
Citation: Yemson, R.; Kabir, S.;

Thakker, D.; Konur, S. Ontology

Development for Detecting Complex

Events in Stream Processing: Use

Case of Air Quality Monitoring.

Computers 2023, 12, 238. https://

doi.org/10.3390/computers12110238

Academic Editor: Paolo Bellavista

Received: 29 September 2023

Revised: 7 November 2023

Accepted: 13 November 2023

Published: 16 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Ontology Development for Detecting Complex Events in
Stream Processing: Use Case of Air Quality Monitoring
Rose Yemson 1, Sohag Kabir 1,* , Dhavalkumar Thakker 2 and Savas Konur 1

1 School of Computer Science, AI, and Electronics, University of Bradford, Bradford BD7 1DP, UK;
r.a.yemson@bradford.ac.uk (R.Y.); s.konur@bradford.ac.uk (S.K.)

2 School of Computer Science, University of Hull, Cottingham Road, Hull HU6 7RX, UK; d.thakker@hull.ac.uk
* Correspondence: s.kabir2@bradford.ac.uk; Tel.: +44-1274-232212

Abstract: With the increasing amount of data collected by IoT devices, detecting complex events
in real-time has become a challenging task. To overcome this challenge, we propose the utilisation
of semantic web technologies to create ontologies that structure background knowledge about the
complex event-processing (CEP) framework in a way that machines can easily comprehend. Our
ontology focuses on Indoor Air Quality (IAQ) data, asthma patients’ activities and symptoms, and
how IAQ can be related to asthma symptoms and daily activities. Our goal is to detect complex
events within the stream of events and accurately determine pollution levels and symptoms of
asthma attacks based on daily activities. We conducted a thorough testing of our enhanced CEP
framework with a real dataset, and the results indicate that it outperforms traditional CEP across
various evaluation metrics such as accuracy, precision, recall, and F1-score.

Keywords: complex events; traditional complex event processing; semantic web technology; ontology;
Internet of Things; indoor air quality; asthma

1. Introduction

The rise of sensor networks and smart devices has led to an unprecedented increase in
data collection, presenting a significant challenge in real-time processing. The Internet of
Things (IoT) has revolutionised the way things are connected and is the most important
big data project identified by Gartner [1]. The ability to react quickly to changing trends
and provide instantaneous business intelligence has become a crucial factor in determining
the success or failure of a company. Detecting complex events enables intelligent decision
making by identifying patterns and correlations, and real-time analysis can yield profits
and improve decision making. However, real-time streaming is becoming increasingly
challenging with the proliferation of billions of IoT devices, including RFIDs, sensors,
remote sensing satellites, and intelligent devices. These devices generate vast amounts of
heterogeneous event streams that require constant observation and analysis [2]. Among
these devices, sensors are commonly used to detect conditions that may lead to complex
events. Reacting swiftly in a mission-critical situation can significantly impact various
domains, including healthcare, energy, transportation, nuclear, agriculture, and so on.
Detecting complex events in real-time, especially when they cannot be identified on the
fly, is a formidable challenge in this context. The use of complex event processing (CEP)
has become increasingly popular in IoT deployments due to its ability to process real-time
event streams effectively in dynamic business environments [3].

Unlike traditional offline analysis methods used in relational databases, CEP con-
tinuously processes and analyses high-speed data streams [4]. It is an exceptional tool
for managing various data streams, providing actionable insights, excelling at correlating
distributed data to identify and respond to critical situations instantaneously [5]. CEP
has proven to be efficient at processing high-frequency data streams in real-time [3]. Each
stream is considered an event in CEP, with corresponding event objects carrying general
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meta-data such as time-stamp, event ID, and event-specific information, e.g., sensor ID
and measured data. Although a single event may not have a useful meaning, it must be
correlated with other events to gain a significant meaning [3]. CEP enables the analysis of
continuous streams of events, aiding in identifying the existence of complex sequences of
events [6].

Despite the recognised importance of CEP, its expressivity is limited when it comes to
detecting large numbers of complex events in real-time. The increasing demand for real-
time responses in IoT applications poses challenges in collecting and structuring data in a
knowledge base. It is in this context that ontologies emerge as a pivotal tool. They have been
extensively investigated for capturing background and expert knowledge from various
perspectives, integrating data from heterogeneous sources, building knowledge bases,
knowledge acquisition, analysing data streams, and managing knowledge and system
dynamism [7,8]. Ontologies can greatly improve event processing by integrating semantics,
allowing for the use of definitions, background knowledge, and behaviour rules [9]. This
provides a more efficient declarative event processing and detailed descriptions of complex
events, patterns, and reactions to situations, which can all be directly transformed into
operational efficiency [10].

Incorporating semantics into conventional CEP systems enhances the recognition
capabilities of events and provides an enhanced understanding of event implications,
resulting in augmented situational awareness and proactive responses. The motivation for
this article lies in the following implications of integrating semantics into classical CEP for
IoT-enabled systems.

1. Improved event detection: The primary motivator for improved real-time event
detection in stream processing is often hindered by the CEP approaches’ reliance
on syntactic pattern matching, limiting the expressiveness and efficiency of event
detection.

2. Context-aware event processing: In IoT scenarios, understanding events in context is
critical. Semantic integration enables the consideration of context, leading to more
precise event recognition.

3. Expressive event pattern definition: Developing complex event patterns with seman-
tics allows for richer and more nuanced event definitions, accommodating a broader
range of real-world scenarios.

4. Real-time event detection: Real-time processing demands rapid event detection.
Semantic integration can expedite event recognition, enabling timely responses.

5. Enhanced reasoning and inference: Semantics facilitates advanced reasoning and
inference capabilities, empowering systems to make more informed decisions based
on detected events.

6. Personalised IoT applications: Personalisation is increasingly crucial in IoT applica-
tions. Semantic integration can enable personalised event processing and responses
tailored to individual user needs.

