy
consumption
of the sensor nodes
by jointly using Q-learning
and transmission gradient.

Q-learning Distributed

i. Slow convergence
to the optimal
routing paths.
ii. The static parameter
of the Q-learning
leads to network
performance
degradation.
iii. Increased
computation time.

MRL-SCSO [39]

Maximizes the network
lifetime by learning
the next forwarder
taking into account
buffer lengthand node
residual energy.
Incorporating a
sleeping schedule
decreases the energy
consumption of nodes.

Q-learning Distributed
Increased number
of episodes to
learn the network.
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Table 1. Cont.

Routing
Protocol Objective RL

Technique
Control
Technique Drawback

RLBR [41]

Search for optimal
paths taking
into consideration
of hop count,
link distance,
and residual energy.

Q-learning Distributed
Slow convergence
to the optimal
routing paths.

R2LTO [42]

Learns the optimal paths
to the sink by
considering the
hop count,
residual energy, and
transmission energy
between nodes.

Q-learning Distributed
Slow convergence
to the optimal
routing paths.

RL-based
routing
protocol
[43]

Chooses the next
forwarder with
Q-learning by using the
the inverse of the
distance between
connected sensor nodes.

Q-learning Distributed
Increased number
of episodes to
learn the network.

EBR-RL [45]

Learns the optimal
routing path
using hop count
and the residual energy
of sensor nodes
to maximize the
network lifetime.

Q-learning Distributed
Slow convergence
to the optimal
routing paths.

LACQRP [9]

Learn the optimal
MST that
maximizes the
network lifetime.

Q-learning Centralized

Computational complexity
increases exponentially
with the number
of sensor nodes.

CRPLOGARL
[13]

Learn the optimal
or near-optimal
MST that maximizes
the network’s lifetime.

Q-learning Centralized
Slow convergence
to the optimal
or near-optimal MST.

3. Methodology

A WSN consists of a set of sensor nodes and a sink. When the network has been
set up and initialized, all the sensor nodes broadcast their status information to the sink.
The status information of each sensor node broadcasted to the sink includes a distinctive
identification (ID), x− y cartesian coordinates, traffic load (number of data packets to send
in each second to the sink), initial residual energy, and maximum communication range.
The graph of the WSN G = (V,E), is built after the sink has received all the sensor nodes’
status information. V = {v1, . . . , vn} is the sensor nodes set and E = {e1, . . . , em}⊆V× V is
the WSN links set. Each link is the connection between two sensor nodes in the WSN. Two
sensor nodes are only connected if their cartesian distance is equal to or less than the sensor
nodes’ maximum communication range. The list of routing tables (RTs) is computed by
the sink with GA-based MSTs when the edge weight is the cartesian distance between two
connected sensor nodes. The sink selects an RT in each learning round of data transmission
with an LSPI and broadcasts it to all sensor nodes for data transmission. This enables the
global energy consumption and network lifetime optimization of the WSN. The centralized
routing protocol for energy and lifetime optimization using GA and LSPI is presented in
the sequel.
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3.1. A GA-Based MSTs

The GA-based MSTs is extracted from the CRPLOGARL [13] for WSNs and is pre-
sented in the sequel.

Consider an integer weight w(e) > 0 that is associated with an edge e ∈ E. Let w(T)
be the sum of the edge weights in an MST of the network graph. The computational
complexity of finding all MSTs of the network graph is exponential (that is, the problem is
NP-hard). The approach GA is used to alleviate the NP-hardness of the All-MST algorithm.
The distance-based MST is considered and is defined as the spanning tree having the
minimum possible total cartesian distances between the connected vertices.

The GA population is obtained from MSTs calculated with a baseline MST algo-
rithm [46]. The baseline algorithms for finding the MST of a connected undirected graph
are Prim’s algorithm [47], Kruskal’s algorithm [48], and Boruka’s algorithm [46]. Boruka’s
algorithm and Kruskal’s algorithm normally yield a network graph with only one MST.
The reason is that Boruka’s and Kruskal’s algorithms add the least edge to an existing tree
while looking at the whole network graph until the MST is obtained. Subsequently, Prim’s
algorithm finds an MST by inputting any node as the root. This enables Prim’s algorithm to
generate more than one MST for a network graph that does not have distinct edge weights
when using different nodes as the root [49]. Therefore the maximum MSTs that can be
generated by Prim’s algorithm for a network graph when varying the root node is the
number of the graph nodes n.

