
Citation: Fonseca i Casas, P.;

Romanowska, I.; Garcia i Subirana, J.

Specification and Description

Language Models Automatic

Execution in a High-Performance

Environment. Computers 2023, 12, 244.

https://doi.org/10.3390/

computers12120244

Academic Editor: Stefan Bosse

Received: 7 September 2023

Revised: 5 November 2023

Accepted: 14 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Specification and Description Language Models Automatic
Execution in a High-Performance Environment
Pau Fonseca i Casas 1,* , Iza Romanowska 2 and Joan Garcia i Subirana 1

1 Department of Statistics and Operations Research, Universitat Politècnica de Catalunya-BarcelonaTech,
08034 Barcelona, Spain; joan.garcia-subirana@upc.edu

2 Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain; iromanowska@aias.au.dk
* Correspondence: pau@fib.upc.edu

Abstract: Specification and Description Language (SDL) is a language that can represent the behavior
and structure of a model completely and unambiguously. It allows the creation of frameworks that
can run a model without the need to code it in a specific programming language. This automatic
process simplifies the key phases of model building: validation and verification. SDLPS is a simulator
that enables the definition and execution of models using SDL. In this paper, we present a new library
that enables the execution of SDL models defined on SDLPS infrastructure on a HPC platform, such
as a supercomputer, thus significantly speeding up simulation runtime. Moreover, we apply the
SDL language to a social science use case, thus opening a new avenue for facilitating the use of HPC
power to new groups of users. The tools presented here have the potential to increase the robustness
of modeling software by improving the documentation, verification, and validation of the models.

Keywords: SDL; HPC; SDLPS; social simulation; prime numbers

1. Introduction

Model conceptualization is the process of describing the main causal relations between
the different elements of a simulation model, using a formal or semi-formal language.
Model conceptualization enables the translation of the model into code that can be executed
by a computer, and also aids the validation, verification, and later accreditation phases
required in any modeling project. Validation is the process of checking whether the
model represents the real system accurately and faithfully, according to the objectives and
assumptions of the model. Verification is the process of checking whether the model is
implemented correctly and free of errors, according to the specifications and requirements
of the model. Finally, accreditation is the process of certifying that the model is suitable
and credible for its intended use and purpose, according to the standards and criteria of
stakeholders and decision-makers.

In social simulation, the conceptualization of a simulation model, often performed in
natural language (verbally), may lack the full unambiguity necessary for implementing the
model in computer code. As a result, the translation from the conceptual model to computer
code is prone to introduce errors. In addition, in the frame of High-Performance Computing
(HPC), the code of a model must follow specific rules to enable parallelization of the code
and to make use of specific libraries [1,2]. Notice that HPC is the use of supercomputers
and parallel processing techniques to tackle computational problems that are too big or too
hard to be solved by conventional computing methods, and the libraries and frameworks
used, like OpenMP [3,4], Spark [5,6] or others can be hard. The unawareness of these
libraries by context specialists who usually define the model makes it almost impossible
for the automatic coding of a simulation that can be executed in a HPC environment.

This paper reports on the initial results within the frame of the European project
PRACE “HPC optimization of SDLPS distributed simulator”, which aimed to develop a
reliable methodology for enabling domain experts (specifically, social scientists) to model a

Computers 2023, 12, 244. https://doi.org/10.3390/computers12120244 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12120244
https://doi.org/10.3390/computers12120244
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-6747-9736
https://doi.org/10.3390/computers12120244
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12120244?type=check_update&version=1

Computers 2023, 12, 244 2 of 24

social system conceptually, using a modeling language called Specification and Description
Language (SDL), which facilitates or automates the code generation for running the model
in a High-Performance Computing (HPC) environment. We describe the main features and
benefits of using SDL as a modeling language for social systems, as well as the challenges
and solutions for optimizing the performance and scalability of the SDLPS distributed
simulator on HPC platforms. SDLPS is a tool, developed by the Universitat Politècnica
de Catalunya to execute in parallel or distributed environments for SDL models. We
also present some case studies and experiments that demonstrate the applicability and
effectiveness of our approach.

Some attempts have been made previously to use a high-level language to simplify
the interaction with a HPC environment, e.g., Castañé et al. in [7] proposed an ontology
to simplify the resource management in HPC, a similar approach to the one proposed by
Faheem et al. in [8]. Employing a formal language for modeling is another solution, e.g., [9]
presented an approach using Petri nets [10], again to represent the performance of the
system. These approaches, however, are focused on the use of HPC platform’s resources,
and not on the definition of the simulation models executed on the platform. Liao et al. [11]
present an ontology for HPC that aims to make training datasets and AI models FAIR
(Findable, Accessible, Interoperable, and Reusable). The ontology provides controlled
vocabularies, explicit semantics, and formal knowledge representations for HPC concepts
and entities.

In that sense, our approach is novel since it tries to simplify the interaction between
the HPC environment and the modeler rather than optimize the infrastructure. We opted
for using a formal language—Specification and Description Language (SDL)—instead of an
ontology, since the type of models that need HPC resources can be highly diverse, but also
because SDL is particularly well versed in the Internet of Things (IoT) systems although it
can be applied virtually to model any systems [12–15].

Social simulation is a broad field that covers various social contexts, such as psychol-
ogy, political science, business, economics, etc. Different social simulation models have
different assumptions and specific purposes of investigation. However, most of these
models share some common features, such as the use of agents, rules, interactions, and
outcomes. A modeling language like SDL (Specification and Description Language), pro-
posed in this study, can be applied to any social context for any investigation purpose by
allowing the user to define these features in a flexible and modular way. SDL is a graphical
language that has been widely used for designing and verifying complex systems, such
as telecommunications, embedded systems, and distributed systems [16]. SDL can also
be used to describe social simulation models clearly and concisely, using diagrams and
symbols that represent the structure and behavior of the system. The SDLPS tool also
provides a library of ready-to-use procedures that can capture some common stochastic
behaviors in various social science contexts, such as random sampling, probability dis-
tributions, network formation, etc. To demonstrate the usefulness of the SDL, this study
uses two cases: a numerical simulation (Sieve of Eratosthenes Model) and an agent-based
model (Artificial Anasazi model). The Sieve of Eratosthenes Model is a simple algorithm
for finding all prime numbers up to a given limit [17]. The Artificial Anasazi model is a
computational model that simulates the population dynamics and land use patterns of the
Ancestral Pueblo People who inhabited the Long House Valley in Arizona from AD 800 to
1350 [18]. We do not claim that these two cases can be generalized to any case, but they
illustrate how SDL as a tool can be used to model different types of phenomena that range
from computational problems to social phenomena with different levels of complexity and
uncertainty, and, more interestingly, in a HPC environment.

In this paper, we explain how the assumptions of each model are represented in the
SDL diagrams in a graphical, complete, and unambiguous way. In particular, we will show
how SDL can handle the logic and functionality of simulation models realistically and
robustly, using graphical symbols, state machines, events, signals, timers, variables, data
types, etc., and how we can generate code to be executed in a HPC environment. Other

Computers 2023, 12, 244 3 of 24

conceptualization languages exist to represent simulation models, and novel approaches
are proposed to be able to optimize the code that can be executed in HPC using Discrete
Event System Specification (DEVS) [19–21] or Petri nets [22–25]; however, in this paper, we
are focused on how conceptualization language can be used to automatically represent
models that can be executed in HPC, highlighting the advantages and limitations of this
approach. Finally, we show how we can generate code from this graphical, complete, and
unambiguous representation of the models that can be executed in a HPC environment,
making the validation and verification processes of the model simpler and faster.

The paper is organized as follows: Section 2 presents Specification and Description
Language; Section 2.1 shows the tool we used to implement the simulation SDLPS, which
understands SDL; Section 3 details how we can generate code for a HPC environment
with the tool; Section 4 presents the examples with the models and a discussion regarding
its implementation; finally, Sections 5 and 6 contain the discussion and conclusions of
this paper.

2. Our Approach: Specification and Description Language

Specification and Description Language (SDL) is an object-oriented formal and graphi-
cal language defined by the International Telecommunications Union–Telecommunications
Standardization Sector (ITU–T) (the Comité Consultatif International Telegraphique et
Telephonique [CCITT]) in the Recommendation Z.100. From its origins, SDL was de-
signed for the specification of event-oriented, real-time, and interactive complex systems.
These systems might involve different concurrent activities that use signals to perform
communication [26].

Structurally, the SDL consists of four elements: system, blocks, processes, and pro-
cedures. In SDL, blocks and processes are called agents (Henceforth, all SDL syntax will be
marked with CAPS notation. For example, when referring to a process as a dynamical
element we will write it as PROCESS when representing the SDL syntax. The names
for SDL model elements will be noted in italic). The outermost block, the system block,
is an agent itself. Figure 1 shows this hierarchy of levels. SDL handles concurrency by
allowing the user to define a system as a set of interconnected abstract machines, which are
extensions of finite state machines. Each abstract machine or PROCESS has its STATES and
can communicate with other PROCESSES through SIGNALS that are sent and received
via gates. The SIGNALS are transmitted through CHANNELS, which can have different
properties, such as delay, priority, or loss. The communication between PROCESSES can
be either synchronous or asynchronous, depending on the delay of the channel. SDL also
supports the dynamic creation and deletion of PROCESSES, using the CREATE and STOP
primitives. SDL ensures the synchronization and coordination of the concurrent processes,
using a set of rules and semantics that are precisely defined by the ITU-T standard [16,27].

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Computers 2023, 12, 244 4 of 24

Although a textual SDL representation is possible (SDL/PR), this paper uses the graph-
ical representation of the language (named SDL/GR). More details about the Specification
and Description Language can be found in Recommendation Z.100 [1] or on the website [2].
BLOCKS, PROCESS, and PROCEDURES define the basic structure and behavior of any
simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full
ontology, as defined by the modeler. The main elements to describe this behavior are
detailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

This element allows defining the initial condition for a PROCESS diagram.

State

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

The state element contains the name of a state. This element defines the states
of behavioral diagrams (like PROCESS diagrams).

Input

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

Input elements describe the kind of events that can be received by the process.
All branches of a specific state start with an input element since an object
changes its state only when a new event is received.

Create

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

This element allows the creation of an agent.

