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Abstract: This paper presents the implementation of an intelligent real-time single-channel elec-
tromyography (EMG) signal classifier based on open-source hardware. The article shows the experi-
mental design, analysis, and implementation of a solution to identify four muscle movements from
the forearm (extension, pronation, supination, and flexion), for future applications in transradial
active prostheses. An EMG signal acquisition instrument was developed, with a 20–450 Hz band-
width and 2 kHz sampling rate. The signals were stored in a Database, as a multidimensional array,
using a desktop application. Numerical and graphic analysis approaches for discriminative capacity
were proposed for feature analysis and four feature sets were used to feed the classifier. Artificial
Neural Networks (ANN) were implemented for time-domain EMG pattern recognition (PR). The
system obtained a classification accuracy of 98.44% and response times per signal of 8.522 ms. Results
suggest these methods allow us to understand, intuitively, the behavior of user information.

Keywords: myoelectric prosthesis; electromyography (EMG); artificial neural networks (ANN);
pattern recognition

1. Introduction

Individuals with disabilities constitute one of the populations that are most affected
in terms of accessing services such as education, employment, and healthcare [1]. Gov-
ernments and organizations around the world are promoting policies and strategies to
improve the quality of life for this population. In 2014, the World Health Organization
(WHO) established action plans to support people with disabilities by strengthening re-
habilitation, assistive technology, assistance and support services, and community-based
rehabilitation [2]. In the matter of motor disabilities, research and development regarding
assistive technology, such as active prostheses, can play an important role in reaching these
aims. Surface EMG signal processing is crucial in building active prostheses that give users
a more realistic experience [3].

EMG research is being used in different applications, such as in sports medicine for
fatigue monitoring [4–6], education [7,8], human-machine interfaces (HMI) [9], and clinical
applications like diagnosis of neuromuscular disorders, among others [10,11]. In the field
of prosthetics, pioneering investigations, such as those implemented in references [12–14],
explored the use of EMG signals and served as a support for many later works, among
which the most notable are the Myo Armband [15], an EMG band of eight channels [16],
prostheses with electro-mechanical designs based on EMG signals, and the EMG band
designed by Microsoft with a wireless system based on Zigbee with six EMG channels [17].

For the classification of EMG signals, a process of the capture and subsequent ex-
traction of features is performed, which can be represented in the domains of time, fre-
quency, time-frequency or space [9]. Much of the recent research focuses on the devel-
opment of EMG prostheses based on multi-channel acquisition or high-density measure-
ments [9,18–20]. However, these approaches came with specific challenges: having more
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channels will result in larger datasets [21]. Additionally, they will generate more complex
configurations, incur higher manufacturing costs, lead to increased energy consumption,
reduced efficiency, and pose greater difficulties for users to adapt [22,23]. Due to this, the
process of signal feature extraction can potentially generate numerous representations.
Consequently, this could lead to a decline in the performance of the recognition system [24].
To cater to these requirements, employing analytical tools for evaluating the extracted
information is the appropriate approach. Such tools assist researchers in selecting various
features and channels, while also assessing the performance of the algorithms [25].

Therefore, it is necessary to know a methodological approach that allows a better
understanding of features’ behavior. For this, the analysis of the features can be performed
using several approaches [26]. One of these is the filter approach, which allows the creation
of information quality coefficients according to their separation, correlation or consistency.
In the field of EMG signals, some of these have been the Mahalanobis distance [27,28],
Bhattacharyya distance [27,29], Davies–Bouldin index [28], Fisher–Markov Selector, and
Minimum Redundancy Maximum Relevance [25].

The second approach is known as Wrapper, and it involves applying an evaluation
criterion, a search strategy (exponential, sequential or random), and a stop criterion to
discover an optimal subset of features. In the study of biomedical signals, this approach
has been utilized alongside techniques like Particle Swarm Optimization [24,30], Sequential
Forward Searching [28,29], and Bacterial Memetic Algorithm [31], among other methods.