The GA-based MSTs extracts different MSTs of the network graph as the initial popu-
lation with the baseline Prim’s algorithm by varying the root node. Prim’s algorithm for
generating the initial population runs in O(Nm log n) time, where n, m, and N is the number
of nodes, edges, and MSTs of the network graph G, respectively. n is the upper bound of N.
The algorithm for finding the GA initial population is given in Algorithm 1.

Algorithm 1 Algorithm to generate initial population for GA-based MSTs.

Input: G(V,E)
Output: MSTs
MSTs = {}
j = 0
while j < n do

Select vertex j as the root node
T = Prim(G, j)
if T /∈ MSTs then
MSTs← T

end if
end while
Return MSTs

The GA for generating MSTs for the number of generations, NG specified, is given in
Algorithm 2.

A chromosome in the initial population is an MST, with its genes as the graph
edges [50]. The mutation operator and the crossover operator are used to evolve the
initial population. This results in the generation of new MSTs as a result of the inheritance
of some parents’ edges.

The fitness of the newly formed individual, Tk is measured with the objective function,
which is the cost of the MST, T∗ of the network graph as given in Equation (20).

f itness(k) = Poss
[

∑
u,v∈Tk

du,v = ∑
u,v∈T∗

du,v

]
(20)
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where du,v is given in Equation (21).

du,v =
√
(x(u)− x(v))2 + (y(u)− y(v))2 (21)

Algorithm 2 GA for generating MSTs.

Input: mr, cr, NG
Output: MSTs

1: P = {}
2: Form k ≤ n distinctive MSTs with Algorithm 2
3: P ← k unique MSTs
4: for i = 1 to NG do
5: Pi = {}
6: nc =

100
cr

7: for j = 1 to nc do
8: T1,T2 ∈R P
9: G1 = T1∪ T2

10: T = Prim(G1, v)
11: if T /∈ Pi then
12: Pi ← T
13: end if
14: end for
15: nm = 100

mr
16: for j = 1 to nm do
17: T3 ∈R P
18: ei,j ∈R T3
19: G2 = T3− ei,j
20: G∗ = G− ei,j
21: Cut Set = {ei,j | ei,j ∈ G∗ & ei,j /∈ G2}
22: e∗i,j ∈R Cut Set

23: G2∗ = G2+ e∗i,j
24: if G2∗ is a tree of G then
25: if G2∗ /∈ Pi then
26: Pi ← G2∗

27: end if
28: end if
29: end for
30: for T in Pi do
31: Calculate f itness with Equation (20)
32: if f itness is True then
33: if T /∈ P then
34: P ← T
35: end if
36: end if
37: end for
38: end for
39: Return P

The mutation process is achieved by randomly selecting an edge ei,j from a chosen
MST T3 contained in the population and removing ei,j from T3 and the original network
graph G to create the sub-graphs G2 and G∗, respectively. A random edge e∗i,j contained in
the cut set of G∗ is added to G2 to form a new sub-graph, G2∗ [51].

The cut set of G∗ is the set of edges contained in G∗ and are not contained in G2. The
individual formed by the mutation process has to be a tree of G before it is accepted, as
illustrated in Figure 2. The number of times to apply the mutation operator before choosing
the fitness individual is specified by the mutation rate mr.
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Figure 2. MST Mutation.

The crossover process is achieved by selecting two individuals T1 and T2 randomly
from the population as parents to create offspring for the subsequent generation. T1 and T2
are joined to create a sub-graph G1 of G by passing the union operation [51]. The individual
form is an MST of G1 and the network graph G as shown in Figure 3. The number of times
the crossover operator is carried out is determined by the crossover rate cr.

Figure 3. Crossover between two MSTs T1 and T2.

