
Citation: Vincze, M.; Molnar, B.;

Kozlovszky, M. Real-Time Network

Video Data Streaming in Digital

Medicine. Computers 2023, 12, 234.

https://doi.org/10.3390/

computers12110234

Academic Editors: Hossein Fotouhi

and Morteza Biabani

Received: 2 October 2023

Revised: 29 October 2023

Accepted: 8 November 2023

Published: 14 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Real-Time Network Video Data Streaming in Digital Medicine
Miklos Vincze 1,*, Bela Molnar 2 and Miklos Kozlovszky 3,4,*

1 BioTech Research Center, Óbuda University, 1034 Budapest, Hungary
2 Image Analysis Department, 3DHISTECH Ltd.,1141 Budapest, Hungary; bela.molnar@3dhistech.com
3 Medical Device Research Group, LPDS, Institute for Computer Science and Control Hungarian Academy of

Sciences (SZTAKI), 1111 Budapest, Hungary
4 John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
* Correspondence: miklos.vincze@uni-obuda.hu (M.V.); kozlovszky.miklos@sztaki.hu (M.K.)

Abstract: Today, the use of digital medicine is becoming more and more common in medicine. With
the use of digital medicine, health data can be shared, processed, and visualized using computer
algorithms. One of the problems currently facing digital medicine is the rapid transmission of large
amounts of data and their appropriate visualization, even in 3D. Advances in technology offer the
possibility to use new image processing, networking, and visualization solutions for the evaluation
of medical samples. Because of the resolution of the samples, it is not uncommon that it takes a long
time for them to be analyzed, processed, and shared. This is no different for 3D visualization. In order
to be able to display digitalized medical samples in 3D at high resolution, a computer with computing
power that is not necessarily available to doctors and researchers is needed. COVID-19 has shown
that everyday work must continue even when there is a physical distance between the participants.
Real-time network streaming can provide a solution to this, by creating a 3D environment that can be
shared between doctors/researchers in which the sample being examined can be visualized. In order
for this 3D environment to be available to everyone, it must also be usable on devices that do not
have high computing capacity. Our goal was to design a general-purpose solution that would allow
users to visualize large amounts of medical imaging data in 3D, regardless of the computational
capacity of the device they are using. With the solution presented in this paper, our goal was to create
a 3D environment for physicians and researchers to collaboratively evaluate 3D medical samples in
an interdisciplinary way.

Keywords: real-time data streaming; client–server architecture; digital medicine; XR technology;
3D visualization; VR streaming; optimization; effective data-intensive communication; throughput
measurement

1. Introduction
1.1. Data Streaming in Digital Medicine

Nowadays, the use of different imaging modalities in digital medicine and the display
of the resulting data in 2D is part of medicine. In contrast, the spread of 3D visualization
in routine medicine is still to come. One of the barriers to the uptake of 3D visualization
is the large computational capacity required by the hardware that has to perform the
computations associated with visualization. Unfortunately, not all researchers/physicians
have the hardware to display, for example, pathology serial sections at an acceptable
resolution in a 3D environment. Real-time network transmission can be a solution to
this problem.

With this technology, it is possible to enable less powerful hardware to provide 3D
visualization to the user. With real-time network streaming, most of the computations to be
performed can be moved to a dedicated server. Once the calculations have been performed,
this server transmits the necessary data to the clients.

Computers 2023, 12, 234. https://doi.org/10.3390/computers12110234 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12110234
https://doi.org/10.3390/computers12110234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://doi.org/10.3390/computers12110234
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12110234?type=check_update&version=2


Computers 2023, 12, 234 2 of 18

Another not insignificant advantage of low-latency network transmission is that it can
be used to create multi-user software that is used in a real-time environment. Real-time
means that if there are data available on the server that can be displayed, they are sent
to the user with the minimum possible delay. If the delay is low enough, we can make
sure that the user does not experience any lag while using the software. The application of
streaming technology involves the analysis of network parameters, such as the following:

• Throughput: The amount of data moved successfully from one place to another in
a given period of time. Network throughput is generally measured in megabits per
second or gigabits per second.

• Delay: It means the latency with which a bit is forwarded from one network endpoint
to another. Usually measured in milliseconds.

• Packet Loss: Number of network packets that have not been successfully transmitted
within a given period of time.

• Packet Delay Variation: The difference in end-to-end one-way delay between selected
network packets in a flow. At packet delay variation, any lost packets are ignored.

In order to implement the functionalities that will ensure the sustainable operation of
our system, we need to introduce a number of definitions:

• Client-side buffer: A client-side buffer is a data storage structure implemented on the
connected client side of a networked system.

• Ring buffer: Also known as circular buffer or cyclic buffer. A data structure used in
computing for fixed-size storage. The name refers to the fact that its operation is as
if the first and last elements are linked together. It is often used to store and manage
data streams. An illustration of a ring buffer can be seen in Figure 1.

• Buffering rules: The set of rules associated with a given state of the buffer.

Computers 2023, 12, x FOR PEER REVIEW 2 of 20 
 

means that if there are data available on the server that can be displayed, they are sent to the 
user with the minimum possible delay. If the delay is low enough, we can make sure that 
the user does not experience any lag while using the software. The application of streaming 
technology involves the analysis of network parameters, such as the following: 
• Throughput: The amount of data moved successfully from one place to another in a 

given period of time. Network throughput is generally measured in megabits per 
second or gigabits per second. 

• Delay: It means the latency with which a bit is forwarded from one network endpoint 
to another. Usually measured in milliseconds. 

• Packet Loss: Number of network packets that have not been successfully transmitted 
within a given period of time. 

• Packet Delay Variation: The difference in end-to-end one-way delay between selected 
network packets in a flow. At packet delay variation, any lost packets are ignored. 

In order to implement the functionalities that will ensure the sustainable operation of our 
system, we need to introduce a number of definitions: 
• Client-side buffer: A client-side buffer is a data storage structure implemented on the 

connected client side of a networked system. 
• Ring buffer: Also known as circular buffer or cyclic buffer. A data structure used in 

computing for fixed-size storage. The name refers to the fact that its operation is as if 
the first and last elements are linked together. It is often used to store and manage 
data streams. An illustration of a ring buffer can be seen in Figure 1. 

• Buffering rules: The set of rules associated with a given state of the buffer. 

 
Figure 1. The illustration of the operation of the ring buffer. 

1.2. Network Data Streaming in Different Areas of Digital Medicine 
Video transmission in certain medical fields requires high-resolution data, which are 

large in size. One such field is digital pathology. In order to transmit these large data, 
different data compression algorithms have to be applied. It is also important that image 
streaming is a delay-sensitive operation, as the physician/researcher needs to receive the 
image data as soon as possible [Error! Reference source not found.,Error! Reference 
source not found.]. 

The recent COVID-19 pandemic has shown how important it is to use technology in 
everyday life to continue healing without physical contact. Nowadays, the transmission 
of video data is becoming increasingly common in certain areas of digital medicine. Such 
areas include the following: 
• telemedicine [Error! Reference source not found.–Error! Reference source not 

found.]; 
• digital pathology [Error! Reference source not found.]; 

Figure 1. The illustration of the operation of the ring buffer.

1.2. Network Data Streaming in Different Areas of Digital Medicine

Video transmission in certain medical fields requires high-resolution data, which are
large in size. One such field is digital pathology. In order to transmit these large data,
different data compression algorithms have to be applied. It is also important that image
streaming is a delay-sensitive operation, as the physician/researcher needs to receive the
image data as soon as possible [1,2].

The recent COVID-19 pandemic has shown how important it is to use technology in
everyday life to continue healing without physical contact. Nowadays, the transmission
of video data is becoming increasingly common in certain areas of digital medicine. Such
areas include the following:

• telemedicine [3–5];
• digital pathology [6];



Computers 2023, 12, 234 3 of 18

• remote surgeries [1];
• teleconsultation [7].

Nowadays, the use of video streaming in medicine is becoming more and more
widespread, especially in the field of telemedicine. An example of such a solution can be
seen in the publication of H. Han and J. Lv [3]. In their article, they describe a solution
that can provide the doctor with video data at high resolution (720 p or 1080 p), which can
be used to make a more accurate diagnosis than using a lower-resolution video stream
(360 p or 480 p). In their work, the authors present a solution that can increase the user’s
QoE (Quality of Experience) by up to 79%. As a result, a more accurate diagnosis can
be achieved.

In digital pathology, real-time data transmission is particularly difficult, as the res-
olution of samples is much higher than in other medical fields. Real-time image data
transmission can be used in many areas of digital pathology. Examples include medical
education [6] or the evaluation of samples. One possible implementation of the real-time
transmission and display of digitized pathological samples is Web-based displays. With
the help of these programs, users are able to examine the same tissue sample several times,
from all over the word [8].