In line with the previously mentioned requirements and methods, this paper com-
bines the simplicity approach with information analysis strategies to develop a real-time
intelligent classifier for single-channel EMG signals, employing open-source hardware. In
the context of EMG pattern recognition, time-domain signals were employed alongside
a feed-forward neural network. Testing was conducted using forearm muscle signals
corresponding to the movements of extension, pronation, supination, and flexion.

Machine Learning (ML) techniques have several advantages in various applications,
making them ideal for automating complex processes and large-scale data processing.
These methods improve accuracy and efficiency in decision-making and are ideal for
classification and prediction tasks [32], as they learn from data and adapt over time. Among
the ML methods widely used in the literature are supervised learning, unsupervised
learning, reinforcement learning, decision trees, and artificial neural networks (ANN) [33].

Therefore, in this research we implement ANN because of their usefulness for mod-
eling linear and nonlinear systems, as confirmed by the results obtained in the consulted
literature [11,13,20,34–36]. Additionally, neural networks have also demonstrated their
utility in processing time series for health-related applications. The authors of reference [37]
implemented an ANN for the early prediction of COVID-19 outcomes. The preliminary
findings revealed that the ANN accurately predicts intensive care unit hospitalization
using only five laboratory indices. Similarly, the researchers in reference [38] utilized deep
learning and ANNs to predict the health of football players, obtaining simulation results
that serve as the foundation for data-driven monitoring and training.

Finally, signals were used in time-domain due to the low computational cost that
facilitates implementation in low-performance platforms [10,13,19,39]. In this research, the
implementation of the classifier on the Arduino Uno board using neural networks stands
out as a significant contribution, with real-time processing supported by execution time
calculations. Additionally, the developed user interface is highlighted, enabling the easy
training of the ANN.

This paper is structured as follows: Section 2 outlines the design of the EMG signal
acquisition and conditioning device, the database creation process, the proposed analysis
strategies, the design of the pattern detection system, and the hardware restrictions for
real-time response. The results are detailed in Section 3. Section 4 focuses on the discussion
of the experiment. Section 5 describes the conclusions of the investigation.
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2. Materials and Methods

Figure 1 shows the block diagram of the prototype implemented for the EMG sig-
nal classifier, which is composed of the general blocks responsible for the acquisition,
digitization, and transmission of variables.
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Figure 1. General configuration of the acquisition system.

2.1. Signal Acquisition

A prototype for the acquisition of EMG signals was designed, which is composed of
the pre-amplification, filtering, amplification, and DC offset summing stages (Figure 2).
The input is a differential signal that is connected to terminals 1 and 2. The electrodes have
been placed across two different muscle groups. Although SENIAM (Surface ElectroMyo-
Graphy for the Non-Invasive Assessment of Muscles) recommendations are not strictly
followed [40], some investigations indicate that electrode placement is possible using more
than one innervation zone per channel [9]. Thus, a single channel can contain the group
muscle information sufficient for pattern recognition without the need to model a particular
muscle [9,41,42]. The filters were designed considering that the frequency spectrum of
EMG signal has the most power in the range of 20 to 500 Hz [4,43–45].
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Figure 2. Block diagram of the electromyograph implemented.

Samples were taken from the right forearm of two test subjects, using a non-invasive
technique from 2 electrodes in a differential configuration (1 and 2) and a reference elec-
trode (Figure 3) [5,9,46]. Electrode positions were strategically chosen based on the muscles
relevant to the study and within areas feasible for an individual with transradial amputa-
tion [47]. The 3 M foam monitoring electrodes 2228 were used.
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Once the signal was acquired, the samples were digitized using an Arduino Uno
board (Single.board microcontroller, Arduino LL, Torino, PIE, Italy) with a sampling
rate of 2 kHz and quantization of 10-bit. Serial communication was used between the
Arduino and the computer. Based on the literature, it is observed that the signal length can
have values between 50 and 400 ms and the sampling frequency can be between 500 and
2000 Hz [9,28,45,48].

