
Citation: Tsoulos, I.G.; Tzallas, A.;

Karvounis, E. Constructing the

Bounds for Neural Network Training

Using Grammatical Evolution.

Computers 2023, 12, 226. https://

doi.org/10.3390/computers12110226

Academic Editor: Kartik B. Ariyur

Received: 1 October 2023

Revised: 28 October 2023

Accepted: 3 November 2023

Published: 5 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Constructing the Bounds for Neural Network Training Using
Grammatical Evolution
Ioannis G. Tsoulos *, Alexandros Tzallas and Evangelos Karvounis

Department of Informatics and Telecommunications, University of Ioannina, 45110 Ioannina, Greece;
tzallas@uoi.gr (A.T.); ekarvounis@uoi.gr (E.K.)
* Correspondence: itsoulos@uoi.gr

Abstract: Artificial neural networks are widely established models of computational intelligence that
have been tested for their effectiveness in a variety of real-world applications. These models require
a set of parameters to be fitted through the use of an optimization technique. However, an issue that
researchers often face is finding an efficient range of values for the parameters of the artificial neural
network. This paper proposes an innovative technique for generating a promising range of values for
the parameters of the artificial neural network. Finding the value field is conducted by a series of
rules for partitioning the original set of values or expanding it, the rules of which are generated using
grammatical evolution. After finding a promising interval of values, any optimization technique such
as a genetic algorithm can be used to train the artificial neural network on that interval of values. The
new technique was tested on a wide range of problems from the relevant literature and the results
were extremely promising.

Keywords: neural networks; genetic algorithms; grammatical evolution

1. Introduction

Artificial neural networks (ANNs) are widespread machine learning models, which
base their dynamics on a series of parameters that are also called computational units
or weights in the relevant literature [1,2]. Neural networks are widely used in a variety
of scientific applications, such as problems from physics [3–5], solutions of differential
equations [6,7], agriculture problems [8,9], chemistry problems [10–12], problems that
appear in the area of economic sciences [13–15], problems related to medicine [16,17], etc.
Commonly, the neural networks are expressed as a function N(−→x ,−→w), with the assumption
that the vector −→x stands for the input vector to the neural network and the vector −→w is
the parameter vector that should be estimated. The first vector is called pattern in the
bibliography and the second one weight vector. Techniques that adjust the parameter
vector −→w minimize the so-called training error, defined as:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the set
(−→xi , yi

)
, i = 1, ..., M is denoted as the training set of the neural

network. The yi are considered the target outputs for the −→xi points. As proposed in [18],
neural networks can be expressed as the following summation:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(2)

Computers 2023, 12, 226. https://doi.org/10.3390/computers12110226 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12110226
https://doi.org/10.3390/computers12110226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-9043-1290
https://orcid.org/0000-0002-6243-3755
https://doi.org/10.3390/computers12110226
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12110226?type=check_update&version=2

Computers 2023, 12, 226 2 of 16

The number of processing units is denoted by H and the value d stands for the
dimension of input vector −→x . The function σ(x) denotes the well-known sigmoid function
expressed as:

σ(x) =
1

1 + exp(−x)
(3)

From the above equations one can calculate the total number of parameters in the
neural network as:

n = (d + 2)H (4)

The training of neural networks has been performed by a variety of numerical methods
in the recent literature, such as: the Back Propagation method [19], the RPROP method [20],
the Adam optimizer [21], etc. Furthermore, more advanced optimization methods have
been incorporated to optimize the parameter vector of neural networks by minimizing
Equation (1) such as quasi-Newton methods [22], the Tabu search method [23], Simulated
Annealing [24], genetic algorithms [25], particle swarm optimization (PSO) [26], Differential
Evolution [27], Ant Colony Optimization [28], etc.

Moreover, recently, a series of hybrid optimization methods were proposed to tackle
the minimization of the training error, such as a method that combines PSO and genetic
algorithms [29,30], the incorporation of a particle swarm optimization algorithm and
gravitational search algorithm [31], a combination of a genetic algorithm and controlled
gradient method [32], etc.

In addition, an important topic for artificial neural networks such as parameter initial-
ization has been studied by several researchers in recent years. In this area appeared papers
such as initialization with decision trees [33], incorporation of the Cauchy’s inequality [34],
discriminant learning [35], etc. Another interesting topic in the area of neural networks
is weight decaying, where some regularization is applied to the parameters of the neural
network to avoid the overfitting problem. For this topic, several research papers have
been suggested, such as a method that incorporates positive correlation [36], the SarProp
algorithm [37], usage of pruning techniques [38], etc.

This paper proposes a two-stage method for efficient training of the parameters of
artificial neural networks. In the first stage, a value interval is constructed for the parameters
of the neural network through grammatical evolution [39]. In the first stage of this work,
after an initial estimate of the interval for the parameters of the neural network is made, a
series of rules for partitioning and expanding the initial value interval are applied with the
usage of grammatical evolution, until a promising value interval is found. In the second
stage of the method, a genetic algorithm is applied to train the parameters of the artificial
neural network. Training is performed within the optimal interval of values found in the
first stage of the method. The proposed method utilizes a genetic algorithm in the second
stage to train the neural network, but any other optimization method can be used instead of
genetic algorithms. However, genetic algorithms are used because they are easily adaptable
to many optimization problems as they are fault tolerant, and because they can be easily
parallelized using modern computing techniques.

The proposed method seeks in its first stage to find, using an evolutionary rule
technique, a range of values for the parameters of the artificial neural networks. This
interval should on the one hand be small enough to speed up the method of the second
stage that will be used to train the model, and on the other hand, the artificial neural
network should have satisfactory generalization abilities within the interval of values of
the first stage.

The rest of this article is organized as follows: in Section 2, the steps of the proposed
method are outlined in detail, in Section 3, the datasets used in the conducted experiments
as well the experimental results are presented, and finally, in Section 4, some conclusions
are presented.

Computers 2023, 12, 226 3 of 16

2. Method Description

In this section a detailed description of the grammatical evolution technique is pro-
vided, accompanied by the proposed language that creates intervals for the parameters of
the neural networks. Subsequently, the first phase of the proposed technique is described,
and finally, the second phase, with the application of a genetic algorithm to the outcome of
the first phase, is thoroughly analyzed.

2.1. Grammatical Evolution

Grammatical evolution is an evolutionary process, where the chromosomes represent
production rules of some provided BNF (Backus–Naur form) grammar [40], and this evolu-
tionary process can evolve programs in the underlying language. Grammatical evolution
has been used successfully in many real-world problems, such as function approxima-
tion [41,42], the solution of trigonometric equations [43], automatic music composition [44],
neural network construction [45,46], creating numeric constraints [47], video games [48,49],
estimation of energy demand [50], combinatorial optimization [51], cryptography [52], the
evolution of decision trees [53], the automatic design of analog electronic circuits [54], etc.
Any BNF grammar can be described as the set G = (N, T, S, P) where

• N is the set of the non-terminal symbols. Every symbol in N has a series of production
rules, used to produce terminal symbols.