Personal doctor-to-doctor consultation, or teleconsultation, is part of everyday medicine.
Low-latency image transmission even allows the user to join an active surgery as an
observer. In their research [7], the authors were able to implement a system that can
provide a real-time video stream of the current surgery on the client side on a device with a
screen size of 320 × 240.

The dangers inherent in the use of network streaming should be mentioned. When
transmitting data, an attacker could modify certain values in the transmitted data, leading to
false diagnoses or illegal access to data. Solutions such as authentication or data encryption
should be used to eliminate these potential risks [9–11]. This research area is addressed
by the authors in their article [9], in which they present a solution they have developed
to enable the transmission of digitized pathology samples over the network with a lower
risk factor.

1.3. Real-Time Data Streaming Protocols

Currently, there are several real-time data transmission protocols on the market, which
have different advantages and disadvantages [12]. Data transfer protocols are useful
because they allow us to transfer large amounts of data over a network. This means that
these protocols allow doctors/researchers in medicine to share large amounts of data with
each other and to transfer data between different medical systems.

Examples of currently widely used real-time network streaming protocols include the
following:

• RTMP (Real-Time Messaging Protocol): RTMP is a technology that enables real-time
video transmission over the Internet. RTMP uses TCP (Transmission Control Protocol)
to implement the data transmission. One of the major advantages of the RTMP
protocol is that it can provide a real-time video stream that can operate with low
latency compared to other protocols. This feature is particularly important when
real-time data transmission is the goal. There are three basic parts to using the RTMP
protocol. These are handshake, connection, and stream. The handshake section is a
series of fast data exchanges between the server and the connected client. The client
first sends a header and then a random packet of 1536 bytes. Then the server also
sends the header to the client, and similarly sends a 1536-byte random packet. Then
both the server and the client send back the random packet received from the other,
and thus the handshake has taken place. After the handshake, basic data such as
bandwidth or frame size are set between client and server. To set these up, AMF
(Action Message Format) is used. AMF is a compact binary format to serialize object
graphs. Once the communication channel and the connection are established, the
stream is sent [13,14]. With the use of RTMP, we can achieve a lower-latency video



Computers 2023, 12, 234 4 of 18

stream than with the use of HLS. However, there are disadvantages to using RTMP,
such as the lack of HTTP compatibility.

• HLS (HTTP Live Stream): HLS is an HTTP-based protocol with variable bit rate,
developed by Apple Inc. The cornerstone of HLS is that data are available to the
user at multiple bitrates. This allows the user to choose the one that suits him best
based on the quality of the Internet. Thanks to adaptive bitrates, the client is able to
play the stream from the server even if the Internet quality is not stable. HLS, in its
operation, splits the stream into HTTP-based file downloads. Each such download
contains only part of the original stream. These small streams are sent to the user at
different bitrates, using a so-called M3U list [15,16]. Based on our research, the main
advantage of HLS is the adaptive bitrate; on the other hand, this protocol has some
drawbacks regarding latency.

• RTSP (Real-Time Streaming Protocol): RTSP is a protocol that works at the application
layer. This protocol provides the possibility for real-time data transfer to a client by
communicating directly with the server. The RTSP protocol is basically not responsible
for streaming, but for the communication between the server and the client. The
protocol creates and monitors the real-time video stream between the client and the
server. When a new client tries to connect to the server, a similar process takes place
as with the RTMP protocol. The client first sends an RTSP request to the server in
order to find out what commands are available. Once the client receives a response, it
sends a media description request to the server. The client then sends a setup request
to the server, and in response, the server sends back the data transfer information.
When these steps are complete, the client sends a request to the server to start the
stream. In response, the server starts serving the video stream to the client. Since
RTSP is basically responsible for communication rather than streaming, its operation
consists of receiving and sending requests. For example, when the user wants to stop
the stream, this request is transmitted via the RTSP protocol to the server, where the
corresponding functionality is executed [17,18]. One of the advantages of RTSP is that
it can provide customizable streaming, but the disadvantage is that it is not as widely
supported as RTMP or HLS.

In our research, we used UDP (User Datagram Protocol) in order to implement our real-
time image data transmission solution. Since, in our implementation, we send a lot of data
quickly, and displaying data which was sent sooner than the currently visualized image is
not practical, as it would be visible to the user in the form of lag, TCP was not a suitable
choice for us. Nevertheless, the connection setup and post-connection part of our imple-
mented system are similar to those provided by RTSP. Our client sends various requests to
the server in UDP packets, and the server then executes the corresponding functionalities.

1.4. Image Storage File Formats

Today, there are many file formats that can efficiently transmit video data over
the network at high compression rates [18–21]. The most commonly used of these are
the following:

• PNG (Portable Network Graphic): PNG was developed to be an open-source solution
to GIF (Graphics Interchange Format). The PNG file format is an ideal choice for devel-
opment if you want to use lossless compression. PNG-based image compression can
be broken down into three steps; these are filtering, LZ77 compression, and Huffman
encoding. It is important to note that filtering is necessary to make compression more
efficient. In the case of PNG, filtering is not pixel-based, but byte-based. Once the
filtering is finished, the method uses LZ77 compression. This solution is a sliding
window algorithm that continuously tracks the previous bytes. With the compression
algorithm, the larger the sliding window, the more efficient the compression. After
LZ77, the final step is to apply Huffman encoding. By using Huffman encoding, the
result of LZ77 encoding can be stored in fewer bytes, which further improves the
compression ratio [22,23].



Computers 2023, 12, 234 5 of 18

• JPEG: JPEG compression is a lossy method that allows the user to set the size of the
quantization table, which affects the quality of the resulting image and the compression
ratio. JPEG compression includes several steps. These are changing the color space
to YCbCr, breaking the image into groups, and performing DCT (Discrete Cosine
Transformations) compression, which compresses data with the use of discrete DCT
blocks. After that, quantization and then Huffman encoding [22,24] are performed.

• JPEG 2000: The JPEG 2000 file format was designed to create a uniform system that
works well for images with different characteristics. Its main components are the DCT
algorithm, a trellis-coded quantization, and binary arithmetic bitplane coding. The
JPEG 2000 compression solution has a number of advantages over the original JPEG,
such as rate-distortion. Perhaps more importantly, JPEG 2000 allows us to extract
different pixel fidelities, resolutions, regions of interest, and components from a single
compressed bitstream. This feature of JPEG 2000 allows an application to modify and
send only the important part of the JPEG 2000-compressed source image to the target
device [21,25,26].

In our solution, we used image compression on the server side in order to optimize
network utilization. Each frame that is transmitted to the clients is stored and transmitted
by the server using the PNG file format.

1.5. Previous Research Results

We have published the early results of our research in the form of conference papers
in the past [27,28]. In these works, we presented the initial structure of a streaming-based
solution that could be used to transmit 3D data in digital medicine [28]. In addition,
the first versions of functionalities such as adaptive resolution change or buffering rules
were presented in the paper [27]. In comparison to the previously published results,
we continued the research and the implementation of the practical results at all points.
The paper contains the newest outcome of our work. We achieved new results in the
mathematical description of the relationships discovered during our research, as well as in
their validation. In addition, we carried out new measurements during our research that
show the resource utilization of the server in the case of 3D streaming when several users
are connected. These tests may reveal the physical limitations of our current solution.

1.6. Problem Definition and Motivation

Today, the analysis of digitized medical samples is part of everyday medical data
processing. This is no different in digital pathology. Compared to other medical fields,
digital pathology has a much higher resolution of image data, requiring powerful hardware
to display the data at a proper resolution. In our research, we aimed to reduce the hardware
computing capacity required from the user by using a network streaming technique and a
client–server architecture.

The use of the streaming technique is complicated by a number of factors, for example,
applying the right buffering rules or ensuring the right streaming resolution for the current
network parameters. The proper application of streaming techniques also implies the
problem of being able to define the so-called Quality of Service (QoS) indicator. With QoS,
we can ensure the operation of our system during variable network conditions. This was
important for our research because it allows our system to work in real-world network con-
ditions. With this indicator, we can, among other things, define initial settings such as the
sending resolution or the sending speed. In our research, we set out to create equations to
ensure the smooth operation of our streaming solution under changing network conditions.
To do this, we had to solve problems such as buffering the incoming data at the client side,
determining the QoS, and ensuring the right sending resolution based on the determined
QoS value.

In the introduction, we reviewed the technologies that proved to be particularly
important during our research during practical implementation. In the next paragraph, the
tools used in our research are presented.