2.1.1. Pre-Amplification

The EMG signal has a maximum level of 10 mV and high levels of noise from different
sources. To reduce this noise and increase the amplitude of the signal, the INA128P
(Instrumentation amplifier, Texas Instruments, Dallas, TX, USA, EE.UU.) was used, which
has a Common Mode Rejection Ratio (CMRR) of 120 dB. Equation (1) was used to set a
gain of 10.8 (Rg = 5.1 kΩ).

G = 1 +
50 kΩ

Rg
(1)

2.1.2. Filters

To keep only the spectrum components with more information, several studies high-
light the need to remove noise from the electrical network using a band-rejection filter, and
that most of the power of an EMG signal lies between the range of 20–500 Hz [4,39–41].
Therefore, it was decided to suppress signals below 20 Hz, above 450 Hz, and noise from
the power grid (60 Hz). The designs were performed with the UAF42 integrated circuit
and Filter42 software [49].

For the first stage, a 60 Hz notch filter was implemented using a UAF42 configured
with the PP4 sub-circuit [49], using the components described in Table 1.

Table 1. Characteristics of the 60 Hz Notch filter.

Component Value Component Value

f0 60 Hz fz 60.05 Hz
Q 6.05 Gain 1.026

RF1 2.65 MΩ Rz1 2 kΩ
RF2 2.65 MΩ Rz2 2 kΩ
RQ 4.99 kΩ Rz3 12.1 kΩ

For the second stage, a 20 Hz high pass filter with a Butterworth response was im-
plemented, which makes it possible to attenuate motion artifacts [4]. The filter was imple-
mented from a UAF42 configured with the PP3 sub-circuit [49]. Table 2 shows the values of
the components used.
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Table 2. Characteristics of the 20 Hz high pass filter with Butterworth response.

Component Value Component Value

f0 20.10 Hz RQ 4.7 kΩ
Q 0.707 RG 50 kΩ

RF1 4.21 MΩ Gain 0.9894
RF2 4.21 MΩ R2A 5.49 kΩ

In the third stage, a 450 Hz low pass filter with a Butterworth response was imple-
mented [9,22,42]. The components used for the PP3 sub-circuit of the UAF42 can be seen in
Table 3.

Table 3. Characteristics of the 450 Hz low pass filter with Butterworth response.

Component Value Component Value

f0 445.8 Hz RQ 47 kΩ
Q 0.707 RG 51 kΩ

RF1 357 kΩ Gain 1
RF2 357 kΩ

2.1.3. Amplification

In this stage, the LF353 integrated circuit configured as an inverting amplifier was
used. A linear potentiometer was implemented to have a variable gain between 0 and 200.
A gain of 50 was used for the experiments (Figure 4).
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2.1.4. DC Offset Summing

For the digitization of the signal, the Arduino board uses an analog–digital converter
from 0 to 5 V, therefore, it is necessary to add 2.5 V to the signal. Figure 5 shows the
circuit implemented with the LF353N. In addition, a Zener diode was implemented for
stabilization of the reference voltage.
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2.2. Experimental Procedure

The experiments were performed with the participation of 2 non-amputated subjects,
who previously signed an informed consent. The movements of extension, pronation,
supination, and flexion were recorded (Figure 6).
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Figure 6. Hand movements to acquire the EMG signals. (a) extension; (b) pronation; (c) supination;
(d) flexion.

The session begins with a skin preparation procedure, involving cleansing with alcohol
to remove moisture from the skin. A desktop application that communicates with the
acquisition system was developed with MATLAB R2023a. The application is responsible
for managing data collection during a measurement session with a subject. The session
was performed by taking 160 trials of steady-state signals evenly distributed among the 4
study classes (40 trials per movement class). Each movement is requested randomly and
stored in the database, resulting in an information structure that is represented in Figure 7.
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The data acquisition was performed according to the session presented in Figure 8, in
which a rest period of ~1.5 s is interleaved with a run of ~6 s. Each run follows the steps
shown in Figure 9.
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The data acquisition was performed according to the session presented in Figure 8,
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shown in Figure 9.