• T is the set of terminal symbols.
• S denotes the start symbol of the grammar, with S ∈ N.
• P is the set of production rules, to create terminal symbols non-terminal symbols.

These rules are in the form A→ a or A→ aB, A, B ∈ N, a ∈ T.

The algorithm initiates from the symbol S and iteratively produces terminal symbols
by replacing non-terminal symbols with the right hand of the selected production rule.
Every production rule is selected using the following steps:

• Obtain the next element V from the current chromosome.
• Select the next production rule according to: Rule = V mod NR, where NR is the total

number of production rules for the current non-terminal symbol.

The grammar used in the current work is shown in Figure1.

S::=<expr> (0)
<expr> ::= (<xlist> , <lcommand>,<rcommand>) (0)

|<expr>,<expr> (1)
<xlist>::=x1 (0)

| x2 (1)
.........
| xn (n)

<left_command> ::= NOTHING (0)
| EXPAND (1)
| DIVIDE (2)

<right_command> ::= NOTHING (0)
| EXPAND (1)
| DIVIDE (2)

Figure 1. BNF grammar used in the current work. The value n stands for the number of total
parameters in the neural network.

The symbols in <> represent the non-terminal symbols of the grammar. The numbers
in parentheses in the right part of each rule indicate production rule sequence numbers. In
the proposed language described by the grammar of the scheme, three distinct operations
can be applied to parameters of the artificial neural network either on the left end of the
parameter’s value range (described by <lcommand>) or on the right end of the value range
(described by the <rcommand> symbol). These commands are

Computers 2023, 12, 226 4 of 16

1. NOTHING. This command means that no action takes place.
2. EXPAND. With this command, the corresponding end of the value field is extended

by 50% of the width of the field.
3. DIVIDE. With this command, the corresponding end of the value field is shrunk by

50% of the width of the field.

As a complete example, consider a neural network with H = 2 hidden nodes and the
dimension of the objective problem is set to d = 2. Hence, the total number of parameters
in the neural network is n = (d + 2)H = 8. In addition, for reasons of simplicity, we
consider that the initial range of values for all parameters of the artificial neural network is
the interval [−2, 2] and is denoted as the set of intervals

IN = {[−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2]} (5)

and also consider the chromosome

x = [9, 8, 6, 4, 15, 9, 16, 23, 7]

The steps to produce the final program

ptest = (x7, EXPAND, NOTHING), (x1, DIVIDE, EXPAND)

are shown in Table 1.

Table 1. Steps to produce a valid expression from the BNF grammar.

Expression Chromosome Operation

9,8,6,4,15,9,16,23,8 9 mod 2=1
<expr>,<expr> 8,6,4,15,9,16,23,8 8 mod 2=0

(<xlist>,<lcommand>,<rcommand>),<expr> 6,4,15,9,16,23,8 6 mod 8=6
(x7,<lcommand>,<rcommand>),<expr> 4,15,9,16,23,8 4 mod 3=1

(x7,EXPAND,<rcommand>),<expr> 15,9,16,23,8 15 mod 3=0
(x7,EXPAND,NOTHING),<expr> 9,16,23,8 9 mod 2 =1

(x7,EXPAND,NOTHING),(<xlist>,<lcommand>,<rcommand>) 16,23,8 16 mod 8=0
(x7,EXPAND,NOTHING),(x1,<lcommand>,<rcommand>) 23,8 23 mod 3=2

(x7,EXPAND,NOTHING),(x1,DIVIDE,<rcommand>) 8 8 mod 3=2
(x7,EXPAND,NOTHING),(x1,DIVIDE,EXPAND)

After the application of the program ptest to the original interval IN of Equation (5),
the new set has as follows:

IN = {[−4, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [0, 4], [−2, 2]} (6)

2.2. The First Phase of the Proposed Method

Before starting the process of creating partitioning rules and expanding the value
interval of the neural network weights, an initial estimate of this interval should be made.
In the present work, only a few steps of a genetic algorithm are applied to make an initial
estimate of the value interval. At the end of the genetic algorithm, the chromosome with
the best value is

IX = (IX1, IX2, . . . , IXn) (7)

This, the initial interval set for the parameters of the neural network is calculated as

IN = {[−IX1, IX1], {−IX2, IX2}, . . . , [−IXn, IXn]} (8)

The first phase of the proposed technique will accept the set IN as input and seek to
compute a new set by reducing the training error of the artificial neural network. The first
step is mainly a genetic algorithm and the corresponding steps are as follows:

Computers 2023, 12, 226 5 of 16

1. Set Nc as the number of chromosomes for the grammatical evolution.
2. Set H as the number of weights for the neural network.
3. Set Ng as the maximum number of allowed generations.
4. Set ps as the selection rate, with ps ≤ 1.
5. Set pm as the mutation rate, with pm ≤ 1.
6. Set Ns as the number of randomly created neural networks, which will be used in the

fitness calculation.
7. Initialize randomly the Nc chromosomes. Every chromosome is a set of integer

numbers used to produce valid programs through grammatical evolution and the
associated grammar of Figure 1.

8. Set f ∗ = [∞, ∞], the best discovered fitness. For this algorithm, we consider the

fitness function fg of any given chromosome g as an interval fg =
[

fg,low, fg,upper
]

9. Set iter=0.
10. For i = 1, . . . , Nc do

(a) Create for the chromosome ci the corresponding program pi using the gram-
mar of Figure 1.

(b) Apply the program pi to IN in order to produce the bounds
[
~Lpi ,
−→
Rpi

]
.

(c) Set Emin = ∞, Emax = −∞
(d) For j = 1, . . . , NS do

i. Create randomly gj ∈
[
~Lpi ,
−→
Rpi

]
as a set for the parameters of neural

network.
ii. Calculate the associated training error Egj = ∑M

k=1
(

N
(−→x k,−→gj

)
− yk

)2

iii. If Egj ≤ Emin then Emin = Egj

iv. If Egj ≥ Emax then Emax = Egj

(e) EndFor
(f) Set fi =

[
Emin, Emax

]
as the fitness value for the chromosome ci.