Task

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the
graphical representation of the language (named SDL/GR). More details about the Speci-
fication and Description Language can be found in Recommendation Z.100 [1] or on the
website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-
havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full
ontology, as defined by the modeler. The main elements to describe this behavior are de-
tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description
Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of
behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All
branches of a specific state start with an input element since an object changes its
state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In
this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the
last level of the SDL language. It can be used to encapsulate pieces of the model
for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the
signal carries, and the destination. If ambiguity about the signal destination ex-
ists, communication can be directed, specifying destinations using a processing
identity value (PId), an agent name, or using the sentence via path. If there is more
than one path, and no specific output is defined, an arbitrary one is used. The
destination value can be stored in a variable for later use. Four PId expressions
can be used:
 self: an agent’s own identity;
 parent: the agent that created the agent (Null for initial agents).
 offspring: the most recent agent created by the agent.
 the sender: the agent that sends the last signal input (null before any signal
is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to
the related question.

This element enables the interpretation of informal texts or programming code.
In this paper, following SDL2010, we use C code.

Procedure call

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

These elements perform a procedure call. A PROCEDURE can be defined in
the last level of the SDL language. It can be used to encapsulate pieces of the
model for its reuse.

Output

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.

Output elements describe the kind of signals to be sent, the parameters that the
signal carries, and the destination. If ambiguity about the signal destination
exists, communication can be directed, specifying destinations using a
processing identity value (PId), an agent name, or using the sentence via path.
If there is more than one path, and no specific output is defined, an arbitrary
one is used. The destination value can be stored in a variable for later use.
Four PId expressions can be used:

• self: an agent’s own identity;
• parent: the agent that created the agent (Null for initial agents).
• offspring: the most recent agent created by the agent.
• the sender: the agent that sends the last signal input (null before any

signal is received).

Decision

Computers 2023, 12, x FOR PEER REVIEW 4 of 23

Figure 1. A structural vision of an SDL model with four nested levels of model description [28].

Although a textual SDL representation is possible (SDL/PR), this paper uses the

graphical representation of the language (named SDL/GR). More details about the Speci-

fication and Description Language can be found in Recommendation Z.100 [1] or on the

website [2]. BLOCKS, PROCESS, and PROCEDURES define the basic structure and be-

havior of any simulation model in SDL.

The PROCESS diagram is used to represent the behavior of the model and its full

ontology, as defined by the modeler. The main elements to describe this behavior are de-

tailed in Table 1.

Table 1. Main SDL PROCESS elements.

Name Symbol Description

Start This element allows defining the initial condition for a PROCESS diagram.

State
The state element contains the name of a state. This element defines the states of

behavioral diagrams (like PROCESS diagrams).

Input

Input elements describe the kind of events that can be received by the process. All

branches of a specific state start with an input element since an object changes its

state only when a new event is received.

Create This element allows the creation of an agent.

Task
This element enables the interpretation of informal texts or programming code. In

this paper, following SDL2010, we use C code.

Procedure call

These elements perform a procedure call. A PROCEDURE can be defined in the

last level of the SDL language. It can be used to encapsulate pieces of the model

for its reuse.

Output

Output elements describe the kind of signals to be sent, the parameters that the

signal carries, and the destination. If ambiguity about the signal destination ex-

ists, communication can be directed, specifying destinations using a processing

identity value (PId), an agent name, or using the sentence via path. If there is more

than one path, and no specific output is defined, an arbitrary one is used. The

destination value can be stored in a variable for later use. Four PId expressions

can be used:

• self: an agent’s own identity;

• parent: the agent that created the agent (Null for initial agents).

• offspring: the most recent agent created by the agent.

• the sender: the agent that sends the last signal input (null before any signal

is received).

Decision
These elements describe bifurcations. Their behavior depends on the answer to

the related question.
These elements describe bifurcations. Their behavior depends on the answer
to the related question.

Notice that SDL owns more elements that can be used to detail a PROCESS diagram.
However, the elements presented in Table 1 are sufficient to represent any system; this can
be proved because we can establish a transformation between any model represented in
DEVS formalism and SDL [29]. Since DEVS is a complete formalism [30,31], this implies
that SDL can also capture the essential features of any system.

Figure 2 shows an example of a process diagram.

Computers 2023, 12, 244 5 of 24

Computers 2023, 12, x FOR PEER REVIEW 5 of 23

Notice that SDL owns more elements that can be used to detail a PROCESS diagram.

However, the elements presented in Table 1 are sufficient to represent any system; this can

be proved because we can establish a transformation between any model represented in

DEVS formalism and SDL [29]. Since DEVS is a complete formalism [30,31], this implies

that SDL can also capture the essential features of any system.

Figure 2 shows an example of a process diagram.

Figure 2. SDL process diagram for the ready state of the process PServer1, see [32] for more examples.

The PROCEDURES diagram is the last level of an SDL formalization, allowing a de-

scription of the procedures used in the procedure calls. It is needed to perform a complete

formalization of the simulation model, but usually does not add any important details

regarding the main model element’s behavior. Similarly to the PROCESS diagrams, it can

be described with C++ code.

Figure 2. SDL process diagram for the ready state of the process PServer1, see [32] for more examples.

The PROCEDURES diagram is the last level of an SDL formalization, allowing a
description of the procedures used in the procedure calls. It is needed to perform a
complete formalization of the simulation model, but usually does not add any important
details regarding the main model element’s behavior. Similarly to the PROCESS diagrams,
it can be described with C++ code.

2.1. SDLPS

SDL provides a conceptual model, whose execution can be performed using tools
such as PragmaDEV Studio [33,34], Cinderella [35,36] or Rational [37], among others. Here,
we use SDLPS [38], a platform developed in C++ and C at the Polytechnic University of
Catalonia. The model code blocks (in C for the tasks and procedures inside the SDL blocks)
are used through a DLL (Dynamic Link Library). The XML code is generated from the

Computers 2023, 12, 244 6 of 24

SDL with a plug-in on Microsoft Visio®. This means that the model can be validated and
verified through graphic diagrams.

There are two crucial advantages to performing model conceptualization with SDL in
cases of interdisciplinary work between context specialists and computer scientists: com-
munication and HPC integration. First, the graphic representation of the model simplifies
the interaction and communication between the different specialists ensuring that all of
them fully understand the model and its functioning (Figure 3).

Computers 2023, 12, x FOR PEER REVIEW 6 of 23

2.1. SDLPS

SDL provides a conceptual model, whose execution can be performed using tools

such as PragmaDEV Studio [33,34], Cinderella [35,36] or Rational [37], among others.

Here, we use SDLPS [38], a platform developed in C++ and C at the Polytechnic University

of Catalonia. The model code blocks (in C for the tasks and procedures inside the SDL

blocks) are used through a DLL (Dynamic Link Library). The XML code is generated from

the SDL with a plug-in on Microsoft Visio®. This means that the model can be validated

and verified through graphic diagrams.

There are two crucial advantages to performing model conceptualization with SDL

in cases of interdisciplinary work between context specialists and computer scientists:

communication and HPC integration. First, the graphic representation of the model sim-

plifies the interaction and communication between the different specialists ensuring that

all of them fully understand the model and its functioning (Figure 3).

Figure 3. The SDLPS interface.

Second, there is no additional step necessary to implement the conceptual model de-

fined in SDL in a HPC environment, since the model is automatically translated into code.

This also simplifies the Implementation and Validation and Verification stages of a simu-

lation project, (Figure 4 parts in red). Sargent’s simplified Validation and Verification loop

for simulation models [39] is a graphical representation of the main steps involved in en-

suring the quality and credibility of a simulation model. It consists of three main elements,

(i) the System, (ii) the Conceptual Model, and (iii) the Computerized Model. Several steps

must be performed to guarantee the quality of the process: (i) analysis and modeling; (ii)

implementation; and (iii) experimentation. In parallel, validation and verification pro-

cesses must be conducted that encompasses: (i) Conceptual Model Validation—checking

that the conceptual model accurately captures the system of interest and the objectives of

the study; (ii) Verification—checking that the computerized model correctly implements

the conceptual model and that there are no errors or bugs in the code; (iii) Operational

Validation—checking that the model is suitable and useful for the intended purpose and

application; and (iv) Data Validation—assuring that the data is correct for its use in the

model. The simplified Validation and Verification loop is a useful tool for guiding and

documenting the Verification and Validation process of simulation models. It also helps

to communicate the model’s quality and credibility to the stakeholders and users of the

Figure 3. The SDLPS interface.

Second, there is no additional step necessary to implement the conceptual model
defined in SDL in a HPC environment, since the model is automatically translated into
code. This also simplifies the Implementation and Validation and Verification stages of a
simulation project, (Figure 4 parts in red). Sargent’s simplified Validation and Verification
loop for simulation models [39] is a graphical representation of the main steps involved in
ensuring the quality and credibility of a simulation model. It consists of three main elements,
(i) the System, (ii) the Conceptual Model, and (iii) the Computerized Model. Several steps
must be performed to guarantee the quality of the process: (i) analysis and modeling;
(ii) implementation; and (iii) experimentation. In parallel, validation and verification
processes must be conducted that encompasses: (i) Conceptual Model Validation—checking
that the conceptual model accurately captures the system of interest and the objectives of
the study; (ii) Verification—checking that the computerized model correctly implements
the conceptual model and that there are no errors or bugs in the code; (iii) Operational
Validation—checking that the model is suitable and useful for the intended purpose and
application; and (iv) Data Validation—assuring that the data is correct for its use in the
model. The simplified Validation and Verification loop is a useful tool for guiding and
documenting the Verification and Validation process of simulation models. It also helps to
communicate the model’s quality and credibility to the stakeholders and users of the model.
There are other proposals more complete [40–42], but in our approach, this is enough to
express the advantages of the use of a formal language like SDL.

Computers 2023, 12, 244 7 of 24

Computers 2023, 12, x FOR PEER REVIEW 7 of 23

model. There are other proposals more complete [40–42], but in our approach, this is

enough to express the advantages of the use of a formal language like SDL.

Data Validity

Experimentation

Implementation

Analysis and Modeling

Conceptual Model ValidationOperational Validation

Verification

Computerized

Model

Conceptual

Model

Problem entity

(system)

Figure 4. A simplified version of the modeling process, based on [39].