7. Scalability and flexibility: Achieving scalability and flexibility in event processing
systems is vital. Semantic integration can contribute to the scalability and adaptability
of CEP systems.

This research is driven by the need to detect complex events in stream processing for
indoor air quality monitoring. This article provides a motivating example of how semantic
web technology integration can play a pivotal role in identifying complex events related
to environmental factors, asthmatic conditions, asthma symptoms, and daily activities.
Therefore, this work endeavoured to find answers to the following questions:

1. How can we organise knowledge about the CEP framework for IoT applications in a
way that machines can interpret?

2. How can structured knowledge integration enhance data analysis and complex event
detection, and what is the impact of integrating semantic web technologies on the
traditional CEP in real-time complex event detection, making it smarter?
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To address the outlined motivations and research questions, we proposed the de-
velopment of a structured ontology tailored to IoT applications meticulously integrated
into the CEP framework. Through practical use cases and competency questions (CQs),
we demonstrated the efficiency and effectiveness of this integrated approach in detecting
complex events within dynamic event streams.

The remainder of this article is organised as follows: Section 2 provides a compre-
hensive literature review, examining current research in stream processing, complex event
detection, ontologies, and their applications in air quality monitoring. Section 3 outlines our
methodology, detailing the data collection process, ontology development, and integration
into the CEP framework. This section delves into the specifics of ontology development for
air quality monitoring, including design, knowledge acquisition, reasoning, and validation.
In Section 4, we discuss the integration of ontology into the CEP framework and its impact
on event detection. This section also presents a real-world use case for air quality monitor-
ing, showcasing the practical application of our approach. A comprehensive discussion
of our findings, highlighting achievements, limitations, and avenues for future research,
was also provided in this section. Finally, Section 5 provides a summary of our conclusions,
emphasising the contributions and practical significance of this study.

2. Background and Literature Review
2.1. CEP and IoT

CEP has emerged as a popular solution in the field of IoT research, attracting con-
siderable attention from researchers for its widespread use of IoT devices and its ability
to uncover a plethora of innovative applications. These applications require efficient and
seamless real-time processing, analysis, and correlation of event streams originating from
various data sources. In this section, the related work was focused on IoT applications
needing CEP, following early work on complex event processing. In the study [11], the
application of Timed Petri Net was instrumental in detecting complex events and mod-
elling their RFID complex event-processing engine. Several studies have proposed different
techniques and frameworks for detecting complex events, which have evolved over time
to provide a reactive solution. One approach involves using primitive events gathered
through the Expressive Stream Language (ESL) and a developed semantic for deriving rule
patterns. Another approach [12] employs an automata-based system that uses SQL-like
SASE language, while another [13] uses temporal constraints for discovering composite
events in an RFID event detection application named RCEDA.

Middleware architectures have also been proposed to integrate wireless sensor net-
works and RFID systems for real-time analysis of streaming data [14]. These middleware
use event processing language to define complex events, filter, group, aggregate, and
construct them. Dong et al. [15] implemented CEP in their RFID middleware to identify
complicated events. Furthermore, event processing systems have been designed using
different processing algorithms, such as automata-based processing algorithms, TESLA
language, and event meta-modelling [16,17]. These systems have been implemented in
enterprise information systems using RFID data. Lastly, a CEP-based information mid-
dleware has been proposed to develop real-time trajectory-based services [18]. Dunken et
al. [19] suggested a reference architecture using CEP for the real-time analysis of traffic data
in decision-support systems. Their Intelligent Transportation Management System proto-
type uses event-processing agents and rule-based representation of local traffic expertise.
However, the proposed solution requires further evaluation for more distributed implemen-
tation. Integrating background knowledge representation through ontologies can enable
the automatic translation of natural language interfaces into ontological representations
within traditional CEP frameworks.

2.2. Ontology for Complex Events

Ontologies play a crucial role in semantic web technologies and provide an explicit
specification of conceptualisation. According to Gruber’s definition, an ontology is an
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explicit specification of a conceptualisation, where it defines the vocabulary with which
facts about the domain are expressed. With ontologies, it is possible to model knowledge
about events and concepts structured in a knowledge base [20]. Numerous studies have un-
derscored the significance of ontologies in diverse domains, showcasing their applicability
in understanding complex events. Notably, researchers have utilised ontologies to capture
context, detect patterns, and enable semantic correlation of events. For instance, Sasa et
al. [21] linked reactive rules with ontologies to enable the detection of similar complex event
patterns. Moser et al. [22] focused on semantic event correlation, recognising its necessity
in relating events from various sources for pattern detection. Paschke [23] proposed a lan-
guage for semantic CEP pattern design. In contrast, we propose a background knowledge
framework using existing ontology languages, allowing for reasoners and standard OWL
language support. In the context of smart homes, ‘E-care@home’ [24] demonstrated the im-
portance of ontological structures in managing complex events domestically. Similarly, the
‘Agri-IoT’ project [25] leveraged ontologies for intelligent farming applications, addressing
complex event monitoring in agriculture. Semantic ontologies were employed in healthcare
to navigate intricate healthcare operations and patient care [26]. Furthermore, in countering
terrorism, complex event processing and ontologies were integrated for the real-time detec-
tion of online terrorist content [27]. These studies collectively underscore the versatility
and applicability of ontologies in diverse domains. However, several gaps remain in the
literature. In the context of smart homes, further research should delve into practical imple-
mentation challenges and the scalability of ontological context-aware systems. Agriculture
requires the exploration of ontological interoperability and standards for seamless data
exchange. Healthcare would benefit from practical guidelines for ontological structure
implementation. In the realm of counter-terrorism, there is a need to evaluate the real-world
effectiveness of integrated systems and their adaptability to evolving online threats. Lastly,
a cross-domain gap exists in exploring how ontological structures from various domains
can be harmonised to address complex events transcending multiple domains.