3.2. A Centralized Routing Protocol for Lifetime and Energy Optimization Using GA and LSPI

After the network initialization, the sink generates possible distance-based MSTs
using the GA-based MSTs. The generated MSTs are used as the routing tables (RTs) by
the CRPLEOGALSPI. The optimization problem addressed by the CRPLEOGALSPI is
to maximize the network lifetime while minimizing the network energy consumption
in the WSNs. The optimization problem is formulated as a bi-objective mixed integer
programming defining the objective function and the set of constraints.
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The optimization problem is to find the RT such that:

max
v∈V

{
ESREv

}
+ min

v,u∈V

{ |V|
∑
u=0

|V|

∑
v=0

eu,vECu,v

}
subjectto (22a)

|V|

∑
u=0,u 6=v

eu,v = 1 (22b)

|V|

∑
v=0,u 6=v

eu,v = 1 (22c)

du,v ≤ Rmax (22d)

eu,v ∈ {0, 1} (22e)

Equation (22a) is the objective function and Equations (22b)–(22e) are the constraints.
The variable ESRVv is the estimated sensor node residual energy of the vth sensor node. eu,v
is the connection index when the uth sensor node is connected to the vth sensor node. Eu,v
is the energy consumption when the uth sensor node communicates with the vth sensor
node. du,v is the link distance between the uth sensor node and the vth sensor node. Rmax
is the network’s maximum transmission radius.

The first term of the objective function in Equation (22a) is used to maximize the net-
work lifetime, while the second term is used to minimize the network energy consumption.
The constraints in Equation (22b) and (22c) ensure that the routing path is a tree. The
constraint in Equation (22d) enables transmission between two connected sensor nodes
whose link distance is less than or equal to the maximum network transmission radius.

Therefore, the CRPLEOGALSPI tries to find the RT that maximizes the network
lifetime while minimizing the network energy consumption using LSPI. The network
lifetime considered in the design of the CRPLEOGALSPI is the time for the network graph
to be disconnected; that is, the time taken for an alive sensor node not to find a path to the
sink for data transmission. The CRPLEOGALSPI is deployed at the sink.

The solving process of the objective function subject to the constraints is given in the
design of the proposed protocol using LSPI and is provided in the sequel.

The state space and action space of the agent are the MSTs generated by the GA-based
MSTs. For a current MST, s, being used by the sink in receiving data from the sensor
nodes, the action of the agent is to choose another MST, a, that maximizes the network
lifetime while minimizing the network energy consumption. The next state of the agent,
ŝ is the same as the choosing action in the current learning episode, that is, P(ŝ|s, a) = 1.
The features considered in designing the basic functions of the CRPLEOGALSPI for the
state–action pair are the maximum energy consumption of the sensor nodes, ECmax(s, a)
and the sum of the energy consumption of the sensor nodes, ECsum(s, a) when using a to
receive data packets by the sink.

The first basic function is used to model the maximization of the network lifetime,
while the second basic function is used to model the minimization of the network energy
consumption. The set of the basic functions for the state–action pair (s, a) is therefore given

as ϕ(s, a) =
{

ECmax(s, a), ECsum(s, a)
}

.

The Q-values of the state–action pair are approximated using Equation (23)

Q̂(s, a) = w1ECmax(s, a) + w2ECsum(s, a) = wϕ(s, a)T (23)

where w1 and w2 are the weights associated to the basic functions ECmax(s, a) and ECsum(s, a),
respectively, w is the weight matrix of size 2× 1 and ϕ(s, a)T is the transpose of the basic
function matrix of size 1× 2.
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The weight, w in the Equation (23) is approximated using a set of samples D ={
(si, ai, ri, ŝi)|i = 1, 2 . . . , M

}
as given in Equation (24).

ŵ = X̂−1ŷ (24)

The set of samples D is obtained by taking a random action in a given state.
The algorithm used to generate the random samples by the sink is given in Algorithm 3.

Algorithm 3 Samples Generation Algorithm.

Input: List of RTs, Maximum number of samples, |D|max, Number of iterations, N
Output: Set of samples, D

1: D = {}
2: Initialize a random RT as s0
3: for i = 1 to N do
4: si = so
5: The agent Choose a random RT, ai
6: The agent receives a reward, ri using Equation (27)
7: si ← so
8: ŝi = so
9: if (si, ai, ŝi, ri) /∈ D then

10: D ← (si, ai, ŝi, ri)
11: end if
12: if |D| = |D|max then
13: break
14: end if
15: end for
16: Return D

Assuming X̂0 = 0 and ŷ0 = 0 initially, Equations (25) and (26) will give the approxi-
mated values of X̂i+1 and ŷi+1, respectively, of a new sample (si, ai, ri, ŝi)

X̂i+1 ← X̂i + ϕ(si, ai)

[
ϕ(si, ai)− γϕ(ŝi, argmin

a∈A
(ŝi, a))

]T

(25)

where γ is the discount factor.

