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Abstract: Artificial neural networks are widely established models of computational intelligence that
have been tested for their effectiveness in a variety of real-world applications. These models require
a set of parameters to be fitted through the use of an optimization technique. However, an issue that
researchers often face is finding an efficient range of values for the parameters of the artificial neural
network. This paper proposes an innovative technique for generating a promising range of values for
the parameters of the artificial neural network. Finding the value field is conducted by a series of
rules for partitioning the original set of values or expanding it, the rules of which are generated using
grammatical evolution. After finding a promising interval of values, any optimization technique such
as a genetic algorithm can be used to train the artificial neural network on that interval of values. The
new technique was tested on a wide range of problems from the relevant literature and the results
were extremely promising.
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1. Introduction

Artificial neural networks (ANNs) are widespread machine learning models, which
base their dynamics on a series of parameters that are also called computational units
or weights in the relevant literature [1,2]. Neural networks are widely used in a variety
of scientific applications, such as problems from physics [3–5], solutions of differential
equations [6,7], agriculture problems [8,9], chemistry problems [10–12], problems that
appear in the area of economic sciences [13–15], problems related to medicine [16,17], etc.
Commonly, the neural networks are expressed as a function N(−→x ,−→w ), with the assumption
that the vector −→x stands for the input vector to the neural network and the vector −→w is
the parameter vector that should be estimated. The first vector is called pattern in the
bibliography and the second one weight vector. Techniques that adjust the parameter
vector −→w minimize the so-called training error, defined as:

E
(

N
(−→x ,−→w

))
=

M

∑
i=1

(
N
(−→x i,

−→w
)
− yi

)2 (1)

In Equation (1), the set
(−→xi , yi

)
, i = 1, ..., M is denoted as the training set of the neural

network. The yi are considered the target outputs for the −→xi points. As proposed in [18],
neural networks can be expressed as the following summation:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
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(2)
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The number of processing units is denoted by H and the value d stands for the
dimension of input vector −→x . The function σ(x) denotes the well-known sigmoid function
expressed as:

σ(x) =
1

1 + exp(−x)
(3)

From the above equations one can calculate the total number of parameters in the
neural network as:

n = (d + 2)H (4)

The training of neural networks has been performed by a variety of numerical methods
in the recent literature, such as: the Back Propagation method [19], the RPROP method [20],
the Adam optimizer [21], etc. Furthermore, more advanced optimization methods have
been incorporated to optimize the parameter vector of neural networks by minimizing
Equation (1) such as quasi-Newton methods [22], the Tabu search method [23], Simulated
Annealing [24], genetic algorithms [25], particle swarm optimization (PSO) [26], Differential
Evolution [27], Ant Colony Optimization [28], etc.

Moreover, recently, a series of hybrid optimization methods were proposed to tackle
the minimization of the training error, such as a method that combines PSO and genetic
algorithms [29,30], the incorporation of a particle swarm optimization algorithm and
gravitational search algorithm [31], a combination of a genetic algorithm and controlled
gradient method [32], etc.

In addition, an important topic for artificial neural networks such as parameter initial-
ization has been studied by several researchers in recent years. In this area appeared papers
such as initialization with decision trees [33], incorporation of the Cauchy’s inequality [34],
discriminant learning [35], etc. Another interesting topic in the area of neural networks
is weight decaying, where some regularization is applied to the parameters of the neural
network to avoid the overfitting problem. For this topic, several research papers have
been suggested, such as a method that incorporates positive correlation [36], the SarProp
algorithm [37], usage of pruning techniques [38], etc.

This paper proposes a two-stage method for efficient training of the parameters of
artificial neural networks. In the first stage, a value interval is constructed for the parameters
of the neural network through grammatical evolution [39]. In the first stage of this work,
after an initial estimate of the interval for the parameters of the neural network is made, a
series of rules for partitioning and expanding the initial value interval are applied with the
usage of grammatical evolution, until a promising value interval is found. In the second
stage of the method, a genetic algorithm is applied to train the parameters of the artificial
neural network. Training is performed within the optimal interval of values found in the
first stage of the method. The proposed method utilizes a genetic algorithm in the second
stage to train the neural network, but any other optimization method can be used instead of
genetic algorithms. However, genetic algorithms are used because they are easily adaptable
to many optimization problems as they are fault tolerant, and because they can be easily
parallelized using modern computing techniques.