2.3. Air Quality Monitoring with CEP

Air pollution poses a significant threat to the health of millions of people globally
by contributing to respiratory and cardiovascular diseases. It is crucial to monitor air
quality in real-time to prevent health complications and fatalities. The framework proposed
in [28] leverages the concepts of CEP, software-defined networks, and Fog Computing to
predict air quality in near real-time. The real-time calculation of pollutant concentration
and patterns is handled by CEP. In [29], an intelligent transportation system model was
introduced that utilises CEP and CPNs to determine traffic levels and AQI. In [30], the
authors propose using CEP to calculate air quality levels in Spain and Morocco, extracting
only useful information in real-time.

The authors of [31,32] have focused on the relationship between asthma attacks and
pollutant exposure. Additionally, Ref. [33] reviewed the impact of outdoor and indoor
pollutants on individuals with asthma. They found that these pollutants pose a signif-
icant threat to the health of asthma patients and can lead to more asthma symptoms,
exacerbations, and reduced lung function. Further reviews were performed by [34] that
correlate asthma development to air pollution caused by industrial activities, disinfection
by-products, traffic, and e-cigarettes/tobacco. The author highlights the role of air pol-
lutants as stimulants of childhood asthma. The proposed framework in [35] effectively
monitors and analyses environmental triggers of asthma attacks, which can aid healthcare
professionals in better managing and preventing asthma attacks. The potential for early
detection of asthma exacerbations can be facilitated by machine learning algorithms over
traditional paper-based action plans, as proposed by the authors in [36]. However, this
approach lacks real-time capabilities as the utilisation of smartphone apps linked to digital
spirometers and inhalers for electronic data collection will significantly enhance the predic-
tive ability of these algorithms. The proposed approach by the authors in [37] effectively
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identifies asthma risk factors from multiple data streams by emphasising the crucial role of
time lags between events for correlation.

In summary, while prior studies have provided foundational knowledge in stream
processing, complex event detection, and air quality monitoring, this research aims to bridge
the gap by developing and integrating ontologies to improve event detection accuracy and
facilitate natural language interfaces for complex event specifications and detection in the
context of IoT applications.

3. Ontology Development for Complex Events

Ontology is an explicit specification of a conceptualisation [38]. An ontology is a
structured representation of concepts, object property relations, instances, data property
relations, axioms, and rules [39]. It is created using a machine-readable language to develop
explicit and formal conceptualisations of a specific domain [38]. The three commonly
used standards of ontology languages are Web Ontology Language, Resource Description
Framework, and Description Logic [40]. The focus of this work is to develop an ontology
that structures background knowledge about CEP in a machine-interpretable way, allowing
for the detection of complex events.

3.1. Ontology Development Methodology

Ontology has become a standard practice for describing a shared vocabulary in in-
formation sharing and reuse [41]. Developing an ontology can be a challenging and
time-consuming task, but it is crucial to follow a methodology that is similar to software
development [42], as it is an iterative process that involves technical complexity. Develop-
ing an ontology does not have a precise methodology, according to Kapoor [43]. Similarly,
Noy [44] points out that selecting an ontology design methodology is up to the developer
and depends on the intended application or purpose, as noted in Aminu’s review [41].
After reviewing the relevant literature, it was discovered that the prevalent methodologies
employed include Noy and McGuiness methodology, Gruninger and Fox’s methodology,
Uschold and King’s methodology, and Methontology, in addition to NEON and other
methodologies [41].

Noy and McGuinness methodology follows an iterative process that includes incorpo-
rating more details in each iteration and making modelling decisions at various stages of
the process [44]. However, this approach was not considered in our study due to the lack
of ontology evaluation and documentation.

Uschold and King’s methodology was designed based on the Enterprise’s experience.
This methodology was not considered due to its lack of description of activities, processes,
techniques, or lifecycle.

The Methontology methodology makes the process of building ontologies at the
knowledge level easier, which includes development processes, techniques for each activity,
and an evolving prototypes-based life cycle, as described in [45]. Among the known
methodologies, Methontology is considered the most developed [46]. However, it lacks
consideration for competency questions, and there is a need for recommendations for
pre-development processes.

Gruninger and Fox’s methodology, TOVE (Toronto Virtual Enterprise), is a methodol-
ogy based on scenarios that elucidates the functionality of an ontology [47]. The primary
goal of this methodology is to identify queries, objects, and predicates in the ontology [48].
Nevertheless, we chose not to utilise this approach for our work since it does not take into
account the incorporation of pre-existing ontologies.

NeOn Methodology offers guidelines for developing ontologies without imposing
a rigid workflow [49,50]. The method consists of a glossary that explains the processes
and activities required for ontology development. Additionally, two ontology life cycle
models, namely the waterfall and iterative models, are provided along with methodological
guidelines for various processes and activities. These guidelines are explained in detail in
terms of goals, inputs, outputs, and associated constraints. Additionally, they are presented
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procedurally with workflow specifications and supported by empirical examples [49,51,52].
The NeOn methodology emphasises the importance of reusing and re-engineering both
ontological and non-ontological knowledge resources, making it a valuable tool for ontology
development. This methodology has been demonstrated in [53].

This methodology was chosen for our work due to its effectiveness in constructing
ontologies by leveraging existing knowledge-aware resources and adapting them to specific
contexts. Additionally, it supports the continuous development of ontology networks in
distributed environments, which aligns with the requirements of our study. To ensure
that the ontology developed satisfies the competency questions, we must validate it. The
methodology proposed here offers a robust framework for ontology evaluation, which
includes proving consistency, completeness, properties, relationships, and classes through
the use of competency questions (CQs). The approach is characterised by its comprehensive
and detailed documentation of every stage of ontology development, which facilitates
accurate and rigorous evaluation.