The model validation is performed with the SDL representation of the model, such

that all the stakeholders involved in the project can participate in the validation process.

Syntactic verification is assured because the tool recognizes the SDL diagrams.

The obtained results from the model emulation trace can be represented in any data

analysis software or in the bespoke tool, SDLPSEye, which can represent information in a

3D environment. Notice that SDLPSEye only serves as a 3D representation tool, and works

independent of the SDPS engine, and therefore has no effects on the calculus of the model.

2.1.1. SDLPS Time Management

Each one of the different agents in SDL may or may not be executed in parallel, de-

pending on its function. SDL agents that must be executed sequentially are defined as a

set of PROCESSES inside of the PROCESS agent. This scheduling ensures that each agent

waits for the completion of the execution of all previous agents. On the other hand, all the

elements that are included within one BLOCK SDL AGENT can be executed in parallel.

This implies that the AGENTS inside a BLOCK AGENT do not share memory since we do

not know their order of execution.

Thus, the modeler can clearly express, graphically, the execution mode (parallel or

sequential) for each one of the different simulation sub-models (SDL agents). This signif-

icantly facilitates the definition of distributed simulation models and the merging of ex-

isting simulation models with other simulation components that can actuate in real-time.

The SDLPS clock. SDL has a global clock that represents the simulation time. In

SDLPS, this time is implemented and interpreted as the Lower Bound Time Stamp (LBTS

in HLA1.3). This is the time that all AGENTS can advance securely without the need to

implement a rollback mechanism. The value of this clock is stored in the SYSTEM agent

to simplify the access by all AGENTS. This value exists in all the other agents that com-

prise the model. For all the other agents and components, this time represents its Local

Virtual Time (LVT).

In our current implementation, SDLPS only supports conservative synchronization

between all the elements that compose the system. However, for the model definition, it

is not necessary to understand the internal time management.

Figure 4. A simplified version of the modeling process, based on [39].

The model validation is performed with the SDL representation of the model, such
that all the stakeholders involved in the project can participate in the validation process.
Syntactic verification is assured because the tool recognizes the SDL diagrams.

The obtained results from the model emulation trace can be represented in any data
analysis software or in the bespoke tool, SDLPSEye, which can represent information in a
3D environment. Notice that SDLPSEye only serves as a 3D representation tool, and works
independent of the SDPS engine, and therefore has no effects on the calculus of the model.

2.1.1. SDLPS Time Management

Each one of the different agents in SDL may or may not be executed in parallel,
depending on its function. SDL agents that must be executed sequentially are defined as a
set of PROCESSES inside of the PROCESS agent. This scheduling ensures that each agent
waits for the completion of the execution of all previous agents. On the other hand, all the
elements that are included within one BLOCK SDL AGENT can be executed in parallel.
This implies that the AGENTS inside a BLOCK AGENT do not share memory since we do
not know their order of execution.

Thus, the modeler can clearly express, graphically, the execution mode (parallel
or sequential) for each one of the different simulation sub-models (SDL agents). This
significantly facilitates the definition of distributed simulation models and the merging of
existing simulation models with other simulation components that can actuate in real-time.

The SDLPS clock. SDL has a global clock that represents the simulation time. In
SDLPS, this time is implemented and interpreted as the Lower Bound Time Stamp (LBTS
in HLA1.3). This is the time that all AGENTS can advance securely without the need to
implement a rollback mechanism. The value of this clock is stored in the SYSTEM agent to
simplify the access by all AGENTS. This value exists in all the other agents that comprise
the model. For all the other agents and components, this time represents its Local Virtual
Time (LVT).

In our current implementation, SDLPS only supports conservative synchronization
between all the elements that compose the system. However, for the model definition, it is
not necessary to understand the internal time management.

Computers 2023, 12, 244 8 of 24

2.1.2. Input and Output Variables

To define the communication mechanism between the different elements that compose
the system, the SDL has two mechanisms depending on the nature of the sub-models.
If the sub-model is defined following SDL language, we have a complete definition of
its behavior and can use the PROCESS mechanism. In that case, we can use parameters
that are attached to SIGNALS. When a PROCESS receives a new SIGNAL, its attached
parameters can be used inside the PROCESS methods. One needs to specify what are the
parameters, and the type of parameters that the different PROCESSES expect to receive.

However, often we do not have a formal representation of the model using SDL.
In that case, it is needed to use a PROCEDURE CALL that connects the model with
other components. This is a compelling approach as it enables the merging of external
components and co-simulation mechanisms. In the SDLPS implementation of the SDL,
PROCEDURE CALL can use other computer programs (or simulators) to obtain data and
combine its information dynamically with the simulation model. The critical element
here is that the procedures always belong to a PROCESS that defines its integration and
interaction with the whole simulation model, defining the SIGNALS the parameters used
in sub-models. Three different mechanisms to define the PROCEDURE are implemented
on SDLPS: full definition, API implementation, and remote implementation.

Full definition means that the PROCEDURE is defined in the simulation model. As
an example, a PROCEDURE may be defined as follows:

<!--Procedures definition.-->

<procedures>

<procedure id=“1” name=“DelayTimeSrv1” implementation=“”>

<params>

<param name=“TimeSrv1_t” type=“double” defvalue=“” ref=“yes”></param>

</params>

<body>

<task id=“1” name=“”>TimeSrv1_t=60;</task>

</body>

</procedure>

</procedures>

The PROCEDURE named DelayTimeSrv1 has a body but no specific implementation.
This implies that SDLPS uses its body to perform actions defined elsewhere. Thus, with
the full implementation, the SDLPS PROCEDURES contain all the code that is needed
to be executed in the context of the simulation model defined inside the SDL diagrams
(the model).

API implementation means that the PROCEDURE is implemented in the SDLPS itself.
This approach was used for industrial [38] and environmental applications. For example, a
model representing the slab avalanche phenomenon, the GetCurCell PROCEDURE, allows
access to information of the Cellular Automaton structure used to model the avalanche,
and is implemented directly in SDLSP to simplify the model definition and readability [43].
This way of modifying the model is not limited to the team of SDLPS developers. The
generated DLL can include all the procedures of a model.

The last mechanism is the remote implementation. In this case, the PROCEDURE is
implemented in another system (i.e., program). This implementation is mainly performed
with the help of C++ libraries, which allow one to call the other system and retrieve their
results. This program can have (or not) a connection mechanism to obtain the information.
We can connect our simulator with a third-party simulator using its API, but if no API
exists, other mechanisms can be implemented. As an example, we connected SDLPS
with the energyPlus [44] simulation system, using the OS API instructions to access the
program through an SDLPS plug-in that represents the connection point of the simulator.

Computers 2023, 12, 244 9 of 24

Therefore, the remote implementation becomes a mechanism to glue different pieces of
software. This can be similar to what we can do with the Run-Time Infrastructure (RTI)
in the HLA standard. The RTI, or Run-Time Infrastructure, is a middleware that provides
a standardized set of services for distributed simulation using the HLA, or High-Level
Architecture standard. The RTI enables different simulation systems, called federates, to
communicate and coordinate their data exchange and synchronization during a runtime
execution. The RTI also supports the management and inspection of the state of a federation,
which is a collection of federates that share a common Federation Object Model (FOM).
The FOM defines the data types and structures that are used for information exchange
among federates. To know more regarding HLA, see [45]. In the remote implementation,
the SDLPS ensures the synchronization during the execution of the model, and data sharing
using SIGNALS and structures defined in the declarations (DCL) SDL text area. This means
that the PROCESS in the model can communicate and coordinate their actions and STATES,
and access the common data and variables, according to the SDL specifications. The SDLPS
also handles the parallelization and distribution of the processes and the data across the
final platform that supports the execution.

In our approach, there is no need to modify the model definition, only to implement
a very simple plug-in following the SDL requirements to connect the simulator (that
can be a legacy infrastructure without any conceptualization) with the new simulator.
In all these cases, the call to the PROCEDURE is the same. As an example, we have a
PROCEDURE call named DelayTimeSrv1 that represents the time needed for a server to
perform its operations:

<procedurecall id=“2” name=“DelayTimeSrv1”>
<param name=“TimeSrv1_t” value=“PServer1_t”></param>

</procedurecall>

In this code we are using a parameter named TimeSrv1_t is defined in the process.
Since this PROCEDURE modifies this parameter, all SDL model agents must be aware
of this modification. It is indifferent to the model whether the call is synchronous or
asynchronous, or if the procedure is implemented using a full definition, API, or Remote
implementation. The structure of the SDL assures the coherence of the obtained results.

SDLPS model structure. The models defined on SDLS are structured in several
directories that contain all the needed elements to execute a model.

Doc directory. It contains the files with the model, based on Microsoft Visio® vsdx
format. These files are understood by SDLPS and used to generate an XML representation
of the SDL model. This directory is the main directory of an SDLPS model since it contains
the SDL/GR model.

Code directory (SDLCodeExtenal). It contains the files with code in C++ needed for
automatic code generation, but not the model code, for example, the methods needed to
access input data.

Data directory. It contains the files with the model input data.
Model directory. It contains XML files with the model generated from the SDL/GR

diagrams. This directory is autogenerated.
Traces directory. It contains the files with the traces (raw output) of the model execution

necessary to do Operational Validation.
Root directory. The root directory also contains an automatically generated set of files

later used in the model execution, like the XMLK representation of the SYSTEM diagram
(with the name of the model and “sdlps” extension) or the DLL needed for the execution of
the model in a local computer.

Computers 2023, 12, 244 10 of 24

3. Generating the HPC Code

The tools needed to generate the C++ code that can be executed in the HPC environ-
ment consist of a model compiler and a simulator. The former takes care of reading the
XML generated by SDLPS, which represents the model to simulate and run several stages
to ensure the model is correct. The latter is the infrastructure that will manage the runtime
execution of the model, allowing it to run certain parts of the simulation in parallel while
keeping the results the same as if it were executed sequentially.

3.1. The Marenostrum

In our specific case, the HPC is the Marenostrum 4 Supercomputer [46] with a com-
puting power of up to 11.15 Petaflops, and achieved 48 racks with 3.456 nodes. It is worth
noting that only single-node experiments using two Intel Xeon Platinum 8160 with 24 cores
each at 2.1 GHz frequency are presented in this work. Figure 5 shows the Marenostrum 4.