Figure 8. Outline of the sampling session. 
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Figure 9. Scheme of a run.
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Speech Cue: a random instruction is presented to the test subject with the 4 possible
movements (pronation, supination, flexion, and extension) through an audible signal of
~1.2 s.

Subject Feedback: after the audible signal has been reproduced, the subject performs
the movement, maintains it, and instructs the operator to begin the process of recording
the trial. This process takes approximately ~2.8 s.

Recording: the signal is recorded with a total duration of 128 milliseconds.
After the acquisition of all the trials, a randomization process was performed in order

to eliminate the effects of the capture order in the session.

2.3. Feature Extraction and Analysis

The feature extraction of EMG signals was performed with a time-domain analysis.
Features with low computational complexity, and widely used in the state of the art, were
preferred [9]. Eleven features were selected: Integrated EMG (IEMG), Mean absolute
value (MAV), Modified Mean Absolute Value 1 (MMAV1), Modified Mean Absolute Value
2 (MMAV2), Simple Square Integral (SSI), Variance of EMG (VAR), Root Mean Square (RMS),
Waveform Length (WL) [13], Zero Crossing (ZC), Slope Signal Change (SSC), and Willison
Amplitude (WAMP). The equations of each algorithm are described in reference [35].
These algorithms assume that the signal is centered at 0 and varies between positive and
negative values.

To evaluate the features, two methods are proposed, one graphic and one numerical,
which are specified in the following sections.

2.3.1. Numerical Analysis of Discriminative Capacity

An approach is presented to establish the quality of the representation provided by
each feature, based on the minimum distance classification method [50], for which a class
separability coefficient was proposed.

Let {xi
(h,k), (i = 1, . . ., nk)} be a set of nk elements of one dimension, generated by the h

feature from the xi signal, which belongs to the k class, where k = 1, . . ., K for each of the
K classes and where h = 1, . . ., H for each of the H features. Based on this data, the class
separability coefficient S(h) for an h feature is:

S(h) =
1

m(h)
0

K

∑
k=1

∣∣∣m(h)
k − m(h)

0

∣∣∣, (h = 1, . . . , H) (2)

where mk
(h) is the mean of the k class for an h feature to evaluate and m0

(h) is the mean of
the classes for an h feature to evaluate:

m(h)
k =

1
nk

nk

∑
i=1

x(h,k)
i , (h = 1, . . . , H) (3)

m(h)
0 =

1
K

K

∑
k=1

m(h)
k , (h = 1, . . . , H) (4)

2.3.2. Graphic Analysis of Discriminative Capacity

Anscombe’s Quartet [51] and Datasaurus [52], among other data sets, have shown
that graphs are a fundamental element in understanding a problem. In order to have an
intuitive understanding of the differentiation capacity of each feature extraction algorithm,
the data resulting from the algorithms were plotted. For each feature, a chart is made,
where the x-axis represents the movement, and the y-axis represents the value obtained
from the feature extracted. The movements and their associated colors are presented in
Figure 10.
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Figure 10. Movements and their associated colors for graphical analysis.

The violin plot method was used to represent the statistical performance of the features.
If there is no overlap, with these charts it is possible to intuit the algorithm effectiveness to
provide useful representation on the pattern recognition of one or more classes.

2.4. EMG Pattern Recognition System Configuration

This stage is responsible for the configuration of the Electromyographic Pattern Recog-
nition System. From the analysis of the features, four sets were proposed to make the
classification.

Full set = IEMG, MAV, MMAV1, MMAV2, SSI, VAR, RMS, WL, ZC, SSC and WAMP.