The ontology was developed following the step-by-step waterfall life cycle models,
with explicit details and guidelines for every process and activity of ontology development.
The choice of the waterfall life cycle model was motivated by its suitability for our specific
ontology development needs. The waterfall model is characterised by its structured and
sequential approach, where each phase must be completed before moving on to the next.
This level of rigour and structure was deemed essential in ensuring the methodical and
thorough development of the complex event ontology. This allowed us to provide explicit
details and guidelines for each process and activity involved in ontology development,
enhancing transparency, traceability, and quality assurance. The proposed methodology
for developing the complex event ontology is shown in Figure 1, describing each phase of
the life cycle model.

Figure 1. Proposed development method adapted from [53].

Initiation: The first step of our work was to gather all the necessary requirements
for developing the ontology and ensuring that it meets all the expected standards. To
accomplish our goal, we conducted a thorough investigation by reviewing a vast amount
of literature and analysing research documents from different sources. This helped us in
developing a highly detailed Ontology Requirements Specification Document (ORSD). The
ORSD outlines the ontology’s purpose, scope, implementation language, intended users,
intended use, and competency questions (CQs) in great detail. The ORSD is depicted in
Figure 2.
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ONTOLOGY REQUIREMENTS SPECIFICATION DOCUMENT FOR COMPLEX EVENT 

PROCESSING USING NEON METHODOLOGY 

Task 1. Identify purpose, scope and level of formality 

The purpose of building the CE Ontology is to provide a reference for the representation 

of knowledge  

-  Detecting complex real-time events on the fly of a given scenario,  

Serve as a knowledge base for the traditional CEP to automatically filter out complex 

events and determine possible early warnings to mitigate harmful situations, 

- Detect potential poor air quality, Asthma patient's indoor activities, and symptoms  

Task 2. Scope 

The ontology will focus on the knowledge base for detecting complex events  

Task 3. Implementation 

The ontology will be implemented with Protégé. Also, it has to be conceptualised and 

formalised to classify classes and the relation between instances and classes.  

Task 4. Identify intended users. 

User 1: Asthma Patient 

User 2: Caregivers  

User 3: authorities (Government) 

Task 5. Identify intended uses.  

Use 1: Determine complex patterns that exceed the average threshold  

Use 2: Background knowledge for a traditional CEP framework 

Use 3: Filter event conditions using a rule base 

Task 6. Identify requirements.  

For specifying the ontology requirements, we used the competency questions 

techniques. Competency questions like: 

CQI What is the activity? 

CQ2 What causes the activity? 

CQ3Where is the source of activity? 

CQ4 What are the main activities? 

CQ5 What are the major approaches? 

CQ6 What tools are used to measure? 

CQ7 Can it filter out atomic and complex events? 

CQ8 Can it tell the threshold of activities? 

CQ9 Can indoor air quality be related to the severity of asthma? 

CQI0 Can it tell the time of detection? 

CQI1 Can it tell the activities of patients? 

CQI2 Can it be integrated into the CEP framework to automatically detect complex event 

patterns in real-time? 

Task 6. Pre-glossary of terms 

Activities, sensor, air quality observation, asthma patient 

Figure 2. Ontology Requirements Specification Document for Complex Event Processing (ORSD).

Reuse: In this phase, we used existing resources to describe the scenario. While an
ontology that met all of our requirements could not be found, we reused resources found
in the air quality, asthma, and event ontologies. We categorised these ontologies into upper,
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reusable, and application layers and used the Semantic Sensor Net Ontology for the sensor
layer.

Merging: There was a need for merging since our work reused different ontologies of
different domains to create a new ontology to suit our goals. Therefore, the ontology was
aligned using OpenCyc and Event-Model-F event-based, respectively. These ontologies
were selected because of the key features representing the upper ontology, domain ontology,
and linking the different ontologies to create complex events.

Re-engineering: Re-engineering non-ontological resources was required to align with
our goals as the existing ontologies did not entirely fulfil our goals.

Design: In this phase, we consolidated the requirements collected from earlier phases
and defined the essential characteristics of each module of our framework. We then
translated this information into a formalised conceptual model, ensuring that all technical
details were accurately represented.

Implementation: The implementation of the ontology was carried out using Protégé.
The evaluation of the ontology involved a case study that explored the relationship between
indoor air quality and an asthma patient. The evaluation process compared the ontology
with the ontology requirement specification document, which outlines the ontology re-
quirements and competency questions. This comparison ensured that the ontology was
built correctly and in compliance with the specified ontology requirements.

Maintenance: This phase will recur, with updates to the ontology and corrections
made during the design phase, following the Waterfall life cycle model.

3.2. Architecture of Proposed Framework

The framework depicted in Figure 3 combines semantic web technology with the
conventional CEP detection mechanism, boosting its ability to identify more complex
events. The architecture of the framework is composed of Monitoring, Event Analysis, and
Application layers. The CEP framework continuously receives events from diverse sources
and processes them instantaneously to detect complex events using predefined rules.
The framework exploits ontologies and background knowledge developed to incorporate
semantic technology, providing an unambiguous and formal representation of entities,
concepts, and their interdependencies.

Figure 3. High-level overview of the proposed framework.
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3.2.1. Monitoring Layer

This layer is the first layer of the proposed framework that performs the task of
gathering and processing the event data from multiple sources and sending them to the
event analysis layer for further analysis.

- Event Source Sub-Layer: The layer in question is tasked with the responsibility of cre-
ating events and transmitting data to the CEP engine for further analysis. The sources
from which these events are generated can be any system, device, or application capa-
ble of generating events. These events can manifest in different types, including but
not limited to financial transactions, temperature readings, and customer behaviour
data. In this particular study, the work involved monitoring the continuous real-life
activities of asthma patients, including their symptoms and sensor readings from
different parameters.

- Data Ingestion Processing: Data ingestion is a critical task in the CEP framework’s
monitoring layer. It involves receiving event data from various sources, parsing,
transforming, and ensuring data quality before forwarding it to the CEP engine.
The data received from IAQ sensors includes PM10, PM2.5, CO2, temperature, and
humidity, among others.