ŷi+1 ← ŷi + ϕ(si, ai)ri (26)

The reward obtained is modeled as in Equation (27)

ri = max
v∈V
{ECv}+ sum

v∈V
{ECv} (27)

where ECv is the energy consumption by the vth sensor node.
The sink evaluates the ECv after each learning round using the difference between

the formerly estimated sensor residual energy ESREPrevious
v and the later estimated sensor

residual energy, ESRECurrent
v . Therefore ECv is as given in Equation (28).

ECv = ESREFormer
v − ESRELater

v (28)

The network lifetime is maximized while minimizing the energy consumption of the
WSN by learning the RT that minimizes the Q-value using the epsilon-greedy technique.
Given a number, z ∈ (0, 1) randomly generated in each learning round and a probability
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epsilon value, ε ∈ [0, 1], the agent selects its action in each learning round with the policy
given in Equation (29).

at =

argmin
a

(ϕ(s, a)Tw), i f z < 1− ε

Random action, otherwise.
(29)

The designed CRPLEOGALSPI for learning the optimal RT to maximize network
lifetime and minimize the network energy consumption is given in Algorithm 4. The
novelty of the proposed protocol is in the use of the LSPI, which tends to converge faster
to the best RT in solving the objective function subject to constraints when compared
to Q-learning.

Algorithm 4 CRPLEOGALSPI.

Input: G(V,E), Basic Functions, ϕ, γ, ε, Learning round (L), stopping criterion, ε
Output: Optimal RT(s)

1: Sink executes Algorithm 2 to generate List of RTs
2: Sink collect set of samples, D with Algorithm 3
3: Initialize s0 as a random RT
4: Initialize X̂0 ← 0 and ŷ0 ← 0
5: Initialize weight, wo ← 0
6: ŵ← wo
7: repeat
8: w← ŵ
9: for (si, ai, ri, ŝi) ∈ D do

10: X̂i+1 ← X̂i + ϕ(si, ai)

[
ϕ(si, ai)− γϕ(ŝi, argmin

a∈A
(ŝi, a))

]T

11: ŷi+1 ← ŷi + ϕ(si, ai)ri
12: end for
13: ŵ = X̂−1ŷ
14: until ||w− ŵ|| < ε
15: return w
16: for t = 1 to L do
17: st = so
18: Sink chooses an RT using Equation (29)
19: Sink receives data from the sensors using the chosen RT.
20: Updates so as the current RT.
21: if Any sensor node dies, then
22: Delete the dead sensor node(s) from G(V, E)
23: Delete edges connected to the dead sensor node(s)
24: Rebuild G(V,E)
25: if G(V,E) is connected, then
26: Do steps 1 to 20
27: else
28: break
29: end if
30: end if
31: end for

3.3. Energy Consumption Model

The energy consumed by the vth sensor node, ECv in a round of data transmission is
the summation of the energy consumed by the sensor node in sending and receiving data
packets and is given in the Equation (30).

ECv(p, d) = Etx(p, d) + Erx(p) (30)
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The energy consumed by a sensor node for sending and receiving data packets is
given in Equations (31) and (33), respectively [33].

Etx(p, d) =

{
Eelec p`+ E f s pd2 i f d 6 do

elecp`+ Emp pd4 i f d > do
(31)

Erx(p) = Eelec pτ (32)

where p is the number of bits per packet, d is the distance between the source node and
the destination node, ` is the number of packets sent by a sensor node per round, τ is the
number of packets received by a sensor node per round, Etx(p, d) is the transmission energy,
Erx(p) is the reception energy, and Eelec is the electronic energy consumed to transmit or
receive unit data of the packet. E f s, Emp are the transmit amplifier efficiency and depend
on the transmitter amplifier model (free space model is employed when d 6 do, otherwise
the multipath model is employed). do is the baseline distance and is obtained by equating
the two expressions of Etx(p, d) at d = do and is given as:

do =

√
E f s

Emp
(33)