The proposed method seeks in its first stage to find, using an evolutionary rule
technique, a range of values for the parameters of the artificial neural networks. This
interval should on the one hand be small enough to speed up the method of the second
stage that will be used to train the model, and on the other hand, the artificial neural
network should have satisfactory generalization abilities within the interval of values of
the first stage.

The rest of this article is organized as follows: in Section 2, the steps of the proposed
method are outlined in detail, in Section 3, the datasets used in the conducted experiments
as well the experimental results are presented, and finally, in Section 4, some conclusions
are presented.



Computers 2023, 12, 226 3 of 16

2. Method Description

In this section a detailed description of the grammatical evolution technique is pro-
vided, accompanied by the proposed language that creates intervals for the parameters of
the neural networks. Subsequently, the first phase of the proposed technique is described,
and finally, the second phase, with the application of a genetic algorithm to the outcome of
the first phase, is thoroughly analyzed.

2.1. Grammatical Evolution

Grammatical evolution is an evolutionary process, where the chromosomes represent
production rules of some provided BNF (Backus–Naur form) grammar [40], and this evolu-
tionary process can evolve programs in the underlying language. Grammatical evolution
has been used successfully in many real-world problems, such as function approxima-
tion [41,42], the solution of trigonometric equations [43], automatic music composition [44],
neural network construction [45,46], creating numeric constraints [47], video games [48,49],
estimation of energy demand [50], combinatorial optimization [51], cryptography [52], the
evolution of decision trees [53], the automatic design of analog electronic circuits [54], etc.
Any BNF grammar can be described as the set G = (N, T, S, P) where

• N is the set of the non-terminal symbols. Every symbol in N has a series of production
rules, used to produce terminal symbols.

• T is the set of terminal symbols.
• S denotes the start symbol of the grammar, with S ∈ N.
• P is the set of production rules, to create terminal symbols non-terminal symbols.

These rules are in the form A→ a or A→ aB, A, B ∈ N, a ∈ T.

The algorithm initiates from the symbol S and iteratively produces terminal symbols
by replacing non-terminal symbols with the right hand of the selected production rule.
Every production rule is selected using the following steps:

• Obtain the next element V from the current chromosome.
• Select the next production rule according to: Rule = V mod NR, where NR is the total

number of production rules for the current non-terminal symbol.

The grammar used in the current work is shown in Figure1.

S::=<expr> (0)
<expr> ::= (<xlist> , <lcommand>,<rcommand>) (0)

|<expr>,<expr> (1)
<xlist>::=x1 (0)

| x2 (1)
.........
| xn (n)

<left_command> ::= NOTHING (0)
| EXPAND (1)
| DIVIDE (2)

<right_command> ::= NOTHING (0)
| EXPAND (1)
| DIVIDE (2)

Figure 1. BNF grammar used in the current work. The value n stands for the number of total
parameters in the neural network.

The symbols in <> represent the non-terminal symbols of the grammar. The numbers
in parentheses in the right part of each rule indicate production rule sequence numbers. In
the proposed language described by the grammar of the scheme, three distinct operations
can be applied to parameters of the artificial neural network either on the left end of the
parameter’s value range (described by <lcommand>) or on the right end of the value range
(described by the <rcommand> symbol). These commands are
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1. NOTHING. This command means that no action takes place.
2. EXPAND. With this command, the corresponding end of the value field is extended

by 50% of the width of the field.
3. DIVIDE. With this command, the corresponding end of the value field is shrunk by

50% of the width of the field.

As a complete example, consider a neural network with H = 2 hidden nodes and the
dimension of the objective problem is set to d = 2. Hence, the total number of parameters
in the neural network is n = (d + 2)H = 8. In addition, for reasons of simplicity, we
consider that the initial range of values for all parameters of the artificial neural network is
the interval [−2, 2] and is denoted as the set of intervals

IN = {[−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2]} (5)

and also consider the chromosome

x = [9, 8, 6, 4, 15, 9, 16, 23, 7]

The steps to produce the final program

ptest = (x7, EXPAND, NOTHING), (x1, DIVIDE, EXPAND)

are shown in Table 1.