3.2.2. Event Analysis Layer

The event analysis layer is a crucial component of the framework that handles the
various data streams produced by the event sources. This layer acts as the brain of the
system and is responsible for filtering, detecting, aggregating, and correlating patterns
across multiple event streams. This layer comprises several sub-layers that work together to
ensure that the system can handle complex event-processing tasks efficiently and accurately.

- CEP engine sub-layer: This layer is responsible for detecting and defining patterns
and correlations between various events. It uses predefined rules to detect events,
processes them to identify atomic events, and forwards them to the semantic sub-layer
for subsequent processing. The event processing pipelines and rules of the framework
are implemented using Apache Flink, which facilitates effective and efficient stream
processing. The CEP engine can be configured to handle a diverse range of rules or
models, such as time-based, context-based, or predictive models, to provide flexible
and adaptable solutions for different scenarios. By defining time-based rules, the CEP
engine can detect correlations between events and identify patterns and relationships
that may occur periodically or at certain time intervals.
CEP engines use context-aware rules to detect events and take appropriate actions.
By analysing contextual information, they can identify triggers such as high CO2
levels that can cause health issues like asthma. Predictive models can also be used to
anticipate events and take proactive measures. For example, the engine may predict
that indoor activities like cooking can lead to higher concentrations of particulate
matter and provide timely alerts to occupants or take preventive measures.

- Semantic engine sub-layer: This sub-layer is critical in the framework. It uses ontol-
ogy to interpret events and their relationships, enhancing analysis and interpretation
beyond individual characteristics. By combining it with the CEP engine sub-layer, it
efficiently filters events from multiple atomic sensed events.
The semantic engine’s reasoning mechanism detects intricate event patterns from
the ontology’s background knowledge. It identifies significant events beyond simple
atomic events involving multiple conditions or causality. The framework’s ontol-
ogy can be easily customised and updated to improve the system’s event detection
performance, as it continually learns from new insights and data. Advanced event
analysis and detection are made possible by leveraging the CEP engine and semantic
web technology. The system allows for timely interventions and proactive actions by
triggering notifications when events exceed predefined thresholds.
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- Event stream processing sub-layer: This layer processes event streams using the
CEP Engine’s capabilities. It orchestrates a sequence of events and utilises pattern
recognition to identify complex events by leveraging the knowledge stored in the
ontology.

- Complex event detection sub-layer: The purpose of this sub-layer is to detect com-
plex events by combining the outcomes generated by the CEP engine and the semantic
engine sub-layers. It does this by applying predefined patterns to the event stream and
leveraging the semantic information about the events. The integration with semantics
technology enhances the detection capability, making it more accurate and efficient.

- Anomaly detection sub-layer: This module is designed to detect any unusual pat-
terns in real-time event streams using advanced algorithms to identify abnormal
patterns, allowing for timely interventions.

3.2.3. Application Layer

The application layer presents analysed data to users, generates reports, triggers
actions, and alerts them of critical events. It also permits users to customise analysis rules
and integrate the system with other software. In the context of this study, the application
layer can produce notifications or alerts to the users as soon as the CEP engine identifies a
correlation between indoor activities, indoor air pollutants, and asthma symptoms. For
example, if cooking triggers asthma symptoms, the CEP Engine sends an alert to occupants
if it exceeds the threshold. As a result, they can either avoid cooking at certain times or
ventilate the kitchen. This layer is also designed to generate reports that provide a better
understanding of indoor air quality and its effects on human health.

3.3. Description of the Ontology Structure
3.3.1. Classes and Subclasses

This research focuses on several relevant classes that we have identified and defined
in our ontology, depicted in Figure 4. Various classes include, but are not limited to, Asth-
maSymptom, IndoorAirQuality, IndoorActivity, Sensor, and Measurement, among others.
Each of these classes exhibits a unique entity or concept with its respective properties,
relationships, and constraints [54].

Figure 4. Classes visualised in OntoGraf.

In our ontology, classes and subclasses play a pivotal role in organising concepts
within the domain of air quality monitoring and event detection. Here are some key classes
and their subclasses along with examples:

c l a s s Event {
// Class d e f i n i t i o n f o r Event

}
c l a s s AtomicEvent extends Event {
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// Class d e f i n i t i o n f o r AtomicEvent
h a s E f f e c t : IndoorAirQuali ty

}
c l a s s AsthmaSymptom {

// Class d e f i n i t i o n f o r AsthmaSymptom
h a s E f f e c t : IndoorAirQuali ty

}
c l a s s IndoorAirQuali ty {

// Class d e f i n i t i o n f o r IndoorAirQuali ty
hasCause : Event [ ]
h a s E f f e c t : AsthmaSymptom [ ]

}
c l a s s IndoorAct iv i ty {

// Class d e f i n i t i o n f o r IndoorAct iv i ty
h a s E f f e c t : IndoorAirQuali ty

}
c l a s s Sensor {

// Class d e f i n i t i o n f o r Sensor
// hasMeasurement : Measurement [ ]

}
c l a s s Locat ion {

// Class d e f i n i t i o n f o r Locat ion
// hasLocation : IndoorEnvironment

}
c l a s s Aler t {

// Class d e f i n i t i o n f o r Aler t
// hasAler t : Person

}
c l a s s Threshold {

// Class d e f i n i t i o n f o r Threshold
// hasThreshold : Measurement

}
c l a s s Tr igger {

// Class d e f i n i t i o n f o r Tr igger
// hasTrigger : AtomicEvent

}
c l a s s Disease {

// Class d e f i n i t i o n f o r Disease
// Represents a disease or medical condi t ion
// hasDisease : Person

}
c l a s s E f f e c t {

// Class d e f i n i t i o n f o r E f f e c t
// Represents an e f f e c t or consequence of an event
// h a s E f f e c t : Event