Computers 2023, 12, 234 6 of 18

2. Materials and Methods

In the course of establishing the visualization and related correlations, we used
anonymized pathological serial sections. In order to determine the real-life size of a given
area on the sample, we need information on the real-life size of the pixels in the sample.
For the first sample, this metric was 250.0 µm, which means that in real life, one pixel is
250.0 µm wide and 250.0 µm high. The total resolution of every sample in the first serial
section was 35,584 × 35,580 pixels. In the second serial section, each sample of the serial
section had a pixel size of 250.0 µm per pixel and the total resolution of the samples was
36,352 × 53,248 pixels. The pathological samples used in our research were digitized using
a p1000 hardware device from 3DHISTECH. The p1000 device was specifically designed
for routine histopathology, capable of digitizing up to two pathology samples per second.
To ensure that the pathological samples were properly transformed together, we used
the 2.0 version of SlideMatch software. This software is able to transform together the
samples inside a serial section with micrometer accuracy, thus creating the possibility of
3D visualization.

3. Results
3.1. The Structure of Our Solution

The idea behind our solution was to create a system that would allow users to create
3D visualizations on any device, at any time. In addition, it was important for us that
users would be able to collaborate in real time on visualized 3D medical samples. For
more information about the first structural plans regarding our streaming solution, see
the following paper [27]. Our system is built on a client–server architecture. This means
that there is a central server that performs the computations related to the 3D visualization
and transmits the results to the clients. The method of 3D display performed by the
server is available in previous works [29]. In addition to the server, there are one or
more client applications that receive the data and display them to the user. With this
implementation, the high computational requirements of 3D visualization are only applied
to the server, which allows our client application to run on smartphones, tablets, computers,
or VR devices.

As shown in Figure 2, actual 3D rendering is performed “only” on the server side.
Nevertheless, clients perceive it as if 3D rendering is happening on their device. We were
able to achieve this effect by displaying a canvas directly in front of the users, displaying
the image data received from the server. It is important to note that there is continuous
two-way communication in our system. With this technique, the server is able to provide
the image data, while the user is able to transmit, for example, his own motion data to the
server. This is important because if the user’s motion data are transmitted to the server,
the server can generate the new image data from the appropriate viewpoint. Even though
the digitized medical samples are not stored on the client side and the 3D visualization is
not performed on the client device, we were able to implement it in such a way that the
user can walk around the 3D medical sample by continuous two-way communication. The
result of the client-side visualization can be seen in Figure 3.

In Figure 3a, we can see that the user has a camera in the client software (indicated
by the grey prism shape in the image). Directly in front of this camera, we have placed a
canvas to display the image data from the server. With this solution, we were able to create
an environment on the user’s side by transmitting 2D images over the network that the
user experiences as 3D. In Figure 3b, we can see the result of the client-side display. In this
case, two users are using our software at the same time. As we can see in Figure 3, a 3D
digitized medical sample is displayed in the center, which the users can evaluate together
using our software. Next to this, we can see that each user is represented as a 3D avatar for
the other users.



Computers 2023, 12, 234 7 of 18

Computers 2023, 12, x FOR PEER REVIEW 7 of 20 
 

the server can generate the new image data from the appropriate viewpoint. Even though 
the digitized medical samples are not stored on the client side and the 3D visualization is 
not performed on the client device, we were able to implement it in such a way that the 
user can walk around the 3D medical sample by continuous two-way communication. The 
result of the client-side visualization can be seen in Figure 3. 

 
Figure 2. The basic structure of our proposed solution. 

  

Figure 2. The basic structure of our proposed solution.

Computers 2023, 12, x FOR PEER REVIEW 8 of 20 
 

 

  
(a) (b) 

Figure 3. The result of client-side 3D rendering based on image data sent by the server. (a) Exter-
nal presentation of the client-side visualization. (b) The image that users actually see when using 
our software. 

In Figure 3a, we can see that the user has a camera in the client software (indicated 
by the grey prism shape in the image). Directly in front of this camera, we have placed a 
canvas to display the image data from the server. With this solution, we were able to create 
an environment on the user’s side by transmitting 2D images over the network that the 
user experiences as 3D. In Figure 3b, we can see the result of the client-side display. In this 
case, two users are using our software at the same time. As we can see in Figure 3, a 3D 
digitized medical sample is displayed in the center, which the users can evaluate together 
using our software. Next to this, we can see that each user is represented as a 3D avatar 
for the other users. 

As shown in Figure 4, when a new user logs in, the server determines the streaming 
parameters needed to start streaming. It then saves the data for each connected user and 
starts sending the image data at the specified resolution and speed. If the user is already 
connected to the server, but the data transmission is in progress, the server determines the 
frame to be sent and then transmits it to the user. 

  

Figure 3. The result of client-side 3D rendering based on image data sent by the server. (a) External
presentation of the client-side visualization. (b) The image that users actually see when using
our software.

As shown in Figure 4, when a new user logs in, the server determines the streaming
parameters needed to start streaming. It then saves the data for each connected user and
starts sending the image data at the specified resolution and speed. If the user is already
connected to the server, but the data transmission is in progress, the server determines the
frame to be sent and then transmits it to the user.

3.2. The Developed Client-Side Buffering Rules

In order to ensure stable operation under varying network conditions, we imple-
mented a so-called ring buffer. For more information on our first implementation of the
buffering rules, see the following paper [27]. In the ring buffer, each user stores their own
frames received from the server. This allows us to continuously monitor the connection be-
tween the client and the server using the Bid metric. The Bid metric is determined locally by
each user based on the data stored in the ring buffer. The Bid, and so the Bhs, is determined
each time the client program displays a new frame to the user or receives a new frame from
the server. The method of determining Bid is described by Equation (1).

Bid =

{
Fssi − Fcvi, Fssi ≥ Fcvi

|(Bs + Fssi)− Fcvi|, Fssi < Fcvi
(1)

The notations in Equation (1) mean the following:

• Bid: The difference between the index of the most recent frame received from the
server and the index of the most recently displayed frame in the client’s buffer.



Computers 2023, 12, 234 8 of 18

• Fssi: The index of the frame in the client’s buffer that is the most recent frame from the
server and has not yet been displayed by the client.

• Fcvi: The index of the frame in the client buffer that was last displayed to the user.
• Bs: The size of the ring buffer used in the client program.

Computers 2023, 12, x FOR PEER REVIEW 8 of 19 
 

 

Figure 4. The operation of the presented solution’s server side. 

3.2. The Developed Client-Side Buffering Rules 

In order to ensure stable operation under varying network conditions, we imple-

mented a so-called ring buffer. For more information on our first implementation of the 

buffering rules, see the following paper [Error! Reference source not found.]. In the ring 

buffer, each user stores their own frames received from the server. This allows us to con-

tinuously monitor the connection between the client and the server using the 𝐵𝑖𝑑 metric. 

The 𝐵𝑖𝑑 metric is determined locally by each user based on the data stored in the ring 

buffer. The 𝐵𝑖𝑑, and so the 𝐵ℎ𝑠, is determined each time the client program displays a new 

frame to the user or receives a new frame from the server. The method of determining 𝐵𝑖𝑑 

is described by Equation (1). 

𝐵𝑖𝑑 = { 
𝐹𝑠𝑠𝑖 − 𝐹𝑐𝑣𝑖 , 𝐹𝑠𝑠𝑖 ≥ 𝐹𝑐𝑣𝑖

|(𝐵𝑠 + 𝐹𝑠𝑠𝑖) − 𝐹𝑐𝑣𝑖|, 𝐹𝑠𝑠𝑖 < 𝐹𝑐𝑣𝑖
 (1) 

The notations in Equation (1) mean the following: 

• 𝐵𝑖𝑑: The difference between the index of the most recent frame received from the 

server and the index of the most recently displayed frame in the client’s buffer. 

• 𝐹𝑠𝑠𝑖: The index of the frame in the client’s buffer that is the most recent frame from 

the server and has not yet been displayed by the client. 

• 𝐹𝑐𝑣𝑖: The index of the frame in the client buffer that was last displayed to the user. 

• 𝐵𝑠: The size of the ring buffer used in the client program. 

In order to apply the equation in practice, two things are needed. Firstly, we need to 

be able to determine the index of the frame that came most recently from the server (𝐹𝑠𝑠𝑖), 

and secondly, we need to be able to tell which frame with the index was the last to be 

displayed (𝐹𝑐𝑣𝑖). If we examine the 𝐵𝑖𝑑 metric at fixed intervals during the execution of 

our program, we can get an idea of whether the client is able to maintain the appropriate 

display quality for the user. The examination of 𝐵𝑖𝑑 is shown in Equation (2). 

𝐵ℎ𝑠 = {

1, 𝐵𝑠 × 0.2 ≤ 𝐵𝑖𝑑 ≤ 𝐵𝑠 × 0.8
0, 𝐵𝑖𝑑 <  𝐵𝑠 × 0.2

−1, 𝐵𝑖𝑑 >  𝐵𝑠 × 0.8
 (2) 

Figure 4. The operation of the presented solution’s server side.