Computers 2023, 12, x FOR PEER REVIEW 10 of 23

execution of the model, allowing it to run certain parts of the simulation in parallel while

keeping the results the same as if it were executed sequentially.

3.1. The Marenostrum

In our specific case, the HPC is the Marenostrum 4 Supercomputer [46] with a com-

puting power of up to 11.15 Petaflops, and achieved 48 racks with 3.456 nodes. It is worth

noting that only single-node experiments using two Intel Xeon Platinum 8160 with 24

cores each at 2.1 GHz frequency are presented in this work. Figure 5 shows the Marenos-

trum 4.

Figure 5. Marenostrum 4, source: Martidaniel, CC BY-SA 4.0 <https://creativecommons.org/li-

censes/by-sa/4.0>, via Wikimedia Commons accessed on 15 November 2023.

3.2. System Architecture

The model conceptualization is performed in SDL language. We used it to represent,

graphically, the SDL diagrams via Microsoft Visio®, and we stored them using the stand-

ard vsdx format. The SDLPS tool opens this model, written in vsdx, and performs a trans-

formation of the code to an XML code that represents the SDL model. Then, it analyzes

this XML representation doing a first syntactic validation of the model. From this XML

representation of the model (the .sdlps file), SDLPS generates C code to represent the PRO-

CEDURE elements of the model and connect the different model AGENTS (PROCESS and

BLOCKS). This code, however, is intended to be used alongside SDLPS, which is not pre-

pared to be executed on the Marenostrum environment. Instead of using this code, a new

library allows the generation of a C++ code that is suitable for its execution in the Ma-

renostrum 4 Supercomputer. Detailed below is the process of how these libraries work.

First, we start from the XML representation of the SDL model, eth XML-SDL model.

The next lines show an XML sample of an SDL block.

<sdlblock>

<block id=“0” name=“Bprime” IP=“” portRead=“” implementation=“” inherits=“”>

<channels>

<channel name=“” start=“PManager” end=“PSegment” dual=“yes”>

<event name=“SEGMENT”/>

</channel>

</channels>

<process id=“1” name=“PSegment” implementation=“model\PSegment.sdlps” IP=“”

portRead=“”>

Figure 5. Marenostrum 4, source: Martidaniel, CC BY-SA 4.0 <https://creativecommons.org/
licenses/by-sa/4.0>, via Wikimedia Commons accessed on 15 November 2023.

3.2. System Architecture

The model conceptualization is performed in SDL language. We used it to repre-
sent, graphically, the SDL diagrams via Microsoft Visio®, and we stored them using the
standard vsdx format. The SDLPS tool opens this model, written in vsdx, and performs
a transformation of the code to an XML code that represents the SDL model. Then, it
analyzes this XML representation doing a first syntactic validation of the model. From this
XML representation of the model (the .sdlps file), SDLPS generates C code to represent the
PROCEDURE elements of the model and connect the different model AGENTS (PROCESS
and BLOCKS). This code, however, is intended to be used alongside SDLPS, which is not
prepared to be executed on the Marenostrum environment. Instead of using this code, a
new library allows the generation of a C++ code that is suitable for its execution in the
Marenostrum 4 Supercomputer. Detailed below is the process of how these libraries work.

First, we start from the XML representation of the SDL model, eth XML-SDL model.
The next lines show an XML sample of an SDL block.

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Computers 2023, 12, 244 11 of 24

<sdlblock>

<block id=“0” name=“Bprime” IP=“” portRead=“” implementation=“” inherits=“”>

<channels>

<channel name=“” start=“PManager” end=“PSegment” dual=“yes”>

<event name=“SEGMENT”/>

</channel>

</channels>

<process id=“1” name=“PSegment” implementation=“model\PSegment.sdlps” IP=“”

portRead=“”>

</process>

<process id=“2” name=“PManager” implementation=“model\PManager.sdlps” IP=“”

portRead=“”>

</process>

<DCLS/>

<procedures/>

<start/>

</block>

</sdlblock>

The next lines show an example of an SDL process with the definition of one st

<sdlprocess>

<process id=“3” name=“PSegment” IP=“” portRead=“” implementation=“” inherits=“”>

<DCLS>

<DCL name=“i” type=“int” value=“”/>

<DCL name=“L” type=“int” value=“”/>

...

</DCLS>

<procedures>

<procedure id=“1” name=“ReportList1” implementation=“”>

<params>

<param name=“list” type=“int*” defvalue=“” ref=“yes”/>

...

</params>

<body>

<task id=“1” name=“”>/* Run through each of the numbers in list1 */ for(c =

2; c <= sqrtN; c++) { /* If the number is unmarked */ if(list1[c] == 0) { /* The

number is prime, print it */ Report(“%lu “, c); } }</task>

<return id=“2” name=“”/>

</body>

</procedure>

<procedure id=“2” name=“ReportList2” implementation=“”>

<params>

<param name=“list” type=“int*” defvalue=“” ref=“yes”/>

. . .

</params>

<body>

<task id=“1” name=“”>/* Run through each of the numbers in list2 */ for(c

= L; c <= H; c++) { /* If the number is unmarked */ if(list2[c-L] == 0) { /* The

number is prime, print it */ Report(“%lu “, c); } }</task>

<return id=“2” name=“”/>

</body>

Computers 2023, 12, 244 12 of 24

</procedure>

</procedures>

<start>

<task id=“1” name=“”>sqrtN=sqrt(N);</task>

<setstate id=“2” name=“PREPARING”/>

</start>

<state name=“CALCULATING”>

<input id=“1” name=“CALCULUS”/>

...

<setstate id=“6” name=“RESULTS”/>

<output id=“7” name=“PARTIAL_RESULTS” self=“” to=“‘Bprime_PSegment [0]’” via=“”>

<userparam name=“list2” value=“list2”/>

</output>

<setstate id=“8” name=“END”/>

</state>

<state name=“PREPARING”>

SDL owns two possible representations, the graphical one, GR-SDL, and a textual one,
TR-SDL. Both are equivalent. Notice that the XML-SDL representation used on SDLPS is
only a representation based on XML of the TR_SDL, the textual representation of SDL.

From the XML code defined on SDLPS, the system is capable of generating the C++
code that will be executed on the Marenostrum 4. The system is composed of two main
elements, the model compiler libraries and the simulator. The XML file is read with the
pugixml c code library; from this XML, an intermediate structure is generated with the
sema.c class, which will be the basis for the codegen.c class to generate the executable C code
in the Marenostrum 4 owned by the BSC-CNS.

3.3. Model-Compiler Libraries

These libraries are responsible for translating the XML files representing an SDL model
into a C++ source file that can be integrated into the simulator. The execution of the libraries
consists of three phases. The first phase reads all the information from the root file of the
project and gathers all the information needed by the next phase. This phase performs
necessary checks, e.g., ensuring that all required files exist.

The second phase performs additional checks to ensure the model is semantically
correct and generates additional information about the model needed by the final phase. For
example, this phase determines which PROCESSES can communicate among themselves,
what SIGNALS will be sent and received by each process, what STATES do not receive any
SIGNAL defined on the model (by an OUTPUT), and which PROCESS may potentially
create other PROCESSES during the execution. This information will be used by the
simulator to guarantee correct executions and to optimize the parallelization of the code.
This phase also validates the consistency and completeness of the model and reports any
errors or warnings to the user.

The third phase is responsible for transforming all the information about the model
gathered through the previous phases into a C++ source file. This phase generates the
code that implements the structure and behavior of the model, using classes, methods,
variables, and statements. The code also includes the necessary libraries and directives for
parallelization, such as OpenMP [3,4,47]. Figure 6 shows a simplified version of the code
generated for PManager, which is a process that manages the creation and deletion of other
processes in the model.

Computers 2023, 12, 244 13 of 24

Computers 2023, 12, x FOR PEER REVIEW 12 of 23

From the XML code defined on SDLPS, the system is capable of generating the C++

code that will be executed on the Marenostrum 4. The system is composed of two main

elements, the model compiler libraries and the simulator. The XML file is read with the

pugixml c code library; from this XML, an intermediate structure is generated with the

sema.c class, which will be the basis for the codegen.c class to generate the executable C

code in the Marenostrum 4 owned by the BSC-CNS.

3.3. Model-Compiler Libraries

These libraries are responsible for translating the XML files representing an SDL

model into a C++ source file that can be integrated into the simulator. The execution of the

libraries consists of three phases. The first phase reads all the information from the root

file of the project and gathers all the information needed by the next phase. This phase

performs necessary checks, e.g., ensuring that all required files exist.

The second phase performs additional checks to ensure the model is semantically

correct and generates additional information about the model needed by the final phase.

For example, this phase determines which PROCESSES can communicate among them-

selves, what SIGNALS will be sent and received by each process, what STATES do not

receive any SIGNAL defined on the model (by an OUTPUT), and which PROCESS may

potentially create other PROCESSES during the execution. This information will be used

by the simulator to guarantee correct executions and to optimize the parallelization of the

code. This phase also validates the consistency and completeness of the model and reports

any errors or warnings to the user.

The third phase is responsible for transforming all the information about the model

gathered through the previous phases into a C++ source file. This phase generates the code

that implements the structure and behavior of the model, using classes, methods, varia-

bles, and statements. The code also includes the necessary libraries and directives for par-

allelization, such as OpenMP [3,4,47]. Figure 6 shows a simplified version of the code gen-

erated for PManager, which is a process that manages the creation and deletion of other

processes in the model.

Figure 6. PManager C++ output code (simplified).

3.4. Simulator

This tool implements two compatible simulation environments able to execute the
model in the C++ source file: one sequential and one parallel. The sequential simulation
runs the simulation without any use of parallelism. On the other hand, the parallel
implementation can run parts of the simulation concurrently by using OpenMP [47] if
several conditions are met.

Each process P has one external event queue QR for each process R connected to P. P
also has an additional event queue Qself for events it sends to itself. A process P can send
events to other processes, but these events will have a timestamp greater or equal to the
timestamp of the last event that was received by P; we call this timestamp, LP. Moreover,
the sequence of events sent from P to R must have nondecreasing timestamps. For each
external event queue QK in P, there is one or more events with a timestamp MK that is
larger or equal to the other events. We define the critical time Tcrit of a process P as the
minimum of all the MK timestamps. A process P can be simulated concurrently with other
processes if it has events in its queues whose timestamp is lower than Tcrit. Figure 7 shows
an example of this process.