4. Simulation and Results Discussion

The performance of the GA-based MSTs is first established for convergence using
simulation. Secondly, the performance analysis of the proposed routing protocol is achieved
with simulations using the performance metrics of network lifetime, number of alive sensor
nodes (NAN), energy consumption, and computation time. These performance metrics of
the CRPLEOGALSPI are compared with that of the recent CRPLOGARL [13] as a way of
validation. The lifetime of the network is calculated as the time taken for the sink not to be
reachable by the alive sensor node(s). The NAN is the number of alive sensor nodes at the
lifetime of the network. The CRPLEOGALSPI and CRPLOGARL are coded with python
3.8 under the “PyCharm” development environment. The graphical layout of the WSN is
implemented with the python NetworkX module [52]. The python codes are executed on
the SLURM (Simple Linux Utility for Resource Management) cluster on the IRIT’s OSIRIM
platform. The Computer nodes of the OSIRIM platform adopted are the 4 AMD EPYC 7402
bi-processor computing nodes at 2.8 GHz, with 48 processors and 512 GB of RAM each.
These nodes enable more than 24 threads and/or 192 GB of RAM for the same process. The
simulation parameters used to carry out the performance analysis and the network graph
of the deployed WSN are shown in Table 2 and Figure 4, respectively.

Figure 4. Network Graph of the deployed WSN.
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Table 2. Simulation Parameters.

Parameters Values

Number of sink 1
Number of sensors 100

Deployment Area of WSN 1000 m × 1000 m
Deployment of Sensor nodes Random

x− y coordinate of sink (500, 500)
Maximum transmission range 150 m

Bandwidth of links 1 kbps
Size of data packet 1024 bits

Sensors initial residual energy 1 J to 10 J
Rate of packet generation 1/s to 10/s

emp 0.0013 pJ/bit/m4

e f s 10 pJ/bit/m2

Eelec 50 nJ/bit
Discount factor 0.9

Epsilon 0.1
Sample size 100

Maximum generations 1000
Rate of crossover 0.1
Rate of Mutation 1

The performance of the GA-based MSTs for the deployed network graph of the WSN
given in Figure 4 is shown in Figure 5.

Figure 5. Number of MSTs with Number of Generations.

As seen in Figure 5, the GA-based MSTs is able to find 376 MSTs of the network graph
for 1000 generations. This also implies the convergence of the solution of the GA-based
MSTs in a reasonable number of generations. The GA-based MSTs can work for all MSTs
problems in polynomial time.

The number of alive sensor nodes of the WSN at each round of data transmission of
the proposed routing protocol, CRPLEOGALSPI, as compared with CRPLOGARL when
the initial sensor nodes energies and the packet generation rate of the sensor nodes are
set arbitrarily at 10 J and 1/s, respectively, as shown in Figure 6. As seen in Figure 6, the
number of alive sensor nodes of both protocols remains constant for certain rounds of
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data transmission and decreases subsequently. This behavior continues for both protocols
until the network graph is disconnected. When the network graph is disconnected, there
is no path to reach the sink located at the x − y coordinates of (500, 500), as shown in
Figure 4. The deaths of the sensor nodes are because of the depletion of the energy of the
sensor nodes as the round of data transmission increases. Consequently, on average, it
took CRPLEOGALSPI more rounds of data transmission for the sink not to be reachable
by alive sensor nodes. This is because CRPLEOGALSPI converges faster to the RT, which
maximizes the network lifetime while minimizing the network energy consumption when
compared to CRPLOGARL. This shows that the LSPI used in implementing CRPLEOGAL-
SPI utilizes data effectively and efficiently when compared to the baseline Q-learning used
to implement the CRPLOGARL.

Figure 6. Number of alive sensors with Round of Data Transmission.

The time for the sink not to be reachable by the alive sensor nodes of the CRPLEOGAL-
SPI is compared with the CRPLOGARL for increasing sensor nodes’ initial energy as shown
in Figure 7. The network lifetime increases with the increase in the initial sensor node
energy. This is because the lifetime of a sensor node is proportional to the residual energy
of the sensor node.

Figure 7. Network lifetime with Initial Node Energy.
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The proposed CRPLEOGALSPI has an improved network lifetime performance of
18.04% when compared to the CRPLOGARL with increasing sensor node residual energy.
This is because the CRPLEOGALSPI utilizes LSPI, which is more data efficient and con-
verges faster to the RT, which balances the energy consumption among the sensor nodes
and minimizes the network energy consumption as shown in Figure 8. This is against the
CRPLOGARL that utilizes the baseline Q-learning that takes larger episodes to converge
to the RT that optimizes the network lifetime due to the many RTs. The network energy
consumption for both protocols increases with the increase of the initial energy of the
sensor nodes. This is because the more the initial sensor nodes’ energy, the more rounds
of data transmission it takes for the sensor nodes to deplete their energy. Subsequently,
the CRPLEOGALSPI has a reduced energy consumption of 58.96% when compared to
CRPLOGARL for increasing the initial energy of the sensor nodes. This is because CR-
PLEOGALSPI optimizes the network lifetime and the network energy consumption using
LSPI. This is against the CRPLOGARL, which optimizes only the network lifetime using
Q-learning. This also implies that CRPLEOGALSPI has a reduced CO2 footprint when
compared to CRPLOGARL for increased initial sensor node energy. This is because CO2
footprint is directly proportional to the network energy consumption. However, the im-
proved performance in the network lifetime and network energy consumption of the
proposed protocol comes with an increased computation time of about ten times when
compared to CRPLOGARL for an increased initial sensor node energy, as shown in Figure 9.
This is because CRPLEOGALSPI requires the collection of samples to learn the optimal
path each time the network is rebuilt because of the death of sensor node(s).