Hudgins set = MAV, ZC, SSC and WL.

Subset1 = IEMG, SSI, RMS, WL, SSC and WAMP.

Subset2 = SSI, RMS and WL.

2.4.1. Offline Training

A three-layer feed-forward ANN, with a sigmoid activation function for their hid-
den and output layers, was employed for machine learning classification, as depicted in
Figure 11 [34]. The input layer’s size is the number of features on which the model is
being trained (11 input neurons for the Full set, 4 for the Hudgins set, 6 for Subset1, and
3 for Subset2. The hidden layer consists of 6 neurons, and the output layer has 4 neu-
rons, 1 corresponding to each movement to be classified. The model’s predicted class
was determined by identifying the corresponding neuron with the highest activation. The
system is augmented by the Majority Voting (MV) decision technique to avoid errors in the
transient state of the signal [10,18,20]. The ANN was trained offline using MATLAB R2023a
and subsequently implemented on the Arduino Uno board (Single board microcontroller,
Arduino LL, Torino, PIE, Italy) [53].
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For training the classifier, the information in the database was organized in three
segments: Training (60%), Validation (20%), and Test sets (20%) [54] (Table 4). Data were
normalized to have a variance equal to 1 and a mean equal to 0. The averages of the features
and standard deviations were estimated using only the training data.

Table 4. Confusion matrix for test set data.

Movement Training Cross-
Validation Test Totals

1. Extension 24 8 8 40
2. Pronation 24 8 8 40
3. Supination 24 8 8 40

4. Flexion 24 8 8 40
Totals 96 32 32 160

In the selection of an appropriate structure for a network, an iterative trial and error
process is often required. The possible suitable networks are described by parameters
such as number of layers, number of neurons per layer, regularization value, number of
iterations, input data, activation function, and more. Given this complexity, and the fact that
the same structure can produce high error rates, this led us to propose a selection strategy
based on programmed batch training. In this method, the training can be performed
several times for the same structure and the performance outcomes can then be graphically
represented for subsequent selection. The optimal number of neurons in the hidden layer
was chosen based on the best results obtained on the validation set while also aiming
to minimize hardware resource utilization. The fmincg training algorithm included an
automatic adjustment of the learning rate and stopping criteria. Moreover, we fine-tuned
the regularization parameter, lambda, to enhance the model’s generalization capabilities.

This structure is validated through the computation of accuracy performance and F-
Value [55]. These metrics are widely adopted in the evaluation of classification systems [11,36].

2.4.2. Implementation for Real-Time Processing

An adjacent windowing technique was used. It is emphasized that the identification
and generation of a response by the classification system must be less than the time required
for the acquisition of a new signal. The following statements are defined as a necessary and
sufficient condition for the proposed solution to be executed in real time [56]:

1. The system must perform the acquisition of a signal while discriminating another
immediately preceding it.

2. Considering that the digitalization of 256 samples takes 29.18 ms (empirical value
measured by means of an oscilloscope) and that the classification window is 128 ms,
the system must classify a signal in a time less than 99.6 ms.

To validate the operation, 8 random signals (2 for each class) were analyzed with the
Arduino board. A comparison between the average execution time for all stages with the
maximum time available was performed. It should be noted that the evaluations performed
verify the execution time with EMG signals from the dataset obtained in this work (See
Supplementary Material).

2.5. Desktop App and Prototype

The desktop app was designed to perform the deployment of a complete experi-
ment for each user, from the creation of the database to the hardware implementation.
The application is divided into 4 functions that can be accessed from the main interface
(Figure 12).



Computers 2023, 12, 263 10 of 18

Computers 2023, 12, x FOR PEER REVIEW 10 of 18 
 

2.5. Desktop App and Prototype 
The desktop app was designed to perform the deployment of a complete experiment 

for each user, from the creation of the database to the hardware implementation. The ap-
plication is divided into 4 functions that can be accessed from the main interface (Figure 
12). 