}
c l a s s Person {

// Class d e f i n i t i o n f o r Person
// hasPersonEvent : Event

}
c l a s s Time {

// Class d e f i n i t i o n f o r Time
// Represents a point in time or a time i n t e r v a l
// hasTime : Event
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}
c l a s s Measurement {

// Class d e f i n i t i o n f o r Measurement
// Represents a measurement of a c e r t a i n
//property or quant i ty
// isMeasuredBy : Sensor

}
c l a s s indoorEnvironment {

// Class d e f i n i t i o n f o r
indoorEnvironment
// Represents the indoor environment
// h a s E f f e c t : IndoorAct iv i ty

}

3.3.2. Object and Data Properties

Object and data properties are the two properties used for this ontology to describe
the relationship between two individuals and the relationship between individuals and
enter data values for the classes according to their data format. Some properties defined for
disease, such as hasDisease, hasSymptoms, has activity, hasIndoorAirQuality are depicted
in Figure 5.

Figure 5. Some of the Object and Data Properties.
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3.3.3. Instances(Individual)

Figure 6 showcases the utilisation of individuals to populate the ontology with real-
world data instances, demonstrating the practical application of the ontology.

 

 

Figure 6. Some of the individuals in the ontology.
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3.3.4. SWRL Rules

Figure 7 is an example of the use of SWRL rules in our case. These rules are employed
to identify events depending on asthma symptoms, indoor activities, environmental prop-
erties, and air quality measurements. By using logical operators such as AND and OR, the
rules can combine events to provide a comprehensive analysis. Additionally, temporal
patterns can be defined with the use of operators like SEQUENCE, PERIODIC, APERIODIC,
and ALL, which allow for the detection of specific event sequences or recurring patterns.
Figure 7 illustrates examples of a few of the rules utilised in the proposed ontology.

Figure 7. SWRL rules.

3.4. Ontology Validation

Figure 8 illustrates the outcomes of the OOPS! evaluation process, which was con-
ducted to find common errors in our designed ontology, particularly in relation to complex
event detection. The used tool meticulously crosschecked the ontology against a predefined
set of patterns, flagging inconsistencies such as missing or inaccurate class definitions,
uncertain modelling choices, and inaccurate usage of relationships. This enabled us to
detect any potential problems that could hamper the complete and accurate detection of
complex events. The findings obtained from the OOPS! evaluation directed improvements
that were made to enhance the effectiveness of the ontology.

Figure 8. Summary of the OOPS! with minor pitfalls.
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4. Complex Event Detection with Illustrative Example

In the context of real-time data analysis, complex event detection is a vital process that
involves detecting meaningful patterns and correlations within a continuous stream of data.
CEP techniques play a crucial role in this domain. CEP allows us to define event patterns
and rules that trigger specific actions or alerts when these patterns are detected. While CEP
has a wide range of applications, this paper focuses on the detection of complex events; in
particular, we present event detection algorithms designed to identify instances of high
indoor air pollution correlated with asthma symptoms and specific indoor activities.

4.1. Data Description

The authors conducted a systematic study to obtain data for the study, which involved
gathering data on indoor activities, IAQ, and asthma symptoms. This extensive dataset
was fundamental in comprehending the correlation between different factors and their
influence on human health, especially with regard to respiratory conditions such as asthma.
The data collected have been used in this article to test the efficiency of the developed
framework. Examples of some of the data instances are depicted in Table 1.

Table 1. Example instances of IAQ dataset.

CO2 PM10 PM2.5 Temperature Breathing Issue VCleaning Heating Hour Cooking Hour Wheezing Inhaler Use Device ID

872 15.335 14.61 22.79 Bad 1 2 3 Y Y LAQ-x
678.7 4.039 3.279 17.67 Good 2 2 3 Y Y LAQ-x
519.2 32.03 29.5 16.68 Good 2 3 2 Y N LAQ-x
649.5 21.36 20.568 15.67 Bad 2 2 4 Y Y LAQ-x
780.2 18.36 16.4 16.53 Good 2 2 4 Y N LAQ-x
765.7 42.15 37.9 17.54 Bad 1 1 4 N N LAQ-x
650.7 18.01 15.79 17.38 Bad 1 1 2 N Y LAQ-x
710 32.8 28.1 16.97 Bad 1 2 4 Y N LAQ-x

4.2. Event Pattern Modelling

The following section outlines the various event patterns that have been established to
identify complex events associated with asthma exacerbation. To detect high indoor air pollution
and its correlation with asthma symptoms, these patterns utilise a combination of indoor air
quality readings, indoor activities, and asthma symptoms. The aim is to pinpoint specific
scenarios that suggest elevated indoor air pollution levels and their connection to asthma
symptoms. Below are two examples of event patterns we have identified for illustrative purposes.

Event Pattern 1: “High indoor air pollution during cooking and VCleaning with wheez-
ing or breathing issues”.

This pattern’s objective is to detect “High indoor air pollution during cooking or
cleaning with wheezing or breathing issues”. The rules of this event pattern, with a few
example instances, are outlined in Figure 9.

Rule 1: Asthma Symptoms = wheezing OR breathing issue

Rule 2: Indoor Activities = CookingHour OR VCleaning

Rule 3: Indoor Air Quality = high (PM25, CO2, etc.)

Indoor Air 
Quality

Indoor 
Activities

Asthma 
Symptoms

Date

CO2 highcookingwheezing06/04/2022

pm25 highVCleaningBreathingIssue07/04/2022

…………

Figure 9. Rules of event pattern 1 with some example instances.
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Detected pattern events are represented with RDF triples (semantic web technology) in
Listing 1. Each event uses properties like hasdate, hasAsthmaSymptom, hasIndoorActivity,
and hasIndoorAirQuality with specific values.