Computers 2023, 12, 244 14 of 24

Computers 2023, 12, x FOR PEER REVIEW 13 of 23

Figure 6. PManager C++ output code (simplified).

3.4. Simulator

This tool implements two compatible simulation environments able to execute the

model in the C++ source file: one sequential and one parallel. The sequential simulation

runs the simulation without any use of parallelism. On the other hand, the parallel imple-

mentation can run parts of the simulation concurrently by using OpenMP [47] if several

conditions are met.

Each process P has one external event queue QR for each process R connected to P. P

also has an additional event queue Qself for events it sends to itself. A process P can send

events to other processes, but these events will have a timestamp greater or equal to the

timestamp of the last event that was received by P; we call this timestamp, LP. Moreover,

the sequence of events sent from P to R must have nondecreasing timestamps. For each

external event queue QK in P, there is one or more events with a timestamp MK that is

larger or equal to the other events. We define the critical time Tcrit of a process P as the

minimum of all the MK timestamps. A process P can be simulated concurrently with other

processes if it has events in its queues whose timestamp is lower than Tcrit. Figure 7 shows

an example of this process.

Figure 7. Example of parallel process.

Process P1 is connected to P2 and P3 and has events to be consumed. From P2 it has

events e1, e2, and e3 with timestamps 3, 10, and 11, respectively, whereas from P3 it has

e5, e6, and e7 with timestamps 5, 6, and 7. In addition, P1 has an event, e4, sent to itself

with timestamp 3.

The Tcrit of P1 is min(e3, e7) = 7. In this example, P1 can execute, in parallel, the events

with time e1, e4, e5, e6 marked as red. That is because P2 and P3 only can send events

with timestamps greater equal 11 and 7, respectively.

To be able to detect this situation, the parallel simulator has an inspection and execu-

tion phase. The former goes through the current list of processes in the system, gathering

the ones able to run in parallel while searching the process owning the minimum

timestamp event. The latter runs in parallel with the processes gathered, in this case, more

than one has been found. If not, the process with the minimum timestamp event is exe-

cuted.

4. Case Studies: Numerical and Agent-Based Models

For verifications of the HPC library developed to directly execute SDL models in HPC

environments, we replicated two standard simulation models: a numerical simulation and

an agent-based model. The objective of the former, the Sieve of Eratosthenes model, is to ver-

ify the implementation of the library and to test the robustness of the process. Second, the

Figure 7. Example of parallel process.

Process P1 is connected to P2 and P3 and has events to be consumed. From P2 it has
events e1, e2, and e3 with timestamps 3, 10, and 11, respectively, whereas from P3 it has e5,
e6, and e7 with timestamps 5, 6, and 7. In addition, P1 has an event, e4, sent to itself with
timestamp 3.

The Tcrit of P1 is min(e3, e7) = 7. In this example, P1 can execute, in parallel, the events
with time e1, e4, e5, e6 marked as red. That is because P2 and P3 only can send events with
timestamps greater equal 11 and 7, respectively.

To be able to detect this situation, the parallel simulator has an inspection and execution
phase. The former goes through the current list of processes in the system, gathering the
ones able to run in parallel while searching the process owning the minimum timestamp
event. The latter runs in parallel with the processes gathered, in this case, more than one
has been found. If not, the process with the minimum timestamp event is executed.

4. Case Studies: Numerical and Agent-Based Models

For verifications of the HPC library developed to directly execute SDL models in HPC
environments, we replicated two standard simulation models: a numerical simulation and
an agent-based model. The objective of the former, the Sieve of Eratosthenes model, is to verify
the implementation of the library and to test the robustness of the process. Second, the
agent-based model is a replication of a seminal in social sciences Artificial Anasazi model.
Here, it is used to test the potential of the proposed workflow to facilitate communication in
a multidisciplinary team. The hope is that the SDL language can become a bridge between
scientists and engineers working on complex simulation models.

The Artificial Anasazi model [18,48] is a well-known model within the agent-based
modeling community. It describes the population dynamics of the Ancestral Pueblo People,
who lived in the Long House Valley, Arizona between AD 800 and AD 1350. The model
simulates population fluctuations and spatial distribution of human settlements on the
landscape as a result of climatic shifts and individual decision-making processes.

The aim of using this highly complex agent-based model was to test the viability of
using the SDL language as the ‘communication platform’ with a highly challenging context
likely to mirror real-world circumstances. The use of a graphical language like SDL, as a
communication platform or mechanism, simplifies the interaction between the different
specialists who are involved in the validation and verification of the models that will even-
tually be executed on the platform to support decisions. Throughout the modeling process,
a social simulation expert collaborated closely with computer science engineers to translate
the model’s ontology, develop the model’s implementation, and solve the barriers prevent-
ing the efficient parallelization of the code and other issues that needed to be overcome for
the model to run on a HPC environment. The discussion between the context expert (the
social scientist) and the HPC experts became very productive and straightforward since
they all shared the same basis: the SDL model. The SDL model also helped to ensure the

Computers 2023, 12, 244 15 of 24

consistency and correctness of the model, and to avoid the loss of information or meaning
during the translation from the conceptual to the computational level.

In the next section, we will focus on the SDL Sieve of Eratosthenes model to showcase
the functionality of the presented framework.

4.1. Sieve of Eratosthenes SDL Model

The prime number model is based on a parallel version of the Sieve of Eratosthenes
method to calculate the prime numbers on a segment. To do so, an important element is to
detail the structure of the model, since this structure will facilitate the parallelization of the
algorithm in the HPC environment. Figure 8 shows the structure of the model, comprising
the SYSTEM and one BLOCK “Bprime”. The Bprime BLOCK (Figure 9) contains the three
main PROCESSES that will be used to calculate the prime numbers, “PCreator” (Figure 10),
“PManager” (Figure 11), and “PSegment” (Figure 12).

Computers 2023, 12, x FOR PEER REVIEW 14 of 23

agent-based model is a replication of a seminal in social sciences Artificial Anasazi model.

Here, it is used to test the potential of the proposed workflow to facilitate communication

in a multidisciplinary team. The hope is that the SDL language can become a bridge be-

tween scientists and engineers working on complex simulation models.

The Artificial Anasazi model [18,48] is a well-known model within the agent-based

modeling community. It describes the population dynamics of the Ancestral Pueblo Peo-

ple, who lived in the Long House Valley, Arizona between AD 800 and AD 1350. The

model simulates population fluctuations and spatial distribution of human settlements on

the landscape as a result of climatic shifts and individual decision-making processes.

The aim of using this highly complex agent-based model was to test the viability of

using the SDL language as the ‘communication platform’ with a highly challenging con-

text likely to mirror real-world circumstances. The use of a graphical language like SDL,

as a communication platform or mechanism, simplifies the interaction between the differ-

ent specialists who are involved in the validation and verification of the models that will

eventually be executed on the platform to support decisions. Throughout the modeling

process, a social simulation expert collaborated closely with computer science engineers

to translate the model’s ontology, develop the model’s implementation, and solve the bar-

riers preventing the efficient parallelization of the code and other issues that needed to be

overcome for the model to run on a HPC environment. The discussion between the context

expert (the social scientist) and the HPC experts became very productive and straightfor-

ward since they all shared the same basis: the SDL model. The SDL model also helped to

ensure the consistency and correctness of the model, and to avoid the loss of information

or meaning during the translation from the conceptual to the computational level.

In the next section, we will focus on the SDL Sieve of Eratosthenes model to showcase

the functionality of the presented framework.

4.1. Sieve of Eratosthenes SDL Model

The prime number model is based on a parallel version of the Sieve of Eratosthenes

method to calculate the prime numbers on a segment. To do so, an important element is

to detail the structure of the model, since this structure will facilitate the parallelization of

the algorithm in the HPC environment. Figure 8 shows the structure of the model, com-

prising the SYSTEM and one BLOCK “Bprime”. The Bprime BLOCK (Figure 9) contains

the three main PROCESSES that will be used to calculate the prime numbers, “PCreator”

(Figure 10), “PManager” (Figure 11), and “PSegment” (Figure 12).

Figure 8. Definition of the structure of the prime model, SYSTEM diagram. Figure 8. Definition of the structure of the prime model, SYSTEM diagram.

Computers 2023, 12, x FOR PEER REVIEW 15 of 23

Figure 9. Definition of the structure of the prime model, BLOCK Bprime.

Figure 10. PCreator PROCESS. This PROCESS defines the parallelization level of the Sieve of Eratos-

thenes approach. Parameter P represents the number of parallel instances that will be executed in

parallel; in this example, there are 3.

Figure 9. Definition of the structure of the prime model, BLOCK Bprime.

Computers 2023, 12, 244 16 of 24

Computers 2023, 12, x FOR PEER REVIEW 15 of 23

Figure 9. Definition of the structure of the prime model, BLOCK Bprime.

Figure 10. PCreator PROCESS. This PROCESS defines the parallelization level of the Sieve of Eratos-

thenes approach. Parameter P represents the number of parallel instances that will be executed in

parallel; in this example, there are 3.

Figure 10. PCreator PROCESS. This PROCESS defines the parallelization level of the Sieve of Eratos-
thenes approach. Parameter P represents the number of parallel instances that will be executed in
parallel; in this example, there are 3.

From this SDL representation of our approach to the parallel Sieve of Eratosthenes
problem, SDLPS generates an XML representation of the model that will be used as an
input for the libraries, see Figure 13.

This XML representation of the SDL model allows us to simplify the interaction be-
tween the different tools that must take care of the model. We prefer to use this over
SDL/PR because this XML representation simplifies working with it in our computa-
tional frameworks.

Computers 2023, 12, 244 17 of 24Computers 2023, 12, x FOR PEER REVIEW 16 of 23

Figure 11. PManager PROCESS. On this PROCESS are prepared all the segments Psegment that will

be used for the distributed calculus and generate the results from all the different PSegment that are

involved in the parallel calculus.