11. EndFor
12. Apply the selection procedure. Firstly, the chromosomes are sorted with correspon-

dence to their fitness values. Since fitness is considered an interval, a fitness compari-
son function is required. For this reason, the operator L∗(fa, fb) is used to compare
two fitness values fa = [a1, a2] and fb = [b1, b2] as follows:

L∗(fa, fb) =

{
TRUE, a1 < b1, OR (a1 = b1 AND a2 < b2)

FALSE, OTHERWISE
(9)

In practice this means that the fitness value fa is considered smaller than fb if
L∗(fa, fb) = TRUE. The first (1− ps) × Nc chromosomes with the lowest fitness
values are copied to the next generation. The remaining chromosomes are substituted
by chromosomes produced by the crossover procedure. During the selection process,
for every new offspring, two chromosomes are selected as parents from the population
using the well-known procedure of tournament selection.

13. Apply the crossover procedure. For each pair (z, w) of parents, two new chromosomes
z̃ and w̃ are created using the one-point crossover, graphically shown in Figure 2.

14. Apply the mutation procedure. For each element of every chromosome alter the
corresponding element with probability pm.

15. Set iter=iter+1
16. If iter≤ Ng goto step 10.

Computers 2023, 12, 226 6 of 16

Figure 2. The one-point crossover, used in the grammatical evolution. The numbers in figure denote
sequential number of production rules used in the Grammatical Evolution procedure.

2.3. The Second Phase of the Proposed Method

The result of the first phase of the proposed method is an interval of values for the
parameters of the artificial neural network. This interval of values can be used to minimize
the error function of the network with the parameters taking values exclusively in the
above interval of values. Any optimization method can be used for this purpose, but in
this work, a genetic algorithm was chosen, the steps of which are given below.

1. Initialization Step

(a) Set Nc as the number of chromosomes that participate in the genetic algorithm.
(b) Set Ng as the maximum number of allowed iterations.
(c) Set H as the number of weights for the neural network.
(d) Obtain the best interval S from the previous step of Section 2.2.
(e) Initialize using uniform distribution the NC chromosomes in S.
(f) Set ps as the selection rate, with ps ≤ 1.
(g) Set pm as the mutation rate, with pm ≤ 1.
(h) Set iter=0.

2. Fitness calculation Step

(a) For i = 1, . . . , Ng do

i. Calculate the fitness fi of chromosome gi as fi = ∑M
j=1
(

N
(−→x j,

−→gi
)
− yj

)2

(b) EndFor

3. Genetic operations step

(a) Selection procedure: Initially, the chromosomes are sorted according to their
fitness values. The first (1− ps)×Nc chromosomes with the lowest fitness values
are copied to the next generation. The remaining chromosomes are substituted
by chromosomes produced by the crossover procedure. During the selection
process, for every new offspring, two chromosomes are selected as parents from
the population using the well-known procedure of tournament selection.

(b) Crossover procedure: For each pair (z, w) of selected parents, two chromo-
somes z̃ and w̃ are constructed using the following equations:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (10)

where ai is a random number with the property ai ∈ [−0.5, 1.5] [55].
(c) Mutation procedure: For each element of every chromosome, alter the corre-

sponding element with probability pm.

4. Termination Check Step

(a) Set iter = iter + 1

Computers 2023, 12, 226 7 of 16

(b) If iter ≤ Ng go to step 2, otherwise apply a local search procedure to the best
chromosome of the population. In the current work, the BFGS variant of
Powell [56] was used.

3. Experiments

The effectiveness of the proposed method was evaluated on a series of classification
and regression datasets, used in the relevant literature. These datasets can be downloaded
from the following online databases:

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php [57] (accessed on 4
November 2023).

2. Keel repository, https://sci2s.ugr.es/keel/datasets.php [58] (accessed on 4 November
2023).

3. The Statlib URL ftp://lib.stat.cmu.edu/datasets/index.html (accessed on 4 November
2023).

3.1. Experimental Datasets

The classification datasets used in this paper are the following:

1. Appendicitis dataset, a medical purpose dataset, suggested in [59].
2. Australian dataset [60], a dataset related to credit card transactions.
3. Balance dataset [61], related to psychological states.
4. Cleveland dataset, which is a medical dataset [62,63].
5. Dermatology dataset [64], a medical dataset related to erythemato-squamous diseases.
6. Heart dataset [65], a medical dataset related to heart diseases.
7. Hayes roth dataset [66].
8. HouseVotes dataset [67], related to votes in the U.S. House of Representatives Congressmen.
9. Ionosphere dataset, used for classification of radar returns from the ionosphere [68,69].
10. Liverdisorder dataset [70], a medical dataset related to liver disorders.
11. Mammographic dataset [71], used to identify breast tumors.
12. Parkinsons dataset, a medical dataset related to Parkinson’s disease (PD) [72].
13. Pima dataset [73], used to detect the presence of diabetes.
14. Popfailures dataset [74], a dataset related to climate measurements.
15. Regions2 dataset, medical dataset related to hepatitis C [75].
16. Saheart dataset [76], a medical dataset related to heart diseases.
17. Segment dataset [77], an image processing dataset.
18. Wdbc dataset [78], a medical dataset related to breast tumors.
19. Wine dataset, used to detect the origin of wines [79,80].
20. Eeg datasets, a medical dataset related to EEG measurements [81]. There are three

different cases from this dataset used here denoted as Z_F_S, ZO_NF_S, ZONF_S.
21. Zoo dataset [82], used to classify animals.

The descriptions of the used regression datasets are as follows:

1. Abalone dataset [83], used to to predict the age of abalone from physical measurements.
2. Airfoil dataset, derived from NASA [84].
3. Baseball dataset, used to estimate the salary of baseball players.
4. BK dataset [85], used to predict the points scored in a basketball game.
5. BL dataset, an electrical engineering dataset.
6. Concrete dataset [86].
7. Dee dataset, used to predict the price of electricity.
8. Diabetes dataset, a medical dataset.
9. Housing dataset, provided in [87].
10. FA dataset, used to predict the fit body fat.
11. MB dataset, available from from Smoothing Methods in Statistics [85].
12. MORTGAGE dataset, related to economic data from the USA.
13. PY dataset, (Pyrimidines problem) [88].

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html

Computers 2023, 12, 226 8 of 16

14. Quake dataset, used to predict the strength of earthquakes.
15. Treasure dataset, related to economic data from the USA.
16. Wankara dataset, a dataset related to weather.

3.2. Experimental Results

The proposed method was coded in ANSI C++, and the optimization methods were
obtained from the freely available OPTIMUS computing environment, downloaded from
https://github.com/itsoulos/OPTIMUS/(accessed on 9 September 2023). The results were
validated using the 10-fold validation technique in all datasets. The experiments were
executed 30 times for each dataset using a different seed for the random generator each
time. The average classification error is reported for the case of classification datasets
and the average mean test error for the regression datasets. The machine used in the
experiments was an AMD Ryzen 5950X with 128GB of RAM, running the Debian Linux
operating system. The experimental settings are listed in Table 2. The experimental results
for the classification datasets are shown in Table 3, while for the regression datasets, the
results are shown in Table 4. The following apply to the results tables:

1. A genetic algorithm where the parameters have the values of Table 2 used to train
a neural network with H hidden nodes. The results in the experimental tables are
denoted by the label GENETIC.