Listing 1. RDF/Turtle Representation.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix owl: <http :// www.w3.org /2002/07/ owl#> .
@prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
@prefix rayemson: <http ://www.semanticweb.org/rayemson#> .
@prefix onto: <http :// www.ontotext.com/> .
rayemson:Event1 a rayemson:Event ;

rayemson:hasdate "06/04/2022" ;
rayemson:hasAsthmaSymptom "wheezing" ;
rayemson:hasIndoorActivity "CookingHour" ;
rayemson:hasIndoorAirQuality "co2 high".

rayemson:Event2 a rayemson:Event ;
rayemson:hasDate "07/04/2022" ;

rayemson:hasAsthmaSymptoms "BreathingIssue" ;
rayemson:hasIndoorActivity "VCleaning" ;
rayemson:hasIndoorAirQuality "Pm25 high".

This pattern is applicable when trying to comprehend potential causes of asthma
symptoms that may arise during cleaning or cooking, particularly when IAQ is at its peak.
By recognising this pattern, individuals can proactively implement countermeasures to
minimise indoor air pollution when engaging in these activities.

Event Pattern 2: “High indoor air pollution during heating, accompanied by wheezing
or breathing issues”.

This pattern’s objective is to identify instances where indoor air pollution is elevated
during heating activities, coinciding with reports of wheezing or respiratory issues. The
rules of this event pattern, with a few example instances, are outlined in Figure 10.

Rule 1: Asthma Symptoms = wheezing OR breathing issue

Rule 2: Indoor Activities = heating

Rule 3: Indoor Air Quality (PM25) = high

Indoor Air 
Quality

Indoor 
Activities

Asthma 
Symptoms

Date

pm25 highheatingwheezing10/04/2022

pm25 highheatingBreathing issue11/04/2022

…………

Figure 10. Rules of event pattern 2 with some example instances.

Detected pattern events are represented with RDF triples (semantic web technology) in
Listing 2. Each event uses properties like hasdate, hasAsthmaSymptom, hasIndoorActivity,
and hasIndoorAirQuality with specific values.
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Listing 2. RDF/Turtle Representation.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix owl: <http :// www.w3.org /2002/07/ owl#> .
@prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
@prefix rayemson: <http ://www.semanticweb.org/rayemson#> .
@prefix onto: <http :// www.ontotext.com/> .
rayemson:Event3 a rayemson: Event ;

rayemson:hasdate "10/04/2022" ;
rayemson:hasIndoorActivity "HeatingHour" ;
rayemson:hasIndoorAirQuality "high" .

rayemson:Event4 a rayemson:Event ;
rayemson:hasDate "11/04/2022" ;

rayemson:hasAsthmaSymptom "BreathingIssue" ;
rayemson:hasIndoorActivity "HeatingHour" ;
rayemson:hasIndoorAirQuality "high" .

4.3. Event Detection Algorithms

In this subsection, we present the algorithms developed to detect complex events
based on the defined event patterns previously described. Each event pattern is associated
with a set of rules, and the goal is to detect instances that match these patterns within a
continuous data stream.

4.3.1. Algorithm 1: High Indoor Air Pollution during Cooking

Algorithm Description: This algorithm iterates through the data stream and checks
each data point against the defined rules for Algorithm 1. When all conditions are met, it
appends an asthma exacerbation event to the list of detected events.

Algorithm 1 High Indoor Air Pollution Event Detection

1: for each data_point in data_stream do
2: if data_point[’Asthma Symptoms’] in [’wheezing’, ’breathing issue’] and
3: data_point[’Indoor Activities’] in [’CookingHour’, ’VCleaning’] and
4: data_point[’Indoor Air Quality’] == ’high’ then
5: events.append(’Asthma Exacerbation Event’)
6: end if
7: end for

4.3.2. Algorithm 2: High Indoor Air Pollution during Heating

Algorithm Description: This algorithm scans the data stream, applying the speci-
fied rules for Algorithm Algorithm 2. When the conditions are met, it adds an asthma
exacerbation event to the list of detected events.

Algorithm 2 High Indoor Air Pollution Event Detection

1: for each data_point in data_stream do
2: if data_point[’Asthma Symptoms’] in [’wheezing’, ’breathing issue’] and
3: data_point[’Indoor Activities’] == ’heating’ and
4: data_point[’Indoor Air Quality (PM25)’] == ’high’ then
5: events.append(’Asthma Exacerbation Event’)
6: end if
7: end for

The proposed event detection algorithms provide a systematic approach to detecting
complex events related to asthma exacerbation. By leveraging these algorithms, we can
analyse real-time data streams and trigger timely alerts and/or interventions when potential
asthma exacerbation events are detected.
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4.4. Performance Evaluation

We evaluated the performance of the proposed complex event detection approaches
using the established evaluation metrics. We also compare the results between conventional
CEP and CEP integrated with semantic web technologies.

4.4.1. Evaluation Metrics

Our evaluation of event detection involved the use of precision, recall, and F1-score
metrics to assess the effectiveness of each approach utilised. True Positives (TP) were
identified as the total number of complex events that were correctly detected by the system.
False Positives (FP) were events flagged by the system that were not complex events, while
False Negatives (FN) represented the total number of complex events missed by the system.
The formula to compute precision is shown in Equation (1), which was used to determine
positive prediction accuracy. The recall was calculated using the Equation (2), indicating
the proportion of actual positives accurately identified. The F1-score was the harmonic
mean of precision and recall and functioned to balance precision and recall. A score of 1
indicated perfect precision and recall, while 0 indicated poor performance.

Precision : Precision =
TP

TP + FP
(1)

Recall : Recall =
TP

TP + FN
(2)

F1-score : F1-score =
2 · (Precision · Recall)

Precision + Recall
(3)

4.4.2. Comparison of Performance of Traditional CEP and Proposed Enhanced Semantic
Web-Integrated CEP

We compared the effectiveness of conventional CEP and CEP with semantic web
technologies for detecting complex events in real-time IoT data analysis. The integration of
semantic web technologies was found to enhance traditional CEP and improve accuracy.
Traditional CEP has proven efficiency in detecting simple events, but as we use more smart
things, we need to enhance its capability to find more complicated events. That is why it is
useful to use the Semantic Web with CEP to find even more complicated events.