In order to apply the equation in practice, two things are needed. Firstly, we need to be
able to determine the index of the frame that came most recently from the server (Fssi), and
secondly, we need to be able to tell which frame with the index was the last to be displayed
(Fcvi). If we examine the Bid metric at fixed intervals during the execution of our program,
we can get an idea of whether the client is able to maintain the appropriate display quality
for the user. The examination of Bid is shown in Equation (2).

Bhs =


1, Bs × 0.2 ≤ Bid ≤ Bs × 0.8
0, Bid < Bs × 0.2
−1, Bid > Bs × 0.8

(2)

The abbreviations used in Equation (2) have the same meanings as in Equation (1).
The newly introduced abbreviation has the following meaning:

• Bhs: The current state of the client-side buffer.

If Equation (2) returns 1, the client program is working correctly and no intervention is
needed. In the case where Equation (2) returns 0, the client side is displaying the image data
to the user too fast for the speed at which it is received from the server. If no action is taken
in this case, the user will notice a lag in the program. This can be prevented by slowing
down the speed of the client-side display. In the case where Equation (2) returns −1, the
client will not be able to display the images at a sufficient speed. In order to compensate
for this, we need to slow down the server’s data transfer rate. With these intermediate
steps, we are able to keep our system in a so-called healthy state, so that the user can use
our system even with a changing network. The constant values shown in Equation (2) can
be changed even at runtime. The wider the range we allow for Bid, the later our system
will intervene, but the more drastic the intervention will need to be in order to keep the
system operational.



Computers 2023, 12, 234 9 of 18

When the described client-side buffering rules are applied and Bhs returns 1, there is
no change in the user experience. If Bhs returns 0, the client may experience lag, because
we had to slow down the client-side data visualization speed. When the system is back to a
healthy state, the client will experience a lag-free stream again. When Bhs returns a value of
−1, our system will need to slow down the server-side data sending speed. In this case, the
user will not experience any change in the way the program is used.

Testing the Buffering Rules

The proper functioning of buffering rules is essential to produce working real-time
network software. For this reason, the buffering rules we designed and developed were
tested in operation. The results of the tests are shown in Figure 5. During the tests, the
sending speed of the server was manually accelerated or slowed down in order to trigger
the automatic activation of the buffering rules. As shown in the figure, when the Bid
metric becomes too low, the system intervenes and can bring the Bid value back to the
normal range by increasing the server-side sending speed. This can be seen in Figure 5 in
the orange color. Conversely, when we deliberately speed up the server’s sending speed
during testing, the Bid value starts to increase. We can see this in Figure 5 in the steep line.
When Bid started to become too high, the buffering rules stepped in and slowed down the
server-side sending speed, so that the Bid indicator could return to the normal range. This
can be seen in Figure 5 in the gray color.

Computers 2023, 12, x FOR PEER REVIEW 10 of 20 
 

𝐵௛௦ = ൝ 1, 𝐵௦ ൈ 0.2 ≤ 𝐵௜ௗ ≤ 𝐵௦ ൈ 0.80, 𝐵௜ௗ <  𝐵௦ ൈ 0.2െ1, 𝐵௜ௗ ൐  𝐵௦ ൈ 0.8  (2) 

The abbreviations used in Equation (2) have the same meanings as in Equation (1). 
The newly introduced abbreviation has the following meaning: 
• 𝐵௛௦: The current state of the client-side buffer. 

If Equation (2) returns 1, the client program is working correctly and no intervention 
is needed. In the case where Equation (2) returns 0, the client side is displaying the image 
data to the user too fast for the speed at which it is received from the server. If no action 
is taken in this case, the user will notice a lag in the program. This can be prevented by 
slowing down the speed of the client-side display. In the case where Equation (2) returns 
−1, the client will not be able to display the images at a sufficient speed. In order to com-
pensate for this, we need to slow down the server’s data transfer rate. With these interme-
diate steps, we are able to keep our system in a so-called healthy state, so that the user can 
use our system even with a changing network. The constant values shown in Equation (2) 
can be changed even at runtime. The wider the range we allow for 𝐵௜ௗ, the later our sys-
tem will intervene, but the more drastic the intervention will need to be in order to keep 
the system operational. 

When the described client-side buffering rules are applied and 𝐵௛௦ returns 1, there 
is no change in the user experience. If 𝐵௛௦ returns 0, the client may experience lag, because 
we had to slow down the client-side data visualization speed. When the system is back to 
a healthy state, the client will experience a lag-free stream again. When 𝐵௛௦  returns a 
value of -1, our system will need to slow down the server-side data sending speed. In this 
case, the user will not experience any change in the way the program is used. 

Testing the Buffering Rules 
The proper functioning of buffering rules is essential to produce working real-time 

network software. For this reason, the buffering rules we designed and developed were 
tested in operation. The results of the tests are shown in Figure 5. During the tests, the 
sending speed of the server was manually accelerated or slowed down in order to trigger 
the automatic activation of the buffering rules. As shown in the figure, when the 𝐵௜ௗ met-
ric becomes too low, the system intervenes and can bring the 𝐵௜ௗ value back to the normal 
range by increasing the server-side sending speed. This can be seen in Figure 5 in the 
orange color. Conversely, when we deliberately speed up the server’s sending speed dur-
ing testing, the 𝐵௜ௗ value starts to increase. We can see this in Figure 5 in the steep line. 
When 𝐵௜ௗ started to become too high, the buffering rules stepped in and slowed down 
the server-side sending speed, so that the 𝐵௜ௗ indicator could return to the normal range. 
This can be seen in Figure 5 in the gray color. 

  
(a) (b) 

Figure 5. The results of testing the buffering rules. (a) The first result of testing the buffering rules.
(b) The second result of testing the buffering rules.

3.3. Adaptive Streaming Resolution Based on Latency

An important aspect in the implementation of our system was to be able to continue
working even if the quality of the network connection between the client and the server
were to degrade. To achieve this, we implemented functionality that would provide the
client with a continuous stream of images. Using this, even if the latency between client
and server increases, the user still receives image data, but at a lower resolution. The basic
idea of adaptive resolution change can be seen in our previous conference paper [27]. To
determine the latency, an empty network packet is sent from the client to the server at
constant intervals, and then from the server back to the client. Meanwhile, we measure
the elapsed time on the client side. These values are stored and after a given number of
pieces, an average delay between the client and the server is calculated. This is shown in
Equation (3).

L =
Ls

Lmn
(3)

The notations in Equation (3) mean the following:



Computers 2023, 12, 234 10 of 18

• L : Average delay between client and server for a given period of time.
• Ls: The sum of the delays measured during the period under investigation.
• Lmn: Number of measurements carried out during the period under investigation.

The result of the delay-based real-time velocity change is shown in Figure 6. As
Figure 6 shows, our solution currently supports three different resolutions. Due to the
architecture of our solution, the number of supported resolutions can be further extended
in the future.

Computers 2023, 12, x FOR PEER REVIEW 11 of 20 
 

Figure 5. The results of testing the buffering rules. (a) The first result of testing the buffering rules. 
(b) The second result of testing the buffering rules. 

3.3. Adaptive Streaming Resolution Based on Latency 
An important aspect in the implementation of our system was to be able to continue 

working even if the quality of the network connection between the client and the server 
were to degrade. To achieve this, we implemented functionality that would provide the 
client with a continuous stream of images. Using this, even if the latency between client 
and server increases, the user still receives image data, but at a lower resolution. The basic 
idea of adaptive resolution change can be seen in our previous conference paper [Error! 
Reference source not found.]. To determine the latency, an empty network packet is sent 
from the client to the server at constant intervals, and then from the server back to the 
client. Meanwhile, we measure the elapsed time on the client side. These values are stored 
and after a given number of pieces, an average delay between the client and the server is 
calculated. This is shown in Equation (3). 𝐿 =  𝐿௦𝐿௠௡ (3) 

The notations in Equation (3) mean the following: 
• 𝐿: Average delay between client and server for a given period of time. 
• 𝐿௦: The sum of the delays measured during the period under investigation. 
• 𝐿௠௡: Number of measurements carried out during the period under investigation. 

The result of the delay-based real-time velocity change is shown in Figure 6. As Fig-
ure 6 shows, our solution currently supports three different resolutions. Due to the archi-
tecture of our solution, the number of supported resolutions can be further extended in 
the future. 

   
(a) (b) (c) 

Figure 6. The result of the adaptive resolution changing image streaming. (a) The resulting image if 
the latency between the client and server is high. If the latency is high, the resolution of the streamed 
image is low (320 × 180). (b) The resulting image if the latency is in a medium range. If the latency 
is in a medium range, the streamed image will be at a medium resolution (960 × 540). (c) The result-
ing image if the latency between the client and server is low. If the latency is low, the resolution of 
the streamed image is high (1280 × 720). 