Figure 11. PManager PROCESS. On this PROCESS are prepared all the segments Psegment that will
be used for the distributed calculus and generate the results from all the different PSegment that are
involved in the parallel calculus.

Computers 2023, 12, 244 18 of 24Computers 2023, 12, x FOR PEER REVIEW 17 of 23

Figure 12. PSegment PROCESS. This PROCESS is defined as the main calculus (on the first task), and

is sent the partial result, calculated on this segment to the PManager that will store all the results

calculated.

From this SDL representation of our approach to the parallel Sieve of Eratosthenes

problem, SDLPS generates an XML representation of the model that will be used as an

input for the libraries, see Figure 13.

Figure 12. PSegment PROCESS. This PROCESS is defined as the main calculus (on the first task),
and is sent the partial result, calculated on this segment to the PManager that will store all the
results calculated.

Computers 2023, 12, 244 19 of 24Computers 2023, 12, x FOR PEER REVIEW 18 of 23

Figure 13. XML representation obtained through SDLPS to represent the PManager PROCESS of the

prime model.

This XML representation of the SDL model allows us to simplify the interaction be-

tween the different tools that must take care of the model. We prefer to use this over

SDL/PR because this XML representation simplifies working with it in our computational

frameworks.

4.2. Sieve of Eratosthenes Parallel Execution

To take advantage of the parallelism condition of the simulator, the model follows

four well-defined phases.

First, the PCreator creates PROCESS PSegment and gets it ready to work. Second, the

PManager distributes the chunks of the sieve to all PSegments sending the boundaries for

each one. To satisfy the parallelism, condition a SKIP message is also sent with a higher

timestamp. This will make the simulator aware that all PSegments can run in parallel and

execute them. Third, PSegments compute the partial sieve and send the results to PMan-

ager. To ensure the results are printed in order, each PSegment sends the data with a

timestamp plus a delay equal to its process instance. Finally, the PManager processes each

message sequentially, printing the results.

An MN4 job script is a text file that contains the instructions and parameters for run-

ning a job on the Marenostrum 4 supercomputer [49]. A job is the execution unit for Slurm,

which is the utility used for batch processing support on Marenostrum 4. An MN4 job

script typically includes the following elements: (i) the shebang line (#!/usr/bin/env bash),

which indicates the shell to use for the script; (ii) the SBATCH directives (#SBATCH),

which specify the job name, output and error files, number of tasks and CPUs per task,

time limit, and reservation name for the job, and these directives are preceded by a hash

sign (#) and are read by Slurm before executing the script; (iii) the module load command

(module load), which loads the required software modules for the job, such as compilers,

libraries, or tools; (iv) the environment variables (export), which set the values of certain

variables for the job, such as the number of threads or the path to Extrae; and (v) the com-

mands (srun, mpirun, etc.), which launch the executable or application for the job, with

optional arguments or options. Figure 14 shows an example of the MN4 job script used to

execute the model.

Figure 13. XML representation obtained through SDLPS to represent the PManager PROCESS of the
prime model.

4.2. Sieve of Eratosthenes Parallel Execution

To take advantage of the parallelism condition of the simulator, the model follows
four well-defined phases.

First, the PCreator creates PROCESS PSegment and gets it ready to work. Second, the
PManager distributes the chunks of the sieve to all PSegments sending the boundaries for
each one. To satisfy the parallelism, condition a SKIP message is also sent with a higher
timestamp. This will make the simulator aware that all PSegments can run in parallel and
execute them. Third, PSegments compute the partial sieve and send the results to PManager.
To ensure the results are printed in order, each PSegment sends the data with a timestamp
plus a delay equal to its process instance. Finally, the PManager processes each message
sequentially, printing the results.

An MN4 job script is a text file that contains the instructions and parameters for
running a job on the Marenostrum 4 supercomputer [49]. A job is the execution unit for
Slurm, which is the utility used for batch processing support on Marenostrum 4. An MN4
job script typically includes the following elements: (i) the shebang line (#!/usr/bin/env
bash), which indicates the shell to use for the script; (ii) the SBATCH directives (#SBATCH),
which specify the job name, output and error files, number of tasks and CPUs per task, time
limit, and reservation name for the job, and these directives are preceded by a hash sign (#)
and are read by Slurm before executing the script; (iii) the module load command (module
load), which loads the required software modules for the job, such as compilers, libraries,
or tools; (iv) the environment variables (export), which set the values of certain variables
for the job, such as the number of threads or the path to Extrae; and (v) the commands
(srun, mpirun, etc.), which launch the executable or application for the job, with optional
arguments or options. Figure 14 shows an example of the MN4 job script used to execute
the model.

Computers 2023, 12, x FOR PEER REVIEW 19 of 23

Figure 14. Example of MN4 job script.

Once our job is executed, we can obtain the results in the output files. This is the result

obtained from computing the sieve between 2 and 1000 using 5 PSegments, see Figure 15.

Figure 15. Example of MN4 sieve results.

The SDLPS can be downloaded at https://sdlps.com, accessed on 15 November of

2023.

5. Discussion

The examples we have shown here are simple enough in order to understand the

details of the code generation mechanism we use for the Marenostrum. However, this

approach makes sense when we develop projects where personnel with different back-

grounds must collaborate to define a complex model. An example of this is the simulation

of the current pandemic situation in Catalonia, see [50], where the modeling using SDL

largely simplifies the interaction between the different actors (specialists) that are in-

volved in the project. Other examples where this approach has been used are in the con-

struction sector [28,44], where the model connects with the energyPlus [51] engine to op-

timize building sustainability for the simulation of slap avalanches [43], software [52–54],

or the simulation of industrial systems [38]. The capability to generate the code that can

later be executed on Marenostrum allows us to avoid the constraint related to the compu-

tational capabilities of the infrastructure we will use. Moreover, this approach enables us

to explore different scenarios and parameters for the simulation, such as the impact of

vaccination, lockdowns, social distancing, and testing strategies. By using SDL, we can

easily modify and validate the model according to the latest data and evidence. This way,

we can provide useful insights and recommendations for policymakers and health au-

thorities to manage the pandemic situation in Catalonia.

Some existing proposals allow the definition of simulation models to be executed in

a HPC environment. For example, AnyLogic is a tool that supports different modeling

paradigms, such as agent-based, discrete event, and system dynamics. It allows the user

to create graphical models using drag-and-drop elements, and to define the logic and be-

havior of the model using Java code. AnyLogic can also export the models to standalone

applications or cloud platforms, and run them on a HPC environment, using MPI (Mes-

sage Passing Interface) or Spark libraries [55]. However, this proposal relies on a proprie-

tary platform and not on a standard formal language like SDL. SDL allows an agnostic

representation of the simulation model that seeks to be independent of the final tool or

platform that will be used to perform the implementation. This approach also enables the

user to validate and verify the model before translating it into executable code that can

run on different environments.

Figure 14. Example of MN4 job script.

Computers 2023, 12, 244 20 of 24

Once our job is executed, we can obtain the results in the output files. This is the result
obtained from computing the sieve between 2 and 1000 using 5 PSegments, see Figure 15.

Computers 2023, 12, x FOR PEER REVIEW 19 of 23

Figure 14. Example of MN4 job script.

Once our job is executed, we can obtain the results in the output files. This is the result

obtained from computing the sieve between 2 and 1000 using 5 PSegments, see Figure 15.

Figure 15. Example of MN4 sieve results.

The SDLPS can be downloaded at https://sdlps.com, accessed on 15 November of

2023.

5. Discussion

The examples we have shown here are simple enough in order to understand the

details of the code generation mechanism we use for the Marenostrum. However, this

approach makes sense when we develop projects where personnel with different back-

grounds must collaborate to define a complex model. An example of this is the simulation

of the current pandemic situation in Catalonia, see [50], where the modeling using SDL

largely simplifies the interaction between the different actors (specialists) that are in-

volved in the project. Other examples where this approach has been used are in the con-

struction sector [28,44], where the model connects with the energyPlus [51] engine to op-

timize building sustainability for the simulation of slap avalanches [43], software [52–54],

or the simulation of industrial systems [38]. The capability to generate the code that can

later be executed on Marenostrum allows us to avoid the constraint related to the compu-

tational capabilities of the infrastructure we will use. Moreover, this approach enables us

to explore different scenarios and parameters for the simulation, such as the impact of

vaccination, lockdowns, social distancing, and testing strategies. By using SDL, we can

easily modify and validate the model according to the latest data and evidence. This way,

we can provide useful insights and recommendations for policymakers and health au-

thorities to manage the pandemic situation in Catalonia.

Some existing proposals allow the definition of simulation models to be executed in

a HPC environment. For example, AnyLogic is a tool that supports different modeling

paradigms, such as agent-based, discrete event, and system dynamics. It allows the user

to create graphical models using drag-and-drop elements, and to define the logic and be-

havior of the model using Java code. AnyLogic can also export the models to standalone

applications or cloud platforms, and run them on a HPC environment, using MPI (Mes-

sage Passing Interface) or Spark libraries [55]. However, this proposal relies on a proprie-

tary platform and not on a standard formal language like SDL. SDL allows an agnostic

representation of the simulation model that seeks to be independent of the final tool or

platform that will be used to perform the implementation. This approach also enables the

user to validate and verify the model before translating it into executable code that can

run on different environments.

Figure 15. Example of MN4 sieve results.

The SDLPS can be downloaded at https://sdlps.com, accessed on 15 November
of 2023.

5. Discussion

The examples we have shown here are simple enough in order to understand the
details of the code generation mechanism we use for the Marenostrum. However, this
approach makes sense when we develop projects where personnel with different back-
grounds must collaborate to define a complex model. An example of this is the simulation
of the current pandemic situation in Catalonia, see [50], where the modeling using SDL
largely simplifies the interaction between the different actors (specialists) that are involved
in the project. Other examples where this approach has been used are in the construc-
tion sector [28,44], where the model connects with the energyPlus [51] engine to optimize
building sustainability for the simulation of slap avalanches [43], software [52–54], or the
simulation of industrial systems [38]. The capability to generate the code that can later be
executed on Marenostrum allows us to avoid the constraint related to the computational
capabilities of the infrastructure we will use. Moreover, this approach enables us to explore
different scenarios and parameters for the simulation, such as the impact of vaccination,
lockdowns, social distancing, and testing strategies. By using SDL, we can easily modify
and validate the model according to the latest data and evidence. This way, we can provide
useful insights and recommendations for policymakers and health authorities to manage
the pandemic situation in Catalonia.