 
Figure 12. (a) Main interface of the application; (b) Interface for the analysis of features; (c) Interface 
for the creation of the database; (d) Interface for the training of the neural network. 

Create Database: configures the EMG signal capture experiment for a user. Generates 
the database file in mat format. 

Information Analysis: this section allows the application of the Numerical and 
Graphic Analysis of Discriminative Capacity proposed in Sections 2.3.1 and 2.3.2. It will 
represent the scores in descending order to inform the researcher about the quality of each 
characteristic. 

ANN training: contains options to configure the artificial neural network to be 
trained offline (Section 2.4.1). A project file is obtained with the trained neural networks 
and their performance. 

Real-time Implementation: starting from the ANN project file, this stage writes a code 
for Arduino that can then be copied and pasted into the sketch ino file to load the project 
with all the information that the network needs to process the signals online. 

In Figure 12, some of the interfaces implemented for the application are shown. Fig-
ure 12a shows the main interface of the desktop application. Figure 12b shows the stage 
responsible for the analysis of features. In Figure 12c, the interface for creating the data-
base is observed. Figure 12d shows the interface developed for ANN training. 

Finally, Figure 13 shows the prototype implemented for the EMG signal classifier. 

Figure 12. (a) Main interface of the application; (b) Interface for the analysis of features; (c) Interface
for the creation of the database; (d) Interface for the training of the neural network.

Create Database: configures the EMG signal capture experiment for a user. Generates
the database file in mat format.

Information Analysis: this section allows the application of the Numerical and Graphic
Analysis of Discriminative Capacity proposed in Sections 2.3.1 and 2.3.2. It will represent
the scores in descending order to inform the researcher about the quality of each characteristic.

ANN training: contains options to configure the artificial neural network to be trained
offline (Section 2.4.1). A project file is obtained with the trained neural networks and their
performance.

Real-time Implementation: starting from the ANN project file, this stage writes a code
for Arduino that can then be copied and pasted into the sketch ino file to load the project
with all the information that the network needs to process the signals online.

In Figure 12, some of the interfaces implemented for the application are shown.
Figure 12a shows the main interface of the desktop application. Figure 12b shows the
stage responsible for the analysis of features. In Figure 12c, the interface for creating the
database is observed. Figure 12d shows the interface developed for ANN training.

Finally, Figure 13 shows the prototype implemented for the EMG signal classifier.
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3. Results and Discussion
3.1. Data Acquisition

Before performing the integration of all the elements of the prototype, the circuits
designed for the acquisition of the signals were tested using the NI Educational Laboratory
Virtual Instrumentation Suite (NI ELVIS, National Instruments, Austin, TX, USA, EE.UU.)
and the NI myDAQ device (Data acquisition device, National Instruments, Austin, TX,
EE.UU.).

Using a 1 Vpp test sinusoidal signal, the following results were obtained: low cutoff
frequency of 21.4 Hz, high cutoff frequency of 469 Hz, and attenuation of −23.61 dB at the
frequency of 60 Hz. These results show good performance obtained with the high-pass,
low-pass and Notch filters.

The frequency spectrum obtained for extension and flexion movements is shown in
Figure 14. As expected, these signals showed low amplitude levels at frequencies below
20 Hz, above 450 Hz, and close to 60 Hz.
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3.2. Numerical and Graphic Analysis of Discriminative Capacity

Figure 15 shows the results of the numerical analysis obtained for all the features
addressed in the present study for each subject. With the IEMG, MAV, MMAV1, MMAV2,
and RMS methods, good results were obtained. This is the same case for the SSI and
RMS methods.
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Figure 15. Results of the numerical analysis of discriminative capacity. (a) subject 1; (b) subject 2.