2. The Adam optimization method is used to train a neural network with H hidden
nodes. The column ADAM denotes the results for this method.

3. The RPROP method is used to train a neural network with H hidden nodes. The
corresponding results are denoted by RPROP in the relevant tables.

4. The NEAT method (NeuroEvolution of Augmenting Topologies) [89], where the maxi-
mum number of allowed generations is the same as in the case of the genetic algorithm.

5. The proposed method (denoted as PROPOSED) was used with the experimental
settings and are shown in Table 2.

6. An extra line was also added to the experimental tables under the title AVERAGE.
This line represents the average classification or regression error for all datasets.

Table 2. Experimental parameters.

Parameter Value

H 10
NC 200
NS 50
Nt 200
ps 0.10
pm 0.01

Table 3. Experimental results for classification datasets. The values in cells indicate average classifica-
tion error as measured on test set. The numbers in parentheses denote the standard deviation.

Dataset Genetic Adam Rprop Neat Proposed

Appendicitis 18.10% (6.32) 16.50% (7.73) 16.30% (5.27) 17.20% (4.12) 17.00% (6.23)
Australian 32.21% (5.99) 35.65% (5.83) 36.12% (5.52) 31.98% (6.03) 24.55% (4.64)

Balance 8.97% (2.64) 7.87% (3.09) 8.81% (2.36) 23.14% (4.16) 16.71% (3.98)
Cleveland 51.60% (6.39) 67.55% (6.98) 61.41% (9.10) 53.44% (7.26) 47.91% (4.78)

Dermatology 30.58% (4.75) 26.14% (3.11) 15.12% (2.40) 32.43% (4.74) 8.93% (2.36)
Hayes Roth 56.18% (6.97) 59.70% (5.41) 37.46% (4.41) 50.15% (4.43) 32.21% (2.58)

Heart 28.34% (4.78) 38.53% (4.45) 30.51% (3.63) 39.27% (4.14) 17.40% (2.52)
HouseVotes 6.62% (2.11) 7.48% (1.81) 6.04% (1.17) 10.89% (2.30) 3.48% (1.43)
Ionosphere 15.14% (2.57) 16.64% (3.20) 13.65% (2.45) 19.67% (4.28) 7.14% (1.10)

Liverdisorder 31.11% (4.59) 41.53% (4.74) 40.26% (3.99) 30.67% (3.12) 28.90% (2.91)
Lymography 23.26% (3.84) 29.26% (4.72) 24.67% (3.48) 33.70% (4.17) 17.86% (2.42)

https://github.com/itsoulos/OPTIMUS/

Computers 2023, 12, 226 9 of 16

Table 3. Cont.

Dataset Genetic Adam Rprop Neat Proposed

Mammographic 19.88% (2.79) 46.25% (2.66) 18.46% (2.34) 22.85% (3.27) 17.32% (1.79)
Parkinsons 18.05% (3.16) 24.06% (3.28) 22.28% (2.79) 18.56% (1.87) 14.35% (1.79)

Pima 32.19% (4.82) 34.85% (4.26) 34.27% (4.24) 34.51% (4.67) 25.58% (2.55)
Popfailures 5.94% (1.71) 5.18% (1.79) 4.81% (1.81) 7.05% (2.87) 4.58% (1.32)

Regions2 29.39% (3.88) 29.85% (3.95) 27.53% (3.23) 33.23% (4.41) 28.32% (3.59)
Saheart 34.86% (4.90) 34.04% (4.74) 34.90% (4.75) 34.51% (5.57) 27.43% (3.88)

Segment 57.72% (2.71) 49.75% (3.01) 52.14% (4.85) 66.72% (4.74) 20.68% (2.17)
Wdbc 8.56% (2.90) 35.35% (5.06) 21.57% (4.55) 12.88% (3.48) 5.23% (1.66)
Wine 19.20 (2.66) 29.40% (3.37) 30.73% (3.78) 25.43% (3.19) 5.35% (1.74)
Z_F_S 10.73% (2.80) 47.81% (5.75) 29.28% (4.81) 38.41% (6.18) 6.56% (1.45)

ZO_NF_S 8.41% (2.35) 47.43% (5.79) 6.43% (2.35) 43.75% (6.98) 3.60% (1.05)
ZONF_S 2.60% (0.33) 11.99% (1.19) 27.27% (1.58) 5.44% (1.11) 2.21% (0.54)

ZOO 16.67% (3.28) 14.13% (2.52) 15.47% (3.10) 20.27% (6.47) 6.10% (1.67)
AVERAGE 23.60% 31.54% 25.65% 29.42% 16.23%

Table 4. Experimental results for regression datasets. The values indicate average regression error as
measured on test set. The numbers in parentheses denote the standard deviation.

Dataset Genetic Adam Rprop Neat Proposed

ABALONE 7.17 (1.11) 4.30 (0.55) 4.55 (0.75) 9.88 (1.61) 4.48 (0.52)
AIRFOIL 0.003 (0.002) 0.005 (0.003) 0.002 (0.001) 0.067 (0.002) 0.002 (0.001)

BASEBALL 103.60 (15.85) 77.90 (16.59) 92.05 (23.51) 100.39 (22.54) 51.39 (10.13)
BK 0.027 (0.009) 0.03 (0.004) 1.599 (0.15) 0.15 (0.02) 0.02 (0.005)
BL 5.74 (1.64) 0.28 (0.11) 4.38 (0.19) 0.05 (0.02) 0.002 (0.001)

CONCRETE 0.0099 (0.001) 0.078 (0.013) 0.0086 (0.001) 0.081 (0.004) 0.004 (0.0006)
DEE 1.013 (0.21) 0.63 (0.08) 0.608 (0.07) 1.512 (0.79) 0.23 (0.05)

DIABETES 19.86 (5.57) 3.03 (0.35) 1.11 (0.57) 4.25 (1.92) 0.41 (0.08)
HOUSING 43.26 (5.84) 80.20 (8.82) 74.38 (6.85) 56.49 (5.65) 24.55 (4.48)

FA 1.95 (0.44) 0.11 (0.021) 0.14 (0.01) 0.19 (0.014) 0.01 (0.005)
MB 3.39 (0.40) 0.06 (0.03) 0.055 (0.03) 0.061 (0.03) 0.048 (0.03)