In the solution presented in the paper, the metric 𝐿, when determined, is automati-
cally transmitted to the server. The server, based on the average latency received from the 
client, sets the streaming resolution for it. This resolution is kept for that client until the 
next 𝐿 is determined. The following 𝐿 is re-established at constant intervals on the client 
side. The system is designed to be able to provide different video streaming resolutions to 
different users. With this solution, if a user has a faster Internet connection, he will receive 
a better-quality video stream from the server. This can be seen in blue in Figure 7. In con-
trast, a user with a slower Internet connection will receive a lower-resolution stream. This 
can be seen in the gray color. 

Figure 6. The result of the adaptive resolution changing image streaming. (a) The resulting image if
the latency between the client and server is high. If the latency is high, the resolution of the streamed
image is low (320 × 180). (b) The resulting image if the latency is in a medium range. If the latency is
in a medium range, the streamed image will be at a medium resolution (960 × 540). (c) The resulting
image if the latency between the client and server is low. If the latency is low, the resolution of the
streamed image is high (1280 × 720).

In the solution presented in the paper, the metric L, when determined, is automatically
transmitted to the server. The server, based on the average latency received from the
client, sets the streaming resolution for it. This resolution is kept for that client until the
next L is determined. The following L is re-established at constant intervals on the client
side. The system is designed to be able to provide different video streaming resolutions to
different users. With this solution, if a user has a faster Internet connection, he will receive a
better-quality video stream from the server. This can be seen in blue in Figure 7. In contrast,
a user with a slower Internet connection will receive a lower-resolution stream. This can be
seen in the gray color.

Computers 2023, 12, x FOR PEER REVIEW 12 of 20 
 

 
(a) (b) 

Figure 7. The results of the resolution changing tests based on the latency. (a) The first result of 
resolution changing tests based on the latency. (b) The second result of resolution changing tests 
based on the latency. 

In order to test the resolution change, tests have been carried out to verify that our 
system is able to automatically change the resolution in cases where latency warrants it. 
To achieve this, we set up a test environment with only the client, the server, and a switch 
in the network. The specifications of the devices were as follows: 
• Server device: A PC with an Intel(R) Ethernet Controller (3) I225-V network card. 
• Client device: A laptop with a Broadcom 802.11ac network adapter. 
• Switch: A TP-LINK, TL-SG2424 smart switch. 

The result of the resolution changing based on the latency can be seen in Figure 7. 

3.4. The Quality of Service Calculation 
The definition of QoS is a critical task for software whose functional quality depends 

on the quality of network parameters. For more information about the first research re-
sults regarding the QoS calculation, see the following paper [Error! Reference source not 
found.]. Since, in our research, we designed and developed an online solution that trans-
mits real-time video data from the server to the users, it was essential to define QoS. In 
the solution we developed, we considered four network parameters, which were consid-
ered in equal proportions [Error! Reference source not found.]. Once the QoS metric was 
defined, we classified it into five categories, which allowed us to define different transmis-
sion resolutions for different network qualities. The QoS computing solution we use, its 
testing, and the different QoS classes are described in Section 3.3. 

In order to be able to define the QoS metric when the client connects, we needed to 
be able to define the desired network parameters [Error! Reference source not found.]. 
These were the following: 
• throughput (TH); 
• delay (D); 
• packet delay variation (PDV); 
• packet loss (PL). 

We have achieved this by performing a constant-length QoS test phase when the cli-
ent connects, in which the system determines and classifies these network parameters on 
a scale of 1–5. Network parameters are classified using Table 1. The threshold values used 
for delay, packet delay variation, and packet loss in the classification were set based on 
what was observed during testing. For throughput, the thresholds were set to the through-
put levels required to transmit frames after compression of different resolutions, as shown 
in Table 2. An example of this is the second line of the throughput column. The system 
presented in the paper has a throughput of 4 if it is between 8.59 and 13.97 Mbps. This is 
set because at the highest resolution (1280 × 720), the average size of one frame is 61044 B; 

Figure 7. The results of the resolution changing tests based on the latency. (a) The first result of
resolution changing tests based on the latency. (b) The second result of resolution changing tests
based on the latency.

In order to test the resolution change, tests have been carried out to verify that our
system is able to automatically change the resolution in cases where latency warrants it. To



Computers 2023, 12, 234 11 of 18

achieve this, we set up a test environment with only the client, the server, and a switch in
the network. The specifications of the devices were as follows:

• Server device: A PC with an Intel(R) Ethernet Controller (3) I225-V network card.
• Client device: A laptop with a Broadcom 802.11ac network adapter.
• Switch: A TP-LINK, TL-SG2424 smart switch.

The result of the resolution changing based on the latency can be seen in Figure 7.

3.4. The Quality of Service Calculation

The definition of QoS is a critical task for software whose functional quality depends
on the quality of network parameters. For more information about the first research
results regarding the QoS calculation, see the following paper [28]. Since, in our research,
we designed and developed an online solution that transmits real-time video data from
the server to the users, it was essential to define QoS. In the solution we developed, we
considered four network parameters, which were considered in equal proportions [30].
Once the QoS metric was defined, we classified it into five categories, which allowed
us to define different transmission resolutions for different network qualities. The QoS
computing solution we use, its testing, and the different QoS classes are described in
Section 3.3.

In order to be able to define the QoS metric when the client connects, we needed to be
able to define the desired network parameters [30]. These were the following:

• throughput (TH);
• delay (D);
• packet delay variation (PDV);
• packet loss (PL).

We have achieved this by performing a constant-length QoS test phase when the client
connects, in which the system determines and classifies these network parameters on a
scale of 1–5. Network parameters are classified using Table 1. The threshold values used for
delay, packet delay variation, and packet loss in the classification were set based on what
was observed during testing. For throughput, the thresholds were set to the throughput
levels required to transmit frames after compression of different resolutions, as shown
in Table 2. An example of this is the second line of the throughput column. The system
presented in the paper has a throughput of 4 if it is between 8.59 and 13.97 Mbps. This is
set because at the highest resolution (1280 × 720), the average size of one frame is 61,044 B;
on the other hand, at the second highest resolution (960 × 540), the average size of one
frame is 37,532 B. If we need to send 30 frames of similar size per second, the minimum
network throughput is 8.59 Mbps. Until the throughput reaches 13.97 Mbps (which would
be required for higher resolution), no values of 5 are given in the test. In Table 1, in the
throughput column, the constant values for the different resolutions have been determined
in a similar way.

Table 1. Table classifying QoS network parameters.

Throughput (Mbps) Delay (ms) Packet Delay Variation (ms) Packet Loss (%) Class

TH ≥ 13.97 D < 10 |PDV| < 5 PL < 1 5

8.59 ≤ TH < 13.97 10 ≤ D < 25 5 ≤ |PDV| < 10 1 ≤ PL < 3 4

6.88 ≤ TH < 8.59 25 ≤ D < 50 10 ≤ |PDV| < 30 3 ≤ PL < 5 3

2.81 ≤ TH < 6.88 50 ≤ D < 100 30 ≤ |PDV| < 50 5 ≤ PL < 7 2

TH ≤ 2.81 D ≥ 100 |PDV| ≥ 50 PL ≥ 7 1



Computers 2023, 12, 234 12 of 18

Table 2. The assignment rules between QoS and initial streaming resolution.

Calculated QoS Coefficient Initial Resolution

4 ≤ QoS < 5 1280 × 720
3 ≤ QoS < 4 960 × 540
2 ≤ QoS < 3 854 × 480
1 ≤ QoS < 2 640 × 360

QoS ≤ 1 320 × 180

As Table 1 shows, after classifying these network parameters, four values are returned
(one classification result for each network parameter). These results are used in Equation (4).

QoS =
TH + D + PDV + PL

4
(4)

The notations in Equation (4) mean the following:

• TH : The result of throughput classification in the network parameter analysis. The
TH can take values between 1 and 5.

• D: The result of delay classification in the network parameter analysis. The D can take
values between 1 and 5.

• PDV: The result of packet delay variation classification in the network parameter
analysis. The PDV can take values between 1 and 5.

• PL: The result of packet loss classification in the network parameter analysis. The PL
can take values between 1 and 5.

Once the QoS coefficient has been determined for the current user, the proper initial
resolution is set using assignment rules. The assignment rules are presented in Table 2.