In addition, Figure 16 shows a violin plot representation of each feature extracted
from the EMG signals of the test subjects, with respect to the type of movement executed.
The results obtained with four of the features are displayed. It can be observed that the
IEMG, MAV, MMAV1, MMAV2, and RMS features have very similar distributions. The
same happens with the SSI and VAR features.
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Figure 16. Graphical representation of the information distribution for the EMG signals of four
features: (a) IEMG; (b) RMS; (c) SSI; (d) VAR.

The numerical analysis showed a better performance, in terms of the separability
coefficient, for energy-based features (IEMG, MAV, MMAV1, MMAV2, SSI, VAR, RMS, and
WL), and lower performance for frequency-based features (WAMP, SSC, and ZC), which
matches the results reported by Phinyomark [28].

With respect to the graphic method (Figure 16), it is worth highlighting the cases of
pronation and supination, since all the features have an overlap for these movements. This
situation shows the difficulties the system has in discriminating these signals. Flexion and
extension are the simplest movements to classify. Flexion can be easily differentiated from
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the IEMG, SSI, and WL features, while the extension can be detected from the IEMG, WL,
WAMP, SSC, and ZC features.

The worst performances were presented in the SSC and ZC features, in which the
flexion, pronation, and supination have a significant overlap. These observations are
consistent with the measure of discriminative capacity used in this work, indicating that
SSC and ZC are the features that have the lowest quality. The above suggests that the
numerical method is consistent with an intuitive interpretation of the dataset information.

3.3. Classification System

Tables 5–12 show the results obtained with subjects 1 and 2 for the four sets proposed
in this work (Full Set, Hudgins Set, Subset1, and Subset2).

Table 5. Confusion matrix for test set data (subject 1—full set).

Full Set
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 0 8 0

Flexion 0 0 0 8

Table 6. Confusion matrix for test set data (subject 1—Hudgins set).

Hudgins Set
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 0 8 0

Flexion 0 0 0 8

Table 7. Confusion matrix for test set data (subject 1—subset1).

Subset1
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 0 8 0

Flexion 0 0 0 8

Table 8. Confusion matrix for test set data (subject 1—subset2).

Subset2
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 0 8 0

Flexion 0 0 0 8

Table 9. Confusion matrix for test set data (subject 2—full set).

Full Set
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 2 6 0

Flexion 0 0 0 8
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Table 10. Confusion matrix for test set data (subject 2—Hudgins set).

Hudgins Set
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 2 6 0

Flexion 0 1 0 7

Table 11. Confusion matrix for test set data (subject 2—subset1).

Subset1
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 2 6 0

Flexion 0 1 0 7

Table 12. Confusion matrix for test set data (subject 2—subset2).

Subset2
Predicted

Extension Pronation Supination Flexion

Actual

Extension 8 0 0 0
Pronation 0 8 0 0
Supination 0 1 7 0

Flexion 0 0 0 8

The results obtained with the performance measures for the two test subjects are
shown in Tables 13–15. The confusion matrix shows that the classification system has high
accuracy, although there are some difficulties with subject 2 in the detection of pronations
and supinations (see Tables 9–12), which is confirmed by the values obtained for the
accuracy and the F-values (Tables 13 and 14). These errors may be due to the supination
signals of the test subjects having very low values for IEMG, SSI, and RMS, which are
quite close to the extension and supination movements. It is worth highlighting that the
best results in terms of the test data came from Subset2, which has the fewest features (see
Tables 12 and 14). An accuracy of 98.44% was obtained (100% for subject 1 and 96.88% for
subject 2 using Subset2), which meets the accuracy percentage greater than 90% necessary
for the system to be used by a user [23]. The accuracy results are comparable with those
obtained in previous research, both with single channel and multichannel [9,10,23], but
these results cannot be generalized to amputated subjects [57].

Table 13. Performance measures applied to the test set (subject 1).