Some existing proposals allow the definition of simulation models to be executed in
a HPC environment. For example, AnyLogic is a tool that supports different modeling
paradigms, such as agent-based, discrete event, and system dynamics. It allows the
user to create graphical models using drag-and-drop elements, and to define the logic
and behavior of the model using Java code. AnyLogic can also export the models to
standalone applications or cloud platforms, and run them on a HPC environment, using
MPI (Message Passing Interface) or Spark libraries [55]. However, this proposal relies on
a proprietary platform and not on a standard formal language like SDL. SDL allows an
agnostic representation of the simulation model that seeks to be independent of the final
tool or platform that will be used to perform the implementation. This approach also
enables the user to validate and verify the model before translating it into executable code
that can run on different environments.

Some limitations of our approach are (i) we generated the code using OpenMP libraries
that are focused on Marenostrum HPC architecture. Some adaptation to the C libraries
that generate this code must be performed to ensure that it works on other HPC platforms.
(ii) Not all the features of SDL language are currently supported. Although SDLPS supports
the use of Cellular Automaton structures, SDLPS for HPC does not allow yet the use of the
dynamic creation of new agents using the CREATE SDL BLOCK. This limitation implies
the use of data matrices or Cellular Automaton to generate MAS (Multi-Agent Systems)
in case they are needed. We are developing the necessary structures to enable the use
of this BLOCK shortly. However, we want to remark that the models do not need to be
changed since, being represented by SDL, and being SDL a standard language, it assures
compatibility between other HPC platforms that also understand SDL language or local

https://sdlps.com

Computers 2023, 12, 244 21 of 24

computers that can execute SDLPS in common PC, or other programs like PragmaDEV [33]
that also understands SDL.

When the power of a supercomputer is needed, the code generation mechanism
presented in this paper ensures that the model is translated into efficient and scalable code
that can run on Marenostrum and produce reliable and timely results. This mechanism
is based on the standard language SDL, which is a formal, graphical, unambiguous, and
complete modeling language for complex systems. By using SDL, the modelers can focus
on the logic and behavior of the system, without worrying about the low-level details of
the code. The code generation mechanism automatically translates the SDL model into
C++ code that can be compiled and executed on Marenostrum or other HPC platforms.
The generated code is optimized for parallelism and performance, and can take advantage
of the advanced features of Marenostrum, such as its high-speed network, large memory
capacity, and heterogeneous architecture. The code generation mechanism also supports
debugging and verification of the SDL model, as well as integration with other tools and
libraries. Thus, the code generation mechanism provides a convenient and effective way to
leverage the power of Marenostrum for complex system simulation using SDL.

As a future work, we are planning to develop the CREATE SDL BLOCK to allow
the dynamic creation of SDL AGENTS, like PROCESS or BLOCKS, simplifying the imple-
mentation and definition of MAS models. Also, we plan to develop a web interface, on
https://sdlps.com (accessed on 15 November of 2023) that allows the parametrization of
the SDLPS models and also the generation of the code for execution in different platforms.

6. Concluding Remarks

In this paper, we presented a set of tools focused on the optimization of runtime
and the compatibility of code libraries with the standard language SDL, which aims to
increase the parallelization capacity of simulation models defined in SDL. This framework
has the potential to significantly increase the attractiveness and usability of HPC for
end users, especially those with limited HPC capacities and low-to-moderate levels of
HPC expertise. The integration of social science models through formal languages may
extend the target audience of the HPC infrastructures to an important group of end-users
who are currently not taking full advantage of its capacities due to the lack of necessary
know-how or limited access to experts and resources. A more comprehensive application
of SDL (a formal, graphical, unambiguous, and complete modeling language) has the
potential for streamlining, automating, and documenting the process of simulation design
and development among non-academics and within academic fields where the level of
computational expertise is low (e.g., social sciences, humanities). We focused on two case
studies performed in the framework of the “HPC optimization of SDLPS distributed
simulator” PRACE project. However, the methodology applied here can be used for any
project where non-technical stakeholders need to be involved in the definition of the model.

The benefits of the proposed pipeline are twofold. On the one hand, SDL allows for the
definition of complex simulation models and shows a high potential for seamless integra-
tion into IoT ecosystems, generating AIoT (Artificial Intelligence of Things) environments.
On the other hand, it automatically translates conceptual models into code that can be
executed in a HPC infrastructure. Thus, it gives interested stakeholders the ability to solve
real-world problems by quickly designing and implementing complex models and running
them using HPC tools, without the need for an extensive team of computer science experts.
The hope is that the SDL-based pipeline combined with the presented simulation will open
a new avenue to the HPC world for a currently underrepresented set of users, providing
them with a natural access point to this state-of-the-art technology.

Author Contributions: Conceptualization, P.F.i.C. and I.R.; methodology, P.F.i.C.; software, P.F.i.C.
and J.G.i.S.; validation, P.F.i.C., I.R. and J.G.i.S.; formal analysis, P.F.i.C. and J.G.i.S.; investigation,
P.F.i.C. and I.R.; resources, P.F.i.C. and I.R.; data curation, P.F.i.C. and J.G.i.S.; writing—original draft
preparation, P.F.i.C.; writing—review and editing, P.F.i.C. and I.R.; visualization, P.F.i.C.; supervision,

https://sdlps.com

Computers 2023, 12, 244 22 of 24

P.F.i.C. and I.R.; project administration, P.F.i.C. and I.R.; funding acquisition, P.F.i.C. and I.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been founded by the Project PRACE (Partnership for Advanced Comput-
ing in Europe) titled “HPC optimization of SDLPS distributed simulator”.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IBM. What Is HPC? Introduction to High-Performance Computing. Available online: https://www.ibm.com/topics/hpc (accessed

on 5 November 2023).
2. Qian, D. High performance computing: A brief review and prospects. Natl. Sci. Rev. 2016, 3, 16. [CrossRef]
3. Bak, S.; Bertoni, C.; Boehm, S.; Budiardja, R.; Chapman, B.M.; Doerfert, J.; Eisenbach, M.; Finkel, H.; Hernandez, O.; Huber, J.;

et al. OpenMP application experiences: Porting to accelerated nodes. Parallel Comput. 2022, 109, 102856. [CrossRef]
4. Hoffmann, R.B.; Löff, J.; Griebler, D.; Fernandes, L.G. OpenMP as runtime for providing high-level stream parallelism on

multi-cores. J. Supercomput. 2022, 78, 7655–7676. [CrossRef]
5. Salloum, S.; Dautov, R.; Chen, X.; Peng, P.X.; Huang, J.Z. Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 2016, 1, 145–164.

[CrossRef]
6. Jiang, M.; Gallagher, B.; Chu, A.; Abdulla, G.; Bender, T. Exploiting Spark for HPC Simulation Data: Taming the Ephemeral

Data Explosion. In Proceedings of the HPCAsia2020: International Conference on High Performance Computing in Asia-Pacific
Region, Fukuoka, Japan, 15–17 January 2020; ACM International Conference Proceeding Series. pp. 150–160. [CrossRef]

7. Castañé, G.G.; Xiong, H.; Dong, D.; Morrison, J.P. An ontology for heterogeneous resources management interoperability and
HPC in the cloud. Future Gener. Comput. Syst. 2018, 88, 373–384. [CrossRef]

8. Faheem, H.M.; König-Ries, B.; Aslam, M.A.; Aljohani, N.R.; Katib, I. Ontology design for solving computationally-intensive
problems on heterogeneous architectures. Sustainability 2018, 10, 441. [CrossRef]

9. Böhm, S.; Běhálek, M. Usage of Petri Nets for high performance computing. In Proceedings of the FHPC’12—2012 ACM SIGPLAN
Functional High Performance Computing, Copenhagen, Denmark, 15 September 2012; pp. 37–47. [CrossRef]

10. Jensen, K. Coloured Petri Nets; Monographs in Theoretical Computer Science An EATCS Series; Springer: Berlin/Heidelberg,
Germany, 1997. [CrossRef]

11. Liao, C.; Lin, P.-H.; Verma, G.; Vanderbruggen, T.; Emani, M.; Nan, Z.; Shen, X. HPC Ontology: Towards a Unified Ontology
for Managing Training Datasets and AI Models for High-Performance Computing. In Proceedings of the 2021 IEEE/ACM
Workshop on Machine Learning in High Performance Computing Environments (MLHPC), St. Louis, MO, USA, 15 November
2021; pp. 69–80. [CrossRef]

12. Sherratt, E. SDL: Meeting the IoT challenge. In System Analysis and Modeling; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2016; Volume 9959, pp. 36–50. [CrossRef]

13. Sherratt, E. SDL in a changing world. In System Analysis and Modeling; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2005; Volume 3319, pp. 96–105. [CrossRef]

14. Sherratt, E.; Loftus, C. Designing distributed services with SDL. IEEE Concurr. 2000, 8, 59–66. [CrossRef]
15. Sherratt, E.; Ober, I.; Gaudin, E.; Casas, P.F.I.; Kristoffersen, F. SDL—The IoT Language. In SDL 2015: Model-Driven Engineering for

Smart Cities; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9369, pp. 27–41. [CrossRef]
16. Ellsberger, J.; Hogrefe, D.; Sarma, A. SDL: Formal Object-Oriented Language for Communicating Systems, 2nd ed.; Prentice Hall:

Upper Saddle River, NJ, USA, 1997.
17. Meertens, L. Functional Pearl Calculating the Sieve of Eratosthenes. J. Funct. Program. 2004, 14, 759–763. [CrossRef]
18. Janssen, M.A. Understanding Artificial Anasazi. JASSS 2009, 12, 13.
19. Trabes, G.G.; Wainer, G.A.; Gil-Costa, V. A Parallel Algorithm to Accelerate DEVS Simulations in Shared Memory Architectures.