Efficiency: A comparison was conducted to measure efficiency and processing time
between conventional CEP and that of the enhanced CEP with semantic web technologies,
which is illustrated in Figure 11. Our findings showed that the traditional CEP had a lower
processing time than the enhanced CEP. The processing times for different events are shown
in the efficiency graph, and it is evident that the integrated approach can handle larger
events without a significant increase in processing time. This suggests that the system can
scale to meet the demands of real-time event detection in IoT applications.

Accuracy: The use of semantic web technologies enabled CEP to achieve higher levels
of accuracy and completeness in generating insights compared to the conventional CEP as
outlined in Figure 12. By utilising semantic representations, the proposed framework ex-
hibited enhanced contextual understanding, resulting in more precise and suitable insights,
leading to better decision making. The semantic-based CEP framework outperformed
traditional CEP in terms of accuracy, precision, and contextual relevance due to semantic
web reasoning and inference capabilities.
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Figure 11. Comparison of processing times for traditional CEP and enhanced CEP.

Figure 12. Comparison of detection accuracy of traditional CEP and enhanced CEP.

The performance of two approaches, conventional CEP and CEP enhanced with
semantic web technologies, are evaluated side by side using four metrics—Accuracy,
Precision, Recall, and F1-Score—which are presented in the chart with blue and orange
bars representing conventional CEP and CEP with semantic web technologies, respectively.
The chart shows that the proposed enhanced CEP framework outperforms conventional
CEP in all four metrics, indicating that the integration of semantic web technologies with
traditional CEP significantly improves real-time event detection capacity.

Evaluating both approaches reveals their strengths and weaknesses. Conventional CEP
shows strength in processing and resource utilisation for limited environments, but it may
not handle complex event relationships or integrate diverse data, limiting its applicability
for comprehensive event detection. Conversely, the fusion of semantic web technologies
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with traditional CEP offers significant benefits to event detection. The integration of
semantics provides a more robust data representation, enabling the system to comprehend
data at a more abstract level and conduct reasoning over it. This leads to heightened
accuracy and completeness in event detection, thereby reducing the occurrence of false
positives and false negatives. Furthermore, the utilisation of semantic web technologies
has allowed for the effortless integration of data from multiple sources, which has resulted
in the system being able to achieve greater contextual awareness and adaptability across a
wide range of application domains.

Real-time analysis of large-scale and diverse data streams is crucial for streaming IoT
applications. However, the increasing complexity of IoT data poses several challenges that
require innovative solutions. One such solution proposed in this article is the integration
of semantic web technologies with traditional CEP, which holds enormous potential to
address these challenges. By leveraging this integration, complex event patterns can be
efficiently handled, enabling timely and informed decision making as well as proactive
actions based on real-time insights. A comparative analysis of different approaches can
assist researchers and practitioners in selecting the most suitable method for their distinct
IoT applications and use cases.

In evaluating the two approaches, we consider both traditional performance metrics
and computational burden. Understanding the computational requirements of our methods
is essential for practical feasibility. In Table 2, we present the combined computation burden
metrics for both Traditional CEP and Semantic Web-integrated CEP.

Table 2. Computation burden metrics for Traditional CEP and Semantic Web-integrated CEP.

Metric
Traditional

CEP Approach
CEP with Semantic Web

Approach

Avg CPU Usage 70% 45%
Peak CPU Usage 85% 60%

Avg Memory 3 GB 2.5 GB
Peak Memory 4 GB 3.5 GB

Avg Network BW 100 Mbps 80 Mbps
Peak Network BW 150 Mbps 120 Mbps

Comparing the computational burden metrics between traditional CEP and semantic
web technology-integrated CEP approaches, we gain a holistic view of their respective
performance. This evaluation extends beyond raw speed and accuracy and delves into
the practical feasibility of implementation, particularly in resource-intensive real-time
scenarios. Our research focuses on real-time data analysis within the context of our CEP
framework. We have addressed the computational burden by optimising our algorithms
for efficiency, selecting appropriate hardware configurations, and implementing scalability
and resource-monitoring strategies. Within the CEP framework, we have harnessed parallel
processing, advanced pattern recognition algorithms, low-latency design, and continuous
resource monitoring to optimise our CEP framework for superior performance.

5. Conclusions

This article has demonstrated the pivotal role of ontologies in enhancing complex
event detection, particularly within the context of air quality monitoring in IoT applications.
Our work highlights how ontologies significantly contribute to more precise and context-
aware event detection by enriching data semantics, thereby reducing false positives and
false negatives and increasing event detection precision. The integration of ontologies
with traditional CEP expands the capabilities of event detection, particularly in scenarios
characterised by intricate event patterns and diverse data sources. While traditional CEP
remains efficient, the addition of semantics improves the quality of insights derived from
streaming data. Our evaluation has confirmed the advantages of this integrated approach,
offering a robust framework for event detection.
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The proposed method for detecting complex events in real-time did not take into
account the possibility of anomalies in the data streams. This oversight presents a potential
issue as streaming data is constantly evolving, thereby increasing the probability of anoma-
lies and irregular patterns in the data, particularly due to cyber-attacks. Failure to identify
these anomalies may lead to erroneous event detection. Hence, it is recommended to
investigate techniques for anomaly detection and integrate them with the existing method
to reinforce its resilience. Moreover, to improve the performance and effectiveness of
the framework, future research should also focus on addressing computational overhead,
and streamlining complexity in ontology development. By enhancing the algorithms for
anomaly detection, optimising computational efficiency, and developing dynamic ontolo-
gies, the integrated framework can become a more efficient and powerful tool for generating
real-time insights and detecting events in IoT applications.
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