MORTGAGE 2.41 (0.26) 9.24 (1.24) 9.19 (1.62) 14.11 (3.34) 0.65 (0.16)
PY 5.41 (0.63) 0.09 (0.013) 0.039 (0.019) 0.075 (0.022) 0.025 (0.012)

QUAKE 0.040 (0.004) 0.06 (0.017) 0.041 (0.006) 0.298 (0.13) 0.038 (0.005)
TREASURY 2.929 (0.69) 11.16 (1.37) 10.88 (1.26) 15.52 (2.52) 0.84 (0.29)
WANKARA 0.012 (0.005) 0.02 (0.005) 0.0003 (0.001) 0.005 (0.001) 0.0002 (0.0001)
AVERAGE 12.30 11.70 12.44 12.70 5.17

In general, the proposed technique outperforms the rest of the techniques in the
experiments. In fact, in many cases, the test error is reduced by more than 70%. Additionally,
more experiments were conducted using the number of processing nodes (H) as well as
the number of generations (Nt), to determine the stability of the proposed technique. The
average classification error for the classification datasets using different values for the
H parameter is shown graphically in Figure 3. Furthermore, the average classification
error of the proposed method for different numbers of maximum generations Nt is shown
graphically in Figure 4. The proposed technique does not show significant changes in its
behavior as the critical parameters change, and therefore, its stability to changes is evident.
Moreover, the average execution time for different values of the Nt parameter is outlined
in Figure 5. Judging from the above experiments, it can be said that the choice of values for
the critical parameters H and Nt is a compromise between performance and speed for the
proposed technique.

Computers 2023, 12, 226 10 of 16

Figure 3. Average classification error using the proposed method and different values for the number
of hidden nodes H.

Figure 4. Average classification error of the proposed method using different values for the maximum
number of allowed generations Nt.

Figure 5. Average execution time of the proposed method, using different values of the Nt parameter.

The numerical superiority of the proposed technique over the others in the performed
experiments is presented graphically in Figures 6 and 7, where Wilcoxon signed-rank tests
were performed on the executed experiments. However, since the proposed technique
consists exclusively of a series of genetic algorithms, it can be significantly accelerated by
the use of parallel computing techniques, since one of the main characteristics of genetic
algorithms is their ease of parallelization [90,91]. Programming techniques that can be used

Computers 2023, 12, 226 11 of 16

to parallelize the method could be the MPI programming interface [92] or the OpenMP
programming library [93].

Figure 6. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test results
of the comparison for each of the four (4) classification methods (GENETIC, ADAM, RPROP, and
NEAT) with the PROPOSED method regarding the classification error in twenty-four (24) different
public available classification datasets. The stars only intend to flag significance levels for the two
most used groups. A p-value of less than 0.0001 is flagged with four stars (****).

Figure 7. Scatter plot representation and the Wilcoxon signed-rank test results of the comparison for
each of the four (4) regression methods (GENETIC, ADAM, RPROP, and NEAT) with the PROPOSED
method regarding the regression error in sixteen (16) different publicly available regression datasets.
Star links join significantly different values: two stars (**) stands for p < 0.001, and four stars (****)
stand for p < 0.0001.

Computers 2023, 12, 226 12 of 16

4. Conclusions

This paper proposed a two-step technique to efficiently find a reliable interval of
values for the parameters of artificial neural networks. In the first stage with partitioning
techniques and using grammatical evolution, a range of parameter values was searched,
and in the second stage, a genetic algorithm trained the artificial neural network within the
optimal range of values of the first stage. The proposed technique is highly general and
was successfully applied to both data fitting and classification problems. In both cases, the
experimental results demonstrate its superiority over other techniques appearing in the
relevant literature on the training of artificial neural networks. In fact, in many cases in
the performed experiments, the proposed method outperforms others that were tested in
percentages that exceed 70%. In the future, a series of actions can be carried out to improve
the results and speed up the proposed method, such as:

1. There is a need for more efficient techniques for initializing the value space for artificial
neural network parameters. In the present work, the optimal result from the execution
of a limited number of steps by a genetic algorithm was used as an initial estimate of
the value interval.

2. In the present work, the same techniques as in any whole-chromosome genetic algo-
rithm were used to perform the crossover and mutation operations. Research could
be conducted at this point to find more focused crossover and mutation techniques
for this particular problem.

3. The present technique consists of two phases, in each of which a problem-adapted
genetic algorithm is executed. This means that significant computational time is
required to complete the algorithm. However, since genetic algorithms are inherently
parallelizable, modern parallel programming techniques could be used here.

Author Contributions: I.G.T., A.T., and E.K. conceived the idea and methodology and supervised the
technical part regarding the software. I.G.T. conducted the experiments, employing several datasets,
and provided the comparative experiments. A.T. performed the statistical analysis. E.K. and all other
authors prepared the manuscript. E.K. and I.G.T. organized the research team and A.T. supervised
the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This research was financed by the European Union: Next Generation EU through
the Program Greece 2.0 National Recovery and Resilience Plan, under the call RESEARCH—CREATE—
INNOVATE, project name “iCREW: Intelligent small craft simulator for advanced crew training using
Virtual Reality techniques” (project code: TAEDK-06195).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.
2. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
3. Baldi, P.; Cranmer, K.; Faucett, T.; Sadowski, P.; Whiteson, D. Parameterized neural networks for high-energy physics. Eur. Phys. J.

C 2016, 76, 235. [CrossRef]
4. Valdas, J.J.; Bonham-Carter, G. Time dependent neural network models for detecting changes of state in complex processes:

Applications in earth sciences and astronomy. Neural Netw. 2006, 19, 196–207. [CrossRef] [PubMed]
5. Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606.

[CrossRef]
6. Shirvany, Y.; Hayati, M.; Moradian, R. Multilayer perceptron neural networks with novel unsupervised training method for

numerical solution of the partial differential equations. Appl. Soft Comput. 2009, 9, 20–29. [CrossRef]
7. Malek, A.; Beidokhti, R.S. Numerical solution for high order differential equations using a hybrid neural network—Optimization

method. Appl. Math. Comput. 2006, 183, 260–271. [CrossRef]

http://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1140/epjc/s10052-016-4099-4
http://dx.doi.org/10.1016/j.neunet.2006.01.006
http://www.ncbi.nlm.nih.gov/pubmed/16537103
http://dx.doi.org/10.1126/science.aag2302
http://dx.doi.org/10.1016/j.asoc.2008.02.003
http://dx.doi.org/10.1016/j.amc.2006.05.068

Computers 2023, 12, 226 13 of 16

8. Topuz, A. Predicting moisture content of agricultural products using artificial neural networks. Adv. Eng. Softw. 2010, 41, 464–470.
[CrossRef]

9. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial
Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835.
[CrossRef]

10. Shen, L.; Wu, J.; Yang, W. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. J. Chem.
Theory Comput. 2016, 12, 4934–4946. [CrossRef]

11. Manzhos, S.; Dawes, R.; Carrington, T. Neural network-based approaches for building high dimensional and quantum dynamics-
friendly potential energy surfaces. Int. J. Quantum Chem. 2015, 115, 1012–1020. [CrossRef]

12. Wei, J.N.; Duvenaud, D.; Aspuru-Guzik, A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci.
2016, 2, 725–732. [CrossRef] [PubMed]

13. Falat, L.; Pancikova, L. Quantitative Modelling in Economics with Advanced Artificial Neural Networks. Proc. Econ. Financ. 2015,
34, 194–201. [CrossRef]

14. Namazi, M.; Shokrolahi, A.; Sadeghzadeh Maharluie, M. Detecting and ranking cash flow risk factors via artificial neural networks
technique. J. Bus. Res. 2016, 69, 1801–1806. [CrossRef]

15. Tkacz, G. Neural network forecasting of Canadian GDP growth. Int. J. Forecast. 2001, 17, 57–69. [CrossRef]
16. Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov. 2016, 11, 785–795.

[CrossRef]
17. Bartzatt, R. Prediction of Novel Anti-Ebola Virus Compounds Utilizing Artificial Neural Network (ANN). World J. Pharm. Res.

2018, 7, 16.
18. Tsoulos, I.G.; Gavrilis, D.; Glavas, E. Neural network construction and training using grammatical evolution. Neurocomputing 2008,

72, 269–277. [CrossRef]
19. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
20. Riedmiller, M.; Braun, H. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP algorithm. In Proceedings

of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591.
21. Kingma, D.P.; Ba, J.L. ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
22. Robitaille, B.; Payre, B.M. Modified quasi-Newton methods for training neural networks. Comput. Chem. Eng. 1996, 20, 1133–1140.

[CrossRef]
23. Sexton, R.S.; Alidaee, B.; Dorsey, R.E.; Johnson, J.D. Global optimization for artificial neural networks: A tabu search application.

Eur. J. Oper. Res. 1998, 106, 570–584. [CrossRef]
24. Yamazaki, A.; de Souto, M.C.P.; Ludermir, T.B. Optimization of neural network weights and architectures for odor recognition

using simulated annealing. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02, Honolulu,
HI, USA, 12–17 May 2002; Volume 1, pp. 547–552.

25. Leung, F.H.F.; Lam, H.K.; Ling, S.H.; Tam, P.K. Tuning of the structure and parameters of a neural network using an improved
genetic algorithm. IEEE Trans. Neural Netw. 2003, 14, 79–88. [CrossRef]

26. Zhang, C.; Shao, H.; Li, Y. Particle swarm optimisation for evolving artificial neural network. In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, Nashville, TN, USA, 8–11 October 2000; IEEE: Toulouse, France, 2000;
pp. 2487–2490.

27. lonen, J.; Kamarainen, J.K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward Neural Networks. Neural
Process. Lett. 2003, 17, 93–105.

28. Salama, K.M.; Abdelbar, A.M. Learning neural network structures with ant colony algorithms. Swarm Intell. 2015, 9, 229–265.
[CrossRef]

29. Zhang, J.R.; Zhang, J.; Lok, T.M.; Lyu, M.R. A hybrid particle swarm optimization—Back-propagation algorithm for feedforward
neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [CrossRef]

30. Mishra, S.; Patra, S.K. Short Term Load Forecasting Using Neural Network Trained with Genetic Algorithm & Particle Swarm
Optimization. In Proceedings of the 2008 First International Conference on Emerging Trends in Engineering and Technology,
Nagpur, India, 2008; pp. 606–611. [CrossRef]

31. Mirjalili, S.; Hashim, S.Z.M.; Sardroudi, H.M. Training feedforward neural networks using hybrid particle swarm optimization
and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137. [CrossRef]

32. Kobrunov, A.; Priezzhev, I. Hybrid combination genetic algorithm and controlled gradient method to train a neural network.
Geophysics 2016, 81, 35–43. [CrossRef]

33. Ivanova, I.; Kubat, M. Initialization of neural networks by means of decision trees. Knowl.-Based Syst. 1995, 8, 333–344. [CrossRef]
34. Yam, J.Y.F.; Chow, T.W.S. A weight initialization method for improving training speed in feedforward neural network. Neurocom-

puting 2000, 30, 219–232. [CrossRef]
35. Chumachenko, K.; Iosifidis, A.; Gabbouj, M. Feedforward neural networks initialization based on discriminant learning. Neural

Netw. 2022, 146, 220–229. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.advengsoft.2009.10.003
http://dx.doi.org/10.3390/app10113835
http://dx.doi.org/10.1021/acs.jctc.6b00663
http://dx.doi.org/10.1002/qua.24795
http://dx.doi.org/10.1021/acscentsci.6b00219
http://www.ncbi.nlm.nih.gov/pubmed/27800555
http://dx.doi.org/10.1016/S2212-5671(15)01619-6
http://dx.doi.org/10.1016/j.jbusres.2015.10.059
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1080/17460441.2016.1201262
http://dx.doi.org/10.1016/j.neucom.2008.01.017
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/0098-1354(95)00228-6
http://dx.doi.org/10.1016/S0377-2217(97)00292-0
http://dx.doi.org/10.1109/TNN.2002.804317
http://dx.doi.org/10.1007/s11721-015-0112-z
http://dx.doi.org/10.1016/j.amc.2006.07.025
http://dx.doi.org/10.1109/ICETET.2008.94
http://dx.doi.org/10.1016/j.amc.2012.04.069
http://dx.doi.org/10.1190/geo2015-0297.1
http://dx.doi.org/10.1016/0950-7051(96)81917-4
http://dx.doi.org/10.1016/S0925-2312(99)00127-7
http://dx.doi.org/10.1016/j.neunet.2021.11.020
http://www.ncbi.nlm.nih.gov/pubmed/34902796

Computers 2023, 12, 226 14 of 16

36. Shahjahan, M.D.; Kazuyuki, M. Neural network training algorithm with possitive correlation. IEEE Trans. Inf. Syst. 2005, 88,
2399–2409. [CrossRef]

37. Treadgold, N.K.; Gedeon, T.D. Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm. IEEE Trans.
Neural Netw. 1998, 9, 662–668. [CrossRef]

38. Leung, C.S.; Wong, K.W.; Sum, P.F.; Chan, L.W. A pruning method for the recursive least squared algorithm. Neural Netw. 2001, 14,
147–174. [CrossRef]

39. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
40. Backus, J.W. The Syntax and Semantics of the Proposed International Algebraic Language of the Zurich ACM-GAMM Conference.