Set Accuracy F-Extension F-Pronation F-Supination F-Flexion

Full set 1.0000 1.0000 1.0000 1.0000 1.0000
Hudgins Set 1.0000 1.0000 1.0000 1.0000 1.0000

Subset1 1.0000 1.0000 1.0000 1.0000 1.0000
Subset2 1.0000 1.0000 1.0000 1.0000 1.0000

Table 14. Performance measures applied to the test set (subject 2).

Set Accuracy F-Extension F-Pronation F-Supination F-Flexion

Full set 0.9375 1.0000 0.8889 0.8571 1.0000
Hudgins Set 0.9063 1.0000 0.8421 0.8571 0.9333

Subset1 0.9063 1.0000 0.8421 0.8571 0.9333
Subset2 0.9688 1.0000 0.9412 0.9333 1.0000
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Table 15. Performance measures applied to the test set (subject 1 and subject 2).

Set

Subject 1 Subject 2

Training Cross-Validation Test Training Cross-Validation Test

Accuracy

Full Set 1.0000 1.0000 1.0000 0.9896 1.0000 0.9375
Hudgins Set 0.9896 1.0000 1.0000 0.9896 1.0000 0.9063

Subset1 0.9896 1.0000 1.0000 0.9896 1.0000 0.9063
Subset2 0.9896 1.0000 1.0000 0.9896 1.0000 0.9688

3.4. Execution Time

Execution times were obtained for eight EMG signals. All these signals were randomly
chosen from the database, two for each class analyzed (Extension, Pronation, Supination,
and Flexion) with an average time of 8.522 ms (Table 16).

Table 16. Execution times of the EMG signal processor implemented in the Arduino uno board
(2 signals were recorded for each class used in the study for a total of 8 signals).

Signal
Array

Loading
(ms)

Feature
Extraction

(ms)
ANN (ms) Majority

Voting (ms) Total (ms)

1 0.372 4.460 3.652 0.016 8.500
2 0.372 4.464 3.664 0.016 8.516
3 0.372 4.460 3.696 0.015 8.543
4 0.372 4.476 3.680 0.016 8.544
5 0.372 4.460 3.668 0.017 8.517
6 0.372 4.460 3.676 0.016 8.524
7 0.372 4.428 3.668 0.016 8.484
8 0.372 4.448 3.712 0.015 8.547

Mean 0.372 4.457 3.677 0.016 8.522

With the processor incorporated in the Arduino Uno board, all calculations were
performed with an average execution time of 8.522 ms. In this way, it was demonstrated
that the system can run in real time, since an execution time much lower than the 99.6 ms
limit value discussed in Section 2.4.2 was obtained. The processing capacity of a low-cost
tool for the execution of a neural network and for the processing of EMG signals in real time
was demonstrated. The processor was programmed to automatically copy the synaptic
weights and general structure of the neural network from MATLAB R2023a.

4. Limitations and Future Works

Though this study employed a 60%/20%/20% split, it is important to note that, in
situations with limited data, using k-fold cross-validation is recommended for optimal
evaluation with less biased or less optimistic estimates. Future research will aim to im-
prove validation estimates using this approach. Furthermore, there is the possibility of
experimenting with alternative hardware options to implement a system that is even more
efficient and flexible. It is also advisable to work on datasets with a greater number of trials
per subject and that have records of amputee subjects.

5. Conclusions

The techniques described in this work have the potential to develop simple devices
for the acquisition, conditioning, and recognition of EMG patterns in order to facilitate
future implementations of prostheses. Numerical methods are a valuable tool for quickly
assessing the quality of the information generated by feature extraction algorithms. Both
the graphical and numerical methods proposed in this research align with previous studies
and exhibit a consistent level of agreement between them. Reducing redundancy is a
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constructive approach to enhancing generalization performance. The Arduino Uno board,
being a relatively inexpensive product, has showcased adequate hardware capabilities for
the development of efficient real-time systems. This work is conceived as a proof of concept,
with its subsequent stage involving the creation of a more resilient database containing
signals from both healthy and amputated subjects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/nelsoncardenas/emg_dataset.
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