Table 1. Steps to produce a valid expression from the BNF grammar.

Expression Chromosome Operation

9,8,6,4,15,9,16,23,8 9 mod 2=1
<expr>,<expr> 8,6,4,15,9,16,23,8 8 mod 2=0

(<xlist>,<lcommand>,<rcommand>),<expr> 6,4,15,9,16,23,8 6 mod 8=6
(x7,<lcommand>,<rcommand>),<expr> 4,15,9,16,23,8 4 mod 3=1

(x7,EXPAND,<rcommand>),<expr> 15,9,16,23,8 15 mod 3=0
(x7,EXPAND,NOTHING),<expr> 9,16,23,8 9 mod 2 =1

(x7,EXPAND,NOTHING),(<xlist>,<lcommand>,<rcommand>) 16,23,8 16 mod 8=0
(x7,EXPAND,NOTHING),(x1,<lcommand>,<rcommand>) 23,8 23 mod 3=2

(x7,EXPAND,NOTHING),(x1,DIVIDE,<rcommand>) 8 8 mod 3=2
(x7,EXPAND,NOTHING),(x1,DIVIDE,EXPAND)

After the application of the program ptest to the original interval IN of Equation (5),
the new set has as follows:

IN = {[−4, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [−2, 2], [0, 4], [−2, 2]} (6)

2.2. The First Phase of the Proposed Method

Before starting the process of creating partitioning rules and expanding the value
interval of the neural network weights, an initial estimate of this interval should be made.
In the present work, only a few steps of a genetic algorithm are applied to make an initial
estimate of the value interval. At the end of the genetic algorithm, the chromosome with
the best value is

IX = (IX1, IX2, . . . , IXn) (7)

This, the initial interval set for the parameters of the neural network is calculated as

IN = {[−IX1, IX1], {−IX2, IX2}, . . . , [−IXn, IXn]} (8)

The first phase of the proposed technique will accept the set IN as input and seek to
compute a new set by reducing the training error of the artificial neural network. The first
step is mainly a genetic algorithm and the corresponding steps are as follows:
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1. Set Nc as the number of chromosomes for the grammatical evolution.
2. Set H as the number of weights for the neural network.
3. Set Ng as the maximum number of allowed generations.
4. Set ps as the selection rate, with ps ≤ 1.
5. Set pm as the mutation rate, with pm ≤ 1.
6. Set Ns as the number of randomly created neural networks, which will be used in the

fitness calculation.
7. Initialize randomly the Nc chromosomes. Every chromosome is a set of integer

numbers used to produce valid programs through grammatical evolution and the
associated grammar of Figure 1.

8. Set f ∗ = [∞, ∞], the best discovered fitness. For this algorithm, we consider the

fitness function fg of any given chromosome g as an interval fg =
[

fg,low, fg,upper
]

9. Set iter=0.
10. For i = 1, . . . , Nc do

(a) Create for the chromosome ci the corresponding program pi using the gram-
mar of Figure 1.

(b) Apply the program pi to IN in order to produce the bounds
[
~Lpi ,
−→
Rpi

]
.

(c) Set Emin = ∞, Emax = −∞
(d) For j = 1, . . . , NS do

i. Create randomly gj ∈
[
~Lpi ,
−→
Rpi

]
as a set for the parameters of neural

network.
ii. Calculate the associated training error Egj = ∑M

k=1
(

N
(−→x k,−→gj

)
− yk

)2

iii. If Egj ≤ Emin then Emin = Egj

iv. If Egj ≥ Emax then Emax = Egj

(e) EndFor
(f) Set fi =

[
Emin, Emax

]
as the fitness value for the chromosome ci.

11. EndFor
12. Apply the selection procedure. Firstly, the chromosomes are sorted with correspon-

dence to their fitness values. Since fitness is considered an interval, a fitness compari-
son function is required. For this reason, the operator L∗( fa, fb) is used to compare
two fitness values fa = [a1, a2] and fb = [b1, b2] as follows:

L∗( fa, fb) =

{
TRUE, a1 < b1, OR (a1 = b1 AND a2 < b2)

FALSE, OTHERWISE
(9)

In practice this means that the fitness value fa is considered smaller than fb if
L∗( fa, fb) = TRUE. The first (1− ps) × Nc chromosomes with the lowest fitness
values are copied to the next generation. The remaining chromosomes are substituted
by chromosomes produced by the crossover procedure. During the selection process,
for every new offspring, two chromosomes are selected as parents from the population
using the well-known procedure of tournament selection.