As we can see from Table 2, if the QoS measurements show that the network parameters
of the host are good enough, it can receive HD-quality resolution from the server. On the
other hand, if the user’s initial network parameters do not allow for a high-quality video
stream with our system, he can still receive lower-resolution video from the server. The
server defines the QoS parameter separately for each user. In this way, individual users
can receive images from the server at different resolutions depending on the quality of
their network connection. A low-resolution stream naturally affects the user experience
in a negative way, but with this method, we are able to provide the stream even with a
lower-quality network connection. If we did not reduce the resolution, we would not be
able to provide data to the user under the given network connection quality. If the definition
of QoS is repeated at given intervals, our system can adapt to changing network conditions.
If a higher QoS result is obtained for a given user during a repeated measurement, he will
receive a higher-resolution stream from the server until the next QoS calculation.

As can be seen in Figure 8, the results of the QoS calculation gave worse values for
the 10 Mb/s network than for the other two. It is important to mention that for our QoS
calculation solution, we set the maximum value for throughput to 11 Mb/s. This was
necessary because otherwise, we would have overloaded the network. The maximum
measurement limit of 15 Mb/s was not a problem due to the compression used in the
network data transmission. Due to the compression, it takes about 61,044 B (byte) to send
one frame at 1280 × 720 resolution. If we take into account the 30 FPS (frames per second)
sending rate, the result is 13.97 Mb/s. This allows us to measure the throughput required
for the maximum resolution we plan to send with our solution.

As Figure 9 shows, the average test result was worse for the 10 Mb/s network than
for the other two. As shown in Figure 9, the average QoS test results for the 100 Mb/s and
1Gb/s networks are almost identical. This may be because our current system is able to de-
liver a high-resolution network stream to the user even when using the 100 Mb/s network.



Computers 2023, 12, 234 13 of 18

Computers 2023, 12, x FOR PEER REVIEW 14 of 20 
 

able to provide data to the user under the given network connection quality. If the defini-
tion of QoS is repeated at given intervals, our system can adapt to changing network con-
ditions. If a higher QoS result is obtained for a given user during a repeated measurement, 
he will receive a higher-resolution stream from the server until the next QoS calculation. 

As can be seen in Figure 8, the results of the QoS calculation gave worse values for 
the 10 Mb/s network than for the other two. It is important to mention that for our QoS 
calculation solution, we set the maximum value for throughput to 11 Mb/s. This was nec-
essary because otherwise, we would have overloaded the network. The maximum meas-
urement limit of 15 Mb/s was not a problem due to the compression used in the network 
data transmission. Due to the compression, it takes about 61,044 B (byte) to send one frame 
at 1280 × 720 resolution. If we take into account the 30 FPS (frames per second) sending 
rate, the result is 13.97 Mb/s. This allows us to measure the throughput required for the 
maximum resolution we plan to send with our solution. 

(a) (b) 

  
(c) (d) 

Figure 8. The results of the Quality of Service testing. (a) The result of the throughput investigation 
with different types of networks during the Quality of Service calculation. (b) The result of the delay 
investigation with different types of networks during the Quality of Service calculation. (c) The re-
sult of the investigation of the percentage of arrived packages with different types of networks dur-
ing the Quality of Service calculation. (d) The result of the packet delay variation investigation with 
different types of networks during the Quality of Service calculation. 

As Figure 9 shows, the average test result was worse for the 10 Mb/s network than 
for the other two. As shown in Figure 9, the average QoS test results for the 100 Mb/s and 
1Gb/s networks are almost identical. This may be because our current system is able to 
deliver a high-resolution network stream to the user even when using the 100 Mb/s net-
work. 

Figure 8. The results of the Quality of Service testing. (a) The result of the throughput investigation
with different types of networks during the Quality of Service calculation. (b) The result of the delay
investigation with different types of networks during the Quality of Service calculation. (c) The result
of the investigation of the percentage of arrived packages with different types of networks during the
Quality of Service calculation. (d) The result of the packet delay variation investigation with different
types of networks during the Quality of Service calculation.

Computers 2023, 12, x FOR PEER REVIEW 15 of 20 
 

 
Figure 9. Defining Quality of Service on different networks. 

3.5. Managing Multiple Connected Users on the Server 
The central goal of the part of our research that dealt with server-side management 

of multiple users was to be able to create a 3D virtual space that could be shared by doc-
tors. In this space, doctors/researchers would be able to jointly evaluate medical image 
data and make a common diagnosis. In the shared 3D space provided by the server, each 
user can move freely by sending the data of the movement they want to perform to the 
central server, which will then send the next transmitted image to the client from a new 
perspective based on the received movement data. 

Our software is designed around two main guidelines. The first is to eliminate the 
high hardware resource requirements for evaluating digitized medical samples. The sec-
ond is to provide the user with a multi-user software that, when used, can evaluate 3D 
medical samples in a three-dimensional space. In Section 3.5, we present the implementa-
tion of our second objective. 

Our server application is designed to be able to store the data of different connected 
users, to be able to transmit image data to all clients, and to be able to display medical 
samples in 3D. By implementing these three basic requirements, we have created a server 
capable of transmitting 3D data to clients at the appropriate resolution and speed. Each 
connected user on the server has their own camera and their own 3D avatar. Each user 
can view the 3D space created by the server, and the 3D medical sample displayed in it, 
from the perspective of their own camera. This can be seen in Figure 10. Every user has 
the ability to move his/her own camera, in which case the camera will be moved to a new 
position on the server. In the case of a PC client, users can move using the keyboard, while 
in the case of a smartphone and tablet, they can use the touch screen. If the user presses 
the movement button, the client software sends a signal to the server, indicating that the 
user’s server-side camera must be moved in a specific way. This enables the user to receive 
the image data from the camera in the new position when the subsequent data are sent. 
This allows the client to view the displayed medical samples from a new perspective. 

Figure 9. Defining Quality of Service on different networks.



Computers 2023, 12, 234 14 of 18

3.5. Managing Multiple Connected Users on the Server

The central goal of the part of our research that dealt with server-side management of
multiple users was to be able to create a 3D virtual space that could be shared by doctors.
In this space, doctors/researchers would be able to jointly evaluate medical image data
and make a common diagnosis. In the shared 3D space provided by the server, each user
can move freely by sending the data of the movement they want to perform to the central
server, which will then send the next transmitted image to the client from a new perspective
based on the received movement data.

Our software is designed around two main guidelines. The first is to eliminate the
high hardware resource requirements for evaluating digitized medical samples. The second
is to provide the user with a multi-user software that, when used, can evaluate 3D medical
samples in a three-dimensional space. In Section 3.5, we present the implementation of our
second objective.

Our server application is designed to be able to store the data of different connected
users, to be able to transmit image data to all clients, and to be able to display medical
samples in 3D. By implementing these three basic requirements, we have created a server
capable of transmitting 3D data to clients at the appropriate resolution and speed. Each
connected user on the server has their own camera and their own 3D avatar. Each user
can view the 3D space created by the server, and the 3D medical sample displayed in it,
from the perspective of their own camera. This can be seen in Figure 10. Every user has
the ability to move his/her own camera, in which case the camera will be moved to a new
position on the server. In the case of a PC client, users can move using the keyboard, while
in the case of a smartphone and tablet, they can use the touch screen. If the user presses the
movement button, the client software sends a signal to the server, indicating that the user’s
server-side camera must be moved in a specific way. This enables the user to receive the
image data from the camera in the new position when the subsequent data are sent. This
allows the client to view the displayed medical samples from a new perspective.

Computers 2023, 12, x FOR PEER REVIEW 16 of 20 
 

  
(a) (b) 

Figure 10. Using the presented software with 5 users. (a) Using the presented solution with multi-
ple users. Different users connected to the 3D inspection environment on different devices, such as 
smartphone, tablet, laptop. (b) The video stream seen by the user using the laptop. 

In our solution, the server does not have to deal with the client-side buffering rules 
mentioned in Section 3.2. This may be because that parameter is defined on the client side. 
However, the buffering rules may vary the sending rate for each client. The server stores 
this separately for each connected client. Therefore, the central server must always be 
aware of delivering the right camera image to the right user at the right moment. Since 
the central server performs resource-intensive computations, we had to test how much 
the current resource is used for different numbers of users. The test results can be seen in 
Figure 11. It is important to note in relation to the test performed that a fixed resolution 
and transmission rate was used for all users. In practice, this meant that all users received 
320 × 180 resolution images and 10 images per second. 

  

Figure 10. Using the presented software with 5 users. (a) Using the presented solution with multiple
users. Different users connected to the 3D inspection environment on different devices, such as
smartphone, tablet, laptop. (b) The video stream seen by the user using the laptop.

In our solution, the server does not have to deal with the client-side buffering rules
mentioned in Section 3.2. This may be because that parameter is defined on the client side.
However, the buffering rules may vary the sending rate for each client. The server stores
this separately for each connected client. Therefore, the central server must always be
aware of delivering the right camera image to the right user at the right moment. Since
the central server performs resource-intensive computations, we had to test how much
the current resource is used for different numbers of users. The test results can be seen in
Figure 11. It is important to note in relation to the test performed that a fixed resolution
and transmission rate was used for all users. In practice, this meant that all users received
320 × 180 resolution images and 10 images per second.