Figure 8. Network Energy Consumption with Initial Node Energy.

Figure 9. Computation time with Initial Node Energy.
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The time for the sink not to be reachable by alive sensor nodes of the CRPLEOGALSPI
is compared with the CRPLOGARL for increasing sensor nodes’ packet generation rate as
shown in Figure 10. The network lifetime decreases with the increased packet generation
rate of the sensor nodes. This is because the network lifetime of a sensor node is inversely
proportional to the number of packets transmitted by the sensor node. The proposed
CRPLEOGALSPI has an improved network lifetime performance of 14.91% when compared
to CRPLOGARL with an increasing packet generation rate of the sensor nodes.

Figure 10. Network lifetime with Packet Generation Rate.

This is because CRPLEOGALSPI utilizes LSPI, which is more data efficient and con-
verges faster to the RT, which balances the energy consumption among the sensor nodes
and minimizes the network energy consumption, as shown in Figure 11. This is against the
CRPLOGARL that utilizes the baseline Q-learning that takes larger episodes to converge
to the RT that optimizes the network lifetime due to the many RTs. The network energy
consumption for both protocols decreases with the increasing packet generation rate of
the sensor nodes. This is because the more the number of data packets generated and
transmitted by the sensor nodes, the fewer rounds of data transmission it takes for the
sensor nodes to deplete their energy. Subsequently, the CRPLEOGALSPI has a reduced
energy consumption of 56.36% when compared to the CRPLOGARL for increasing the
packet generation rate of the sensor nodes. This is because the CRPLEOGALSPI optimizes
the network lifetime and the network energy consumption using LSPI. This is contrasted
with the CRPLOGARL, which optimizes only the network lifetime using Q-learning. This
also implies that the CRPLEOGALSPI has a reduced CO2 footprint when compared to the
CRPLOGARL for an increased sensor node packet generation rate. This is because that
CO2 footprint is directly proportional to the network energy consumption.
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Figure 11. Network Energy Consumption with Packet Generation Rate.

But, the improved performance in the network lifetime and network energy consump-
tion of the proposed protocol comes with an increased computation time of about ten times
that of the CRPLOGARL for an increased packet generation rate of the sensor node, as
shown in Figure 12. This is because the CRPLEOGALSPI requires the collection of samples
and iteration over the collected samples to learn the optimal policy each time the network
is rebuilt because of the death of sensor node(s).

Figure 12. Computation time with Packet Generation Rate.

5. Conclusions

This paper presented the design of a centralized routing protocol for lifetime and
energy optimization using a GA and LSPI for WSNs. The sink generates the routing tables
of the network graph in polynomial time using a GA. The LSPI deployed at the sink learns
the optimal routing path for lifetime and energy optimization at each stage of the network
graph, building after the death of sensor nodes. This leads to the maximization of the
time taken for the sink not to be reachable by the alive sensor nodes while minimizing the
network energy consumption. The centralized routing protocol for lifetime and energy
optimization using a GA and LSPI improves network lifetime and energy consumption
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when compared with the existing Centralized Routing Protocol for Lifetime Optimization
using Genetic Algorithm and Q-learning. This is because the centralized routing protocol
for lifetime and energy optimization using GA and LSPI converges faster to the optimal
routing path and is not sensitive to parameter settings. However, the improved performance
in the network lifetime and network energy consumption of the proposed protocol comes
with an increased computation time. Future work will consider emulating the proposed
protocol using Mininet, considering the real-world parameters of a typical WSN, and taking
into consideration the cost of control packets and prioritization schemes when some sensor
nodes send more data packets than others.
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