IEEE Trans. Parallel Distrib. Syst. 2023, 34, 1609–1620. [CrossRef]
20. Concepcion, A.I.; Zeigler, B.P. DEVS formalism: A framework for hierarchical model development. IEEE Trans. Softw. Eng. 1988,

14, 228–241. [CrossRef]
21. Zeigler, B.P.; Song, H.S.; Kim, T.G.; Praehofer, H. DEVS framework for modelling, simulation, analysis, and design of hybrid

systems. In Hybrid Systems II; Springer: Berlin/Heidelberg, Germany, 1995; pp. 529–551. [CrossRef]
22. Werner, T.; Päßler, C.; Richter, M.; Kabadshow, I.; Werner, M. A Petri-Net-Based Approach to Modeling Communication

Algorithms for HPC Molecular Dynamics Simulations. In Proceedings of the PNSE’23: International Workshop on Petri Nets and
Software Engineering, Lisbon, Portugal, 26–27 June 2023; Available online: http://ceur-ws.org (accessed on 31 October 2023).

23. Li, Z.; Jiao, L.; Hu, X. Performance analysis for job scheduling in hierarchical HPC systems: A coloured petri nets method. In
Algorithms and Architectures for Parallel Processing; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume
9531, pp. 259–280. [CrossRef]

https://www.ibm.com/topics/hpc
https://doi.org/10.1093/nsr/nww009
https://doi.org/10.1016/j.parco.2021.102856
https://doi.org/10.1007/s11227-021-04182-9
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1145/3368474.3368482
https://doi.org/10.1016/j.future.2018.05.086
https://doi.org/10.3390/su10020441
https://doi.org/10.1145/2364474.2364481
https://doi.org/10.1007/978-3-642-60794-3
https://doi.org/10.1109/MLHPC54614.2021.00012
https://doi.org/10.1007/978-3-319-46613-2_3
https://doi.org/10.1007/978-3-540-31810-1_7/COVER
https://doi.org/10.1109/4434.824313
https://doi.org/10.1007/978-3-319-24912-4_3
https://doi.org/10.1017/S0956796804005210
https://doi.org/10.1109/TPDS.2023.3256083
https://doi.org/10.1109/32.4640
https://doi.org/10.1007/3-540-60472-3_27
http://ceur-ws.org
https://doi.org/10.1007/978-3-319-27140-8_19/COVER

Computers 2023, 12, 244 23 of 24

24. Wang, J. Petri Nets for Dynamic Event-Driven System Modeling. In Handbook of Dynamic System Modeling; Fishwick, P.A., Ed.;
Chapman & Hall: Gainesville, FL, USA, 2007; pp. 24-1–24-17. [CrossRef]

25. Cabasino, M.P.; Giua, A.; Seatzu, C. Introduction to petri nets. In Control of Discrete-Event Systems; Lecture Notes in Control and
Information Sciences; Springer: London, UK, 2013; Volume 433, pp. 191–211. [CrossRef]

26. Doldi, L. SDL Illustrated—Visually Design Executable Models, 1st ed; TMSO Systems: University Park, PA, USA, 2001.
27. ITU-T. ITU-T-2019—Specification and Description Language—Overview of SDL-2010, ITU-T Recommendation Z.100. 2019.

Available online: http://handle.itu.int/11.1002/1000/14048 (accessed on 31 October 2023).
28. Casas, P.F.I.; Casas, A.F.I.; Garrido-Soriano, N.; Ortiz, J.; Casanovas, J.; Salom, J. Optimal Buildings’ Energy Consumption Calculus

through a Distributed Experiment Execution. Math. Probl. Eng. 2015, 2015, 267974. [CrossRef]
29. Fonseca Casas, P. Transforming classic Discrete Event System Specification models to Specification and Description Language.

Simulation 2015, 91, 249–264. [CrossRef]
30. Vangheluwe, H.L.M. DEVS as a common denominator for multi-formalism hybrid systems modelling. In Proceedings of the

CACSD—IEEE International Symposium on Computer-Aided Control System Design (Cat. No. 00TH8537), Anchorage, AK,
USA, 25–27 September 2000.

31. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation Handbook of Simulator-Based Training Creating Computer
Simulation Systems: An Introduction to the High Level Architecture; Prentice Hall: Upper Saddle River, NJ, USA, 2000; Volume 100.
[CrossRef]

32. Doldi, L. Validation of Communications Systems with SDL: The Art of SDL Simulation and Reachability Analysis; Wiley & Sons:
Hoboken, NJ, USA, 2003.

33. PragmaDev SARL. PragmaDev Studio. Available online: http://www.pragmadev.com/product/index.html (accessed on
9 January 2016).

34. PragmaDev. Graphical Language to Specify and Design Real Time and Embedded Software September; PragmaDev: Paris, France, 2013.
35. Cinderella ApS. Cinderella. 2011. Available online: http://www.cinderella.dk/ (accessed on 9 January 2016).
36. Rauchwerger, Y.; Kristoffersen, F.; Lahav, Y. Cinderella SLIPPER: An SDL to C-code generator. In SDL 2005: Model Driven; Lecture

Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3530, pp. 210–223. [CrossRef]
37. IBM Co. Rational SDL Suite. Available online: http://www-03.ibm.com/software/products/en/ratisdlsuit (accessed on

9 January 2016).
38. Casas, P.F.I.; Palomés, X.P.; Garcia, J.C.; Jové, J. Definition of virtual reality simulation models using specification and descrip-

tion language diagrams. In SDL 2013: Model Driven Dependability Engineering; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 258–274. [CrossRef]

39. Sargent, R.G. Verification validation and accreditation of simulation models. In Proceedings of the 2000 Winter Simulation
Conference Proceedings (Cat. No. 00CH37165), Orlando, FL, USA, 10–13 December 2000; pp. 50–59.

40. Balci, O. Verification, Validation, and Certification of Modeling and Simulation Applications. In Proceedings of the 2003 Winter
Simulation Conference, New Orleans, LA, USA, 7–10 December 2003; pp. 150–158.

41. Casas, P.F.I. A Continuous Process for Validation, Verification, and Accreditation of Simulation Models. Mathematics 2023, 11, 845.
[CrossRef]

42. Sargent, R.G. Verification and validation of simulation models. J. Simul. 2013, 7, 12–24. [CrossRef]
43. Fonseca, P.; Colls, M.; Casanovas, J. A novel model to predict a slab avalanche configuration using m:n-CAk cellular automata.

Comput. Environ. Urban Syst. 2011, 35, 12–24. [CrossRef]
44. Casas, P.F.I.; Casas, A.F.I. NECADA. Optimization software for sustainable architecture. In Building Simulation Conference; IBPSA:

Hyderabad, India, 2015.
45. IEEE. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)—Framework and Rules. Available

online: https://standards.ieee.org/ieee/1516/3744/ (accessed on 25 September 2023).
46. BSC. Marenostrum. Available online: https://www.bsc.es/es/marenostrum/marenostrum (accessed on 6 June 2019).
47. OpenMP. OpenMP. Available online: https://www.openmp.org/ (accessed on 6 June 2019).
48. Diamond, J.M. Life with the artificial Anasazi. Nature 2002, 419, 567–568. [CrossRef]
49. BSC. Running Jobs|BSC Support Knowledge Center. Available online: https://www.bsc.es/supportkc/docs/MareNostrum4

/slurm/ (accessed on 25 September 2023).
50. Casas, P.F.I.; Subirana, J.G.I.; Carrasco, V.G.I.; Palomes, X.P.I.; Wainer, G. Formal Modeling and Simulation for SARS-CoV-2

Containment Scenarios in Catalonia. Comput. Sci. Eng. 2022, 24, 86–90. [CrossRef]
51. Reference, T.E.; Input, E. Input Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output, version 8.0; Big Ladder

Software: Denver, CO, USA, 2014.
52. Podnar, I.; Mikac, B.; Caric, A. SDL based approach to software process modeling. In Software Process Technology; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1780, pp. 190–202. [CrossRef]
53. Díaz, M.; Garrido, D.; Troya, J.M. Development of distributed real-time simulators based on CORBA. Simul. Model. Pract. Theory

2007, 15, 716–733. [CrossRef]

https://doi.org/10.1201/9781420010855.ch24
https://doi.org/10.1007/978-1-4471-4276-8-10
http://handle.itu.int/11.1002/1000/14048
https://doi.org/10.1155/2015/267974
https://doi.org/10.1177/0037549715571623
https://doi.org/10.1002/rnc.610
http://www.pragmadev.com/product/index.html
http://www.cinderella.dk/
https://doi.org/10.1007/11506843_15/COVER
http://www-03.ibm.com/software/products/en/ratisdlsuit
https://doi.org/10.1007/978-3-642-38911-5
https://doi.org/10.3390/math11040845
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1016/j.compenvurbsys.2010.07.002
https://standards.ieee.org/ieee/1516/3744/
https://www.bsc.es/es/marenostrum/marenostrum
https://www.openmp.org/
https://doi.org/10.1038/419567a
https://www.bsc.es/supportkc/docs/MareNostrum4/slurm/
https://www.bsc.es/supportkc/docs/MareNostrum4/slurm/
https://doi.org/10.1109/MCSE.2022.3186227
https://doi.org/10.1007/BFB0095028/COVER
https://doi.org/10.1016/j.simpat.2007.03.001

Computers 2023, 12, 244 24 of 24

54. Dragomir, I.; Redondo, C.; Jorge, T.; Gouveia, L.; Ober, I.; Kolesnikov, I.; Bozga, M.; Perrotin, M. Model-checking of space systems
designed with TASTE/SDL. In Proceedings of the ACM/IEEE 25th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2022: Companion Proceedings, Montreal, QC, Canada, 23–28 October 2022; pp. 237–246.
[CrossRef]

55. Borshchev, A.; Karpov, Y.; Kharitonov, V. Distributed simulation of hybrid systems with AnyLogic and HLA. Future Gener. Comput.
Syst. 2002, 18, 829–839. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3550356.3561541
https://doi.org/10.1016/S0167-739X(02)00055-9

	Introduction
	Our Approach: Specification and Description Language
	SDLPS
	SDLPS Time Management
	Input and Output Variables

	Generating the HPC Code
	The Marenostrum
	System Architecture
	Model-Compiler Libraries
	Simulator

	Case Studies: Numerical and Agent-Based Models
	Sieve of Eratosthenes SDL Model
	Sieve of Eratosthenes Parallel Execution

	Discussion
	Concluding Remarks
	References