Computers 2023, 12, 234 15 of 18

Computers 2023, 12, x FOR PEER REVIEW 17 of 20 
 

 

  

(a) (b) 

 
(c) 

Figure 11. The test result of the hardware usage of our server application regarding the number of 
connected users. (a) The CPU usage of the server regarding the number of connected users. (b) The 
GPU usage of the server regarding the number of connected users. (c) The network usage of the 
server regarding the number of connected users. 

Before running the test, the expected result was that as the number of users increased, 
the server would need to use more hardware resources to serve the clients. As we can see 
in Figure 11, our expectation came true. As can be seen in Figure 11, the CPU and the GPU 
usage increase, depending on the number of connected clients. The situation is similar 
regarding the network usage of the server. In this case, the server has to forward image 
data to more and more users, so an increase in network traffic was to be expected. 

In Section 3, we presented the most important functionalities and test results that we 
achieved during our latest research. In addition, the reader can get a closer look at what 
new research results we have achieved in terms of the entire system compared to those 
previously published. In the next paragraph, the reader can get an overall picture of what 
we have achieved, how our presented solution can be used in the future, and what future 
developments we plan to implement. 

4. Discussion 
During our research presented in the paper, we achieved new theoretical and practi-

cal results. We have successfully formulated the mathematical relationships with which 
our streaming client–server architecture can be created and maintained in a stable state. 
In the course of our research, we successfully created a system capable of providing doc-
tors with a 3D medical data display on devices with low computing capacity. With the 

Figure 11. The test result of the hardware usage of our server application regarding the number of
connected users. (a) The CPU usage of the server regarding the number of connected users. (b) The
GPU usage of the server regarding the number of connected users. (c) The network usage of the
server regarding the number of connected users.

Before running the test, the expected result was that as the number of users increased,
the server would need to use more hardware resources to serve the clients. As we can see
in Figure 11, our expectation came true. As can be seen in Figure 11, the CPU and the GPU
usage increase, depending on the number of connected clients. The situation is similar
regarding the network usage of the server. In this case, the server has to forward image
data to more and more users, so an increase in network traffic was to be expected.

In Section 3, we presented the most important functionalities and test results that we
achieved during our latest research. In addition, the reader can get a closer look at what
new research results we have achieved in terms of the entire system compared to those
previously published. In the next paragraph, the reader can get an overall picture of what
we have achieved, how our presented solution can be used in the future, and what future
developments we plan to implement.

4. Discussion

During our research presented in the paper, we achieved new theoretical and practical
results. We have successfully formulated the mathematical relationships with which our
streaming client–server architecture can be created and maintained in a stable state. In
the course of our research, we successfully created a system capable of providing doctors
with a 3D medical data display on devices with low computing capacity. With the solution
presented in the paper, the 3D display of high-resolution digitized medical samples may
become available in the future, even on devices with low computing capacity.



Computers 2023, 12, 234 16 of 18

Nowadays, 3D visualization and evaluation of digitized medical samples is a resource-
intensive task, but not all researchers/physicians have the hardware tools to do it. This
fact, and the factor that medicine is a consultative profession where asking for the opinion
of a colleague is part of everyday work, led us to develop software in our research that
could provide a solution to these problems. Using our solution, digitized medical samples
can be evaluated in an interdisciplinary virtual 3D environment. Users can connect to this
environment using their smartphone, tablet, or laptop. The only requirement is a network
connection between server and client.

With our solution presented in the paper, doctors from different medical fields can
examine the same digitized medical sample in a common space using different hardware
devices. By doing this, they are able to establish a common diagnosis. As we experienced
during the recent COVID-19 pandemic, no matter how difficult it is, medical work must
continue. The 3D virtual environment that we developed during our research can help
with this. In this environment, researchers and doctors are able to connect and continue
working together, even across great distances. With the solution presented in the paper,
doctors can interactively examine medical samples together at high resolution on devices
with low computing power.

In our research, we designed and built a system that can operate stably under varying
network conditions. This allows the user to receive image data from the server at all
times, so that 3D evaluation of medical samples can remain continuous. The equations
and classification rules defined in our solution allow our system to easily adapt to the
fundamentally unreliable environment of the Internet. The implemented latency-based
stream resolution change allows the user to use our system without any lag. Thanks to
this feature, if the latency became too high, the server would automatically decrease the
resolution. This functionality is similar to what other video sharing sites use. Our tests
during the research show that the presented functionalities work and that they can be used
to provide the user with continuous data transfer from the server.

In the future, we want to continue our research in order to add functionality to
our solution that is essential for everyday use. This includes authentication and voice-
based communication between users. Since our software deals with the processing and
transmission of medical data, it is particularly important that only authorized persons have
access to the data. The future implementation of authentication will help to improve the
security of the software. Voice-based communication would be important because, in this
way, users could quickly share data with each other, which could speed up the time it takes
to establish a diagnosis. As a continuation of our research, we plan to carry out user tests.
These tests will show how usable our software is for the target group of users. In the future,
we plan to further develop our solution based on the results of these tests.

In the paper, the reader can see the results of research that provides a practical solution
to a problem that is currently unsolved. With the presented results, we were able to create
a system that enables users to display 3D medical data regardless of location and device.
We have created a 3D virtual environment that users can share with each other, so that a
joint diagnosis can even take place in a virtual 3D environment.

Author Contributions: Conceptualization, M.V.; methodology, M.V.; software, M.V.; validation, M.V.;
formal analysis, M.V. and M.K.; investigation, M.V.; resources, B.M. and M.K.; data curation, M.V.;
writing—original draft preparation, M.V.; writing—review and editing, M.V.; visualization, M.V.;
supervision, B.M. and M.K.; project administration, M.K.; funding acquisition, M.K. All authors have
read and agreed to the published version of the manuscript.

Funding: The research received funding from the 2019-1.3.1-KK-2019-00007 “Innovációs szolgáltató
bázis létrehozása diagnosztikai, terápiás és kutatási célú kiberorvosi rendszerek fejlesztésére” national
project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Computers 2023, 12, 234 17 of 18

Data Availability Statement: The medical serial sections and images used in this study cannot be
made available upon any request.

Acknowledgments: The authors would like to thank AIAM (Applied Informatics and Applied Mathe-
matics) doctoral school of Óbuda University, Budapest, Hungary, for their support in this research.

Conflicts of Interest: Author Bela Molnar was employed by the company 3DHISTECH Ltd. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Balagalla, U.B.; Sivanatham, S.; Munasinghe, K.; Subasinghe, A.; de Alwis, C.; Wijewardhana, U.; Dharmaweera, M.N. Efficient

Medical Video Streaming by Pre-Processing and Network Traffic Prioritization in Real-Time. In Proceedings of the 2019
International Conference on Advanced Technologies for Communications (ATC), Hanoi, Vietnam, 17–19 October 2019; IEEE:
New York, NY, USA, 2019; pp. 123–128. [CrossRef]

2. Cárdenas, A.F.; Pon, R.K.; Cameron, R.B. Management of Streaming Body Sensor Data for Medical Information Systems. In
Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Scienes,
METMBS ‘03, Las Vegas, NV, USA, 23–26 June 2003; pp. 186–191.

3. Han, H.; Lv, J. Super-Resolution-Empowered Adaptive Medical Video Streaming in Telemedicine Systems. Electronics 2022, 11,
2944. [CrossRef]

4. Papakostas, C.; Troussas, C.; Krouska, A.; Sgouropoulou, C. On the Development of a Personalized Augmented Reality Spatial
Ability Training Mobile Application. In Frontiers in Artificial Intelligence and Applications; Frasson, C., Kabassi, K., Voulodimos, A.,
Eds.; IOS Presss: Amsterdam, The Netherlands, 2021. [CrossRef]

5. Papakostas, C.; Troussas, C.; Krouska, A.; Sgouropoulou, C. PARSAT: Fuzzy logic for adaptive spatial ability training in an
augmented reality system. Comput. Sci. Inf. Syst. 2023, 20, 1389–1417. [CrossRef]

6. Fuller, M.Y.; Mukhopadhyay, S.; Gardner, J.M. Using the Periscope Live Video-Streaming Application for Global Pathology
Education: A Brief Introduction. Arch. Pathol. Lab. Med. 2016, 140, 1273–1280. [CrossRef] [PubMed]

7. Schneider, A.; Wilhelm, D.; Doll, D.; Rauschenbach, U.; Finkenzeller, M.; Wirnhier, H.; Illgner, K.; Feussner, H. Wireless live
streaming video of surgical operations: An evaluation of communication quality. J. Telemed. Telecare 2007, 13, 391–396. [CrossRef]
[PubMed]