In Proceedings of the International Conference on Information Processing, UNESCO, Paris, France, 15–20 June 1959; pp. 125–132.
41. Ryan, C.; Collins, J.; O’Neill, M. Grammatical evolution: Evolving programs for an arbitrary language. In Genetic Program-

ming. EuroGP 1998; Lecture Notes in Computer Science; Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C., Eds.; Springer:
Berlin/Heidelberg, Germany, 1998; Volume 1391.

42. O’Neill, M.; Ryan, M.C. Evolving Multi-line Compilable C Programs. In Genetic Programming. EuroGP 1999; Lecture Notes
in Computer Science; Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1999;
Volume 1598.

43. Ryan, C.; O’Neill, M.; Collins, J.J. Grammatical Evolution: Solving Trigonometric Identities. In Proceedings of the Mendel ’98:
4th International Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks and Rough Sets,
Anchorage, AK, USA, 4–9 May 1998; Volume 98.

44. Puente, A.O.; Alfonso, R.S.; Moreno, M.A. Automatic composition of music by means of grammatical evolution. In Proceedings of
the APL ’02: 2002 Conference on APL: Array Processing Languages: Lore, Problems, and Applications, Madrid, Spain, 22–25 July
2002; pp. 148–155.

45. Campo, L.M.L.; Oliveira, R.C.L.; Roisenberg, M. Optimization of neural networks through grammatical evolution and a genetic
algorithm. Expert Syst. Appl. 2016, 56, 368–384. [CrossRef]

46. Soltanian, K.; Ebnenasir, A.; Afsharchi, M. Modular Grammatical Evolution for the Generation of Artificial Neural Networks. Evol.
Comput. 2022, 30, 291–327. [CrossRef]

47. Dempsey, I.; Neill, M.O.; Brabazon, A. Constant creation in grammatical evolution. Int. J. Innov. Appl. 2007, 1, 23–38. [CrossRef]
48. Galván-López, E.; Swafford, J.M.; O’Neill, M.; Brabazon, A. Evolving a Ms. PacMan Controller Using Grammatical Evolution. In

Applications of Evolutionary Computation. EvoApplications 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2010; Volume 6024.

49. Shaker, N.; Nicolau, M.; Yannakakis, G.N.; Togelius, J.; O’Neill, M. Evolving levels for Super Mario Bros using grammatical
evolution. In Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14
September 2012; pp. 304–311.

50. Martínez-Rodríguez, D.; Colmenar, J.M.; Hidalgo, J.I.; Micó, R.J.V.; Salcedo-Sanz, S. Particle swarm grammatical evolution for
energy demand estimation. Energy Sci. Eng. 2020, 8, 1068–1079. [CrossRef]

51. Sabar, N.R.; Ayob, M.; Kendall, G.; Qu, R. Grammatical Evolution Hyper-Heuristic for Combinatorial Optimization Problems.
IEEE Trans. Evol. Comput. 2013, 17, 840–861. [CrossRef]

52. Ryan, C.; Kshirsagar, M.; Vaidya, G.; Cunningham, A.; Sivaraman, R. Design of a cryptographically secure pseudo random number
generator with grammatical evolution. Sci. Rep. 2022, 12, 8602. [CrossRef] [PubMed]

53. Pereira, P.J.; Cortez, P.; Mendes, R. Multi-objective Grammatical Evolution of Decision Trees for Mobile Marketing user conversion
prediction. Expert Syst. Appl. 2021, 168, 114287. [CrossRef]

54. Castejón, F.; Carmona, E.J. Automatic design of analog electronic circuits using grammatical evolution. Appl. Soft Comput. 2018, 62,
1003–1018. [CrossRef]

55. Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. Res. 2007, 176, 60–76. [CrossRef]
56. Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566.

[CrossRef]
57. Kelly, M.; Longjohn, R.; Nottingham, K. The UCI Machine Learning Repository. 2023. Available online: https://archive.ics.uci.edu

(accessed on 20 September 2023).
58. Alcalá-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. KEEL Data-Mining Software Tool: Data Set

Repository, Integration of Algorithms and Experimental Analysis Framework. J. -Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
59. Weiss, S.M.; Kulikowski, C.A. Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1991.
60. Quinlan, J.R. Simplifying Decision Trees. Int. Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
61. Shultz, T.; Mareschal, D.; Schmidt, W. Modeling Cognitive Development on Balance Scale Phenomena. Mach. Learn. 1994, 16,

59–88. [CrossRef]
62. Zhou, Z.H.; Jiang, Y. NeC4.5: Neural ensemble based C4.5. IEEE Trans. Knowl. Data Eng. 2004, 16, 770–773. [CrossRef]
63. Setiono, R.; Leow, W.K. FERNN: An Algorithm for Fast Extraction of Rules from Neural Networks. Appl. Intell. 2000, 12, 15–25.

[CrossRef]
64. Demiroz, G.; Govenir, H.A.; Ilter, N. Learning Differential Diagnosis of Eryhemato-Squamous Diseases using Voting Feature

Intervals. Artif. Intell. Med. 1998, 13, 147–165.

http://dx.doi.org/10.1093/ietisy/e88-d.10.2399
http://dx.doi.org/10.1109/72.701179
http://dx.doi.org/10.1016/S0893-6080(00)00093-9
http://dx.doi.org/10.1109/4235.942529
http://dx.doi.org/10.1016/j.eswa.2016.03.012
http://dx.doi.org/10.1162/evco_a_00302
http://dx.doi.org/10.1504/IJICA.2007.013399
http://dx.doi.org/10.1002/ese3.568
http://dx.doi.org/10.1109/TEVC.2013.2281527
http://dx.doi.org/10.1038/s41598-022-11613-x
http://www.ncbi.nlm.nih.gov/pubmed/35597791
http://dx.doi.org/10.1016/j.eswa.2020.114287
http://dx.doi.org/10.1016/j.asoc.2017.09.036
http://dx.doi.org/10.1016/j.ejor.2005.07.025
http://dx.doi.org/10.1007/BF01589118
https://archive.ics.uci.edu
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1007/BF00993174
http://dx.doi.org/10.1109/TKDE.2004.11
http://dx.doi.org/10.1023/A:1008307919726

Computers 2023, 12, 226 15 of 16

65. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell.
1997, 7, 39–55. [CrossRef]

66. Hayes-Roth, B.; Hayes-Roth, B.F. Concept learning and the recognition and classification of exemplars. J. Verbal Learn. Verbal Behav.
1977, 16, 321–338. [CrossRef]

67. French, R.M.; Chater, N. Using noise to compute error surfaces in connectionist networks: A novel means of reducing catastrophic
forgetting. Neural Comput. 2002, 14, 1755–1769. [CrossRef]

68. Dy, J.G.; Brodley, C.E. Feature Selection for Unsupervised Learning. J. Mach. Learn. Res. 2004, 5, 845–889.
69. Perantonis, S.J.; Virvilis, V. Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component Analysis.