8. Schüffler, P.J.; Stamelos, E.; Ahmed, I.; Yarlagadda, D.V.K.; Ardon, O.; Hanna, M.G.; Reuter, V.E.; Klimstra, D.S.; Hameed, M.
Efficient Visualization of Whole Slide Images in Web-Based Viewers for Digital Pathology. Arch. Pathol. Lab. Med. 2022, 146,
1273–1280. [CrossRef] [PubMed]

9. Holub, P.; Müller, H.; Bíl, T.; Pireddu, L.; Plass, M.; Prasser, F.; Schlünder, I.; Zatloukal, K.; Nenutil, R.; Brázdil, T. Privacy risks of
whole-slide image sharing in digital pathology. Nat. Commun. 2023, 14, 2577. [CrossRef] [PubMed]

10. Segarra, C.; Muntane, E.; Lemay, M.; Schiavoni, V.; Delgado-Gonzalo, R. Secure Stream Processing for Medical Data. In
Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Berlin, Germany, 23–27 July 2019; IEEE: New York, NY, USA, 2019; pp. 3450–3453. [CrossRef]

11. Lane, J.; Schur, C. Balancing Access to Health Data and Privacy: A Review of the Issues and Approaches for the Future. Health
Serv. Res. 2010, 45, 1456–1467. [CrossRef] [PubMed]

12. Nunez, L.; Toasa, R.M. Performance evaluation of RTMP, RTSP and HLS protocols for IPTV in mobile networks. In Proceedings
of the 2020 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, 24–27 June 2020; pp. 1–5.
[CrossRef]

13. Lei, X.; Jiang, X.; Wang, C. Design and implementation of streaming media processing software based on RTMP. In Proceedings of
the 2012 5th International Congress on Image and Signal Processing (CISP), Chongqing, China, 16–18 October 2012; pp. 192–196.
[CrossRef]

14. Aloman, A.; Ispas, A.I.; Ciotirnae, P.; Sanchez-Iborra, R.; Cano, M.D. Performance Evaluation of Video Streaming Using MPEG
DASH, RTSP, and RTMP in Mobile Networks. In Proceedings of the 2015 8th IFIP Wireless and Mobile Networking Conference
(WMNC), Munich, Germany, 5–7 October 2015; IEEE: New York, NY, USA, 2015; pp. 144–151. [CrossRef]

15. Durak, K.; Akcay, M.N.; Erinc, Y.K.; Pekel, B.; Begen, A.C. Evaluating the Performance of Apple’s Low-Latency HLS. In
Proceedings of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24
September 2020; pp. 1–6. [CrossRef]

16. Schulzrinne, H.; Rao, A.; Lanphier, R. Real Time Streaming Protocol (RTSP); RFC2326; RFC Editor: Marina del Rey, CA, USA, 1998.
[CrossRef]

17. Akhlaq, M.; Sheltami, T.R. RTSP: An Accurate and Energy-Efficient Protocol for Clock Synchronization in WSNs. IEEE Trans.
Instrum. Meas. 2013, 62, 578–589. [CrossRef]

18. Parmar, M.C.K.; Pancholi, K. A Review on Image Compression Techniques. J. Inf. Knowl. Res. Electr. Eng. 2015, 2, 281–284.
19. Garg, G.; Kumar, R. Analysis of Different Image Compression Techniques: A Review. SSRN J. 2022. [CrossRef]
20. Kulchandani, J.S.; Pal, S.H.; Dangarwala, K.J. Image Compression: Review and Comparative Analysis. Int. J. Eng. Res. 2014, 3,

586–589.

https://doi.org/10.1109/ATC.2019.8924511
https://doi.org/10.3390/electronics11182944
https://doi.org/10.3233/FAIA210078
https://doi.org/10.2298/CSIS230130043P
https://doi.org/10.5858/arpa.2016-0268-SA
https://www.ncbi.nlm.nih.gov/pubmed/27441785
https://doi.org/10.1258/135763307783064386
https://www.ncbi.nlm.nih.gov/pubmed/18078549
https://doi.org/10.5858/arpa.2021-0197-OA
https://www.ncbi.nlm.nih.gov/pubmed/34979569
https://doi.org/10.1038/s41467-023-37991-y
https://www.ncbi.nlm.nih.gov/pubmed/37142591
https://doi.org/10.1109/EMBC.2019.8856334
https://doi.org/10.1111/j.1475-6773.2010.01141.x
https://www.ncbi.nlm.nih.gov/pubmed/21054366
https://doi.org/10.23919/CISTI49556.2020.9140848
https://doi.org/10.1109/CISP.2012.6469981
https://doi.org/10.1109/WMNC.2015.12
https://doi.org/10.1109/MMSP48831.2020.9287117
https://doi.org/10.17487/rfc2326
https://doi.org/10.1109/TIM.2012.2232472
https://doi.org/10.2139/ssrn.4031725


Computers 2023, 12, 234 18 of 18

21. Niu, H.; Shang, Y.; Yang, X.; Xu, D.; Han, B.; Chen, C. Design and research on the JPEG-LS image compression algorithm. In
Proceedings of the 2010 Second International Conference on Communication Systems, Networks and Applications, Hong Kong,
China, 29 June–1 July 2010; IEEE: New York, NY, USA, 2010; pp. 232–234. [CrossRef]

22. Barbhuiya, A.J.I.; Laskar, T.A.; Hemachandran, K. An Approach for Color Image Compression of JPEG and PNG Images
Using DCT and DWT. In Proceedings of the 2014 International Conference on Computational Intelligence and Communication
Networks, Bhopal, India, 14–16 November 2014; pp. 129–133. [CrossRef]

23. Jassim, F.A. Increasing Compression Ratio in PNG Images by k-Modulus Method for Image Transformation. arXiv 2013,
arXiv:1307.0036.

24. Raid, A.M.; Khedr, W.M.; El-dosuky, M.A.; Ahmed, W. Jpeg Image Compression Using Discrete Cosine Transform—A Survey. Int.
J. Comput. Sci. Eng. Surv. 2014, 5, 39–47. [CrossRef]

25. Christopoulos, C.; Skodras, A.; Ebrahimi, T. The JPEG2000 still image coding system: An overview. IEEE Trans. Consum. Electron.
2000, 46, 1103–1127. [CrossRef]

26. Gormish, M.; Lee, D.; Marcellin, M.W. JPEG2000: Overview, architecture, and applications. In Proceedings of the 2000 International
Conference on Image Processing (Cat. No.00CH37101), Vancouver, BC, Canada, 10–13 September 2000; IEEE: New York, NY,
USA, 2000; Volume 2, pp. 29–32. [CrossRef]

27. Vincze, M.; Biricz, B.; Kozlovszky, M.; Benhamida, A. Real-time video streaming in medicine using virtual reality. In Proceedings
of the 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara,
Romania, 23–26 May 2023; pp. 000183–000188. [CrossRef]

28. Vincze, M.; Jònàs, V.; Szántó, M.; Benhamida, A.; Paulik, R.; Laczi, A.S.; Szócska, B.; Endre, G.; Kozlovszky, M. 3D video streaming
in digital pathology using virtual reality. In Proceedings of the 27th IEEE International Conference on Intelligent Engineering
Systems 2023 (INES), Nairobi, Kenya, 26–28 July 2023.

29. Vincze, M.; Molnar, B.; Kozlovszky, M. 3D Visualization in Digital Medicine Using XR Technology. Futur. Internet 2023, 15, 284.
[CrossRef]

30. Saleh, A.K.; Tjahyaningtijas, H.P.A.; Rakhmawati, L. Quality of Service (QoS) Comparative Analysis of Wireless Network. Indones.
J. Electr. Electron. Eng. 2022, 5, 30–37.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICCSNA.2010.5588699
https://doi.org/10.1109/CICN.2014.40
https://doi.org/10.5121/ijcses.2014.5204
https://doi.org/10.1109/30.920468
https://doi.org/10.1109/icip.2000.899217
https://doi.org/10.1109/SACI58269.2023.10158657
https://doi.org/10.3390/fi15090284

	Introduction 
	Data Streaming in Digital Medicine 
	Network Data Streaming in Different Areas of Digital Medicine 
	Real-Time Data Streaming Protocols 
	Image Storage File Formats 
	Previous Research Results 
	Problem Definition and Motivation 

	Materials and Methods 
	Results 
	The Structure of Our Solution 
	The Developed Client-Side Buffering Rules 
	Adaptive Streaming Resolution Based on Latency 
	The Quality of Service Calculation 
	Managing Multiple Connected Users on the Server 

	Discussion 
	References