Neural Process. Lett. 1999, 10, 243–252. [CrossRef]
70. Garcke, J.; Griebel, M. Classification with sparse grids using simplicial basis functions. Intell. Data Anal. 2002, 6, 483–502.

[CrossRef]
71. Elter, M.; Schulz-Wendtland, R.; Wittenberg, T. The prediction of breast cancer biopsy outcomes using two CAD approaches that

both emphasize an intelligible decision process. Med Phys. 2007, 34, 4164–4172. [CrossRef]
72. Little, M.A.; McSharry, P.E.; Hunter, E.J.; Spielman, J.; Ramig, L.O. Suitability of dysphonia measurements for telemonitoring of

Parkinson’s disease. IEEE Trans. Biomed. Eng. 2009, 56, 1015–1022. [CrossRef] [PubMed]
73. Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset

of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care; IEEE Computer Society Press:
Piscataway, NJ, USA; American Medical Informatics Association: Bethesda, MD, USA, 1988; pp. 261–265.

74. Lucas, D.D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y. Failure analysis of parameter-induced
simulation crashes in climate models. Geosci. Model Dev. 2013, 6, 1157–1171. [CrossRef]

75. Giannakeas, N.; Tsipouras, M.G.; Tzallas, A.T.; Kyriakidi, K.; Tsianou, Z.E.; Manousou, P.; Hall, A.; Karvounis, E.C.; Tsianos, V.;
Tsianos, E. A clustering based method for collagen proportional area extraction in liver biopsy images. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan, Italy, 25–29 August 2015;
IEEE: Toulouse, France, 2015; November 2015 ; art. no. 7319047, pp. 3097–3100.

76. Hastie, T.; Tibshirani, R. Non-parametric logistic and proportional odds regression. JRSS-C (Appl. Stat.) 1987, 36, 260–276.
[CrossRef]

77. Dash, M.; Liu, H.; Scheuermann, P.; Tan, K.L. Fast hierarchical clustering and its validation. Data Knowl. Eng. 2003, 44, 109–138.
[CrossRef]

78. Wolberg, W.H.; Mangasarian, O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology.
Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [CrossRef] [PubMed]

79. Raymer, M.; Doom, T.E.; Kuhn, L.A.; Punch, W.F. Knowledge discovery in medical and biological datasets using a hybrid Bayes
classifier/evolutionary algorithm. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Cybern. Soc. 2003, 33, 802–813.
[CrossRef]

80. Zhong, P.; Fukushima, M. Regularized nonsmooth Newton method for multi-class support vector machines. Optim. Methods Softw.
2007, 22, 225–236. [CrossRef]

81. Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E
2001, 64, 061967. [CrossRef] [PubMed]

82. Koivisto, M.; Sood, K. Exact Bayesian Structure Discovery in Bayesian Networks. J. Mach. Learn. Res. 2004, 5, 549–573.
83. Nash, W.J.; Sellers, T.L.; Talbot, S.R.; Cawthor, A.J.; Ford, W.B. The Population Biology of Abalone (_Haliotis_ species). In Tasmania.

I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait, Sea Fisheries Division; In Blacklip Abalone (H. rubra)
from the North Coast and Islands of Bass Strait; Tasmania, I., Ed.; Technical Report; Sea Fisheries Division: Tasmania, Australia,
1994.

84. Brooks, T.F.; Pope, D.S.; Marcolini, A.M. Airfoil Self-Noise and Prediction; Technical Report, NASA RP-1218; NASA: Washington, DC,
USA 1989.

85. Simonoff, J.S. Smooting Methods in Statistics; Springer: Berlin/Heidelberg, Germany, 1996.
86. Yeh, I.C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.

[CrossRef]
87. Harrison, D.; Rubinfeld, D.L. Hedonic prices and the demand for clean ai. J. Environ. Econ. Manag. 1978, 5, 81–102. [CrossRef]
88. King, R.D.; Muggleton, S.; Lewis, R.; Sternberg, M.J.E. Drug design by machine learning: The use of inductive logic programming

to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase. Proc. Nat. Acad. Sci.
USA 1992, 89, 11322–11326. [CrossRef] [PubMed]

89. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127.
[CrossRef]

90. Cantu-Paz, E.; Goldberg, D.E. Efficient parallel genetic algorithms: Theory and practice. Comput. Methods Appl. Mech. Eng. 2000,
186, 221–238. [CrossRef]

91. Harada, T.; Alba, E. Parallel genetic algorithms: A useful survey. ACM Comput. Surv. (CSUR) 2022, 53, 1–39. [CrossRef]

http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1016/S0022-5371(77)80054-6
http://dx.doi.org/10.1162/08997660260028700
http://dx.doi.org/10.1023/A:1018792728057
http://dx.doi.org/10.3233/IDA-2002-6602
http://dx.doi.org/10.1118/1.2786864
http://dx.doi.org/10.1109/TBME.2008.2005954
http://www.ncbi.nlm.nih.gov/pubmed/21399744
http://dx.doi.org/10.5194/gmd-6-1157-2013
http://dx.doi.org/10.2307/2347785
http://dx.doi.org/10.1016/S0169-023X(02)00138-6
http://dx.doi.org/10.1073/pnas.87.23.9193
http://www.ncbi.nlm.nih.gov/pubmed/2251264
http://dx.doi.org/10.1109/TSMCB.2003.816922
http://dx.doi.org/10.1080/10556780600834745
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://www.ncbi.nlm.nih.gov/pubmed/11736210
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.1073/pnas.89.23.11322
http://www.ncbi.nlm.nih.gov/pubmed/1454814
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1016/S0045-7825(99)00385-0
http://dx.doi.org/10.1145/3400031

Computers 2023, 12, 226 16 of 16

92. Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. A high-performance, portable implementation of the MPI message passing interface
standard. Parallel Comput. 1996, 22, 789–828. [CrossRef]

93. Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; Menon, J.M.R. Parallel Programming in OpenMP; Morgan Kaufmann Publishers Inc.:
San Diego, CA, USA, 2001.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0167-8191(96)00024-5

	Introduction
	Method Description
	Grammatical Evolution
	The First Phase of the Proposed Method
	The Second Phase of the Proposed Method

	Experiments
	Experimental Datasets
	Experimental Results

	Conclusions
	References