13. Apply the crossover procedure. For each pair (z, w) of parents, two new chromosomes
z̃ and w̃ are created using the one-point crossover, graphically shown in Figure 2.

14. Apply the mutation procedure. For each element of every chromosome alter the
corresponding element with probability pm.

15. Set iter=iter+1
16. If iter≤ Ng goto step 10.



Computers 2023, 12, 226 6 of 16

Figure 2. The one-point crossover, used in the grammatical evolution. The numbers in figure denote
sequential number of production rules used in the Grammatical Evolution procedure.

2.3. The Second Phase of the Proposed Method

The result of the first phase of the proposed method is an interval of values for the
parameters of the artificial neural network. This interval of values can be used to minimize
the error function of the network with the parameters taking values exclusively in the
above interval of values. Any optimization method can be used for this purpose, but in
this work, a genetic algorithm was chosen, the steps of which are given below.

1. Initialization Step

(a) Set Nc as the number of chromosomes that participate in the genetic algorithm.
(b) Set Ng as the maximum number of allowed iterations.
(c) Set H as the number of weights for the neural network.
(d) Obtain the best interval S from the previous step of Section 2.2.
(e) Initialize using uniform distribution the NC chromosomes in S.
(f) Set ps as the selection rate, with ps ≤ 1.
(g) Set pm as the mutation rate, with pm ≤ 1.
(h) Set iter=0.

2. Fitness calculation Step

(a) For i = 1, . . . , Ng do

i. Calculate the fitness fi of chromosome gi as fi = ∑M
j=1
(

N
(−→x j,

−→gi
)
− yj

)2

(b) EndFor

3. Genetic operations step

(a) Selection procedure: Initially, the chromosomes are sorted according to their
fitness values. The first (1− ps)×Nc chromosomes with the lowest fitness values
are copied to the next generation. The remaining chromosomes are substituted
by chromosomes produced by the crossover procedure. During the selection
process, for every new offspring, two chromosomes are selected as parents from
the population using the well-known procedure of tournament selection.

(b) Crossover procedure: For each pair (z, w) of selected parents, two chromo-
somes z̃ and w̃ are constructed using the following equations:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (10)

where ai is a random number with the property ai ∈ [−0.5, 1.5] [55].
(c) Mutation procedure: For each element of every chromosome, alter the corre-

sponding element with probability pm.

4. Termination Check Step

(a) Set iter = iter + 1
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(b) If iter ≤ Ng go to step 2, otherwise apply a local search procedure to the best
chromosome of the population. In the current work, the BFGS variant of
Powell [56] was used.

3. Experiments

The effectiveness of the proposed method was evaluated on a series of classification
and regression datasets, used in the relevant literature. These datasets can be downloaded
from the following online databases:

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php [57] (accessed on 4
November 2023).

2. Keel repository, https://sci2s.ugr.es/keel/datasets.php [58] (accessed on 4 November
2023).

3. The Statlib URL ftp://lib.stat.cmu.edu/datasets/index.html (accessed on 4 November
2023).

3.1. Experimental Datasets

The classification datasets used in this paper are the following:

1. Appendicitis dataset, a medical purpose dataset, suggested in [59].
2. Australian dataset [60], a dataset related to credit card transactions.
3. Balance dataset [61], related to psychological states.
4. Cleveland dataset, which is a medical dataset [62,63].
5. Dermatology dataset [64], a medical dataset related to erythemato-squamous diseases.
6. Heart dataset [65], a medical dataset related to heart diseases.
7. Hayes roth dataset [66].
8. HouseVotes dataset [67], related to votes in the U.S. House of Representatives Congressmen.
9. Ionosphere dataset, used for classification of radar returns from the ionosphere [68,69].
10. Liverdisorder dataset [70], a medical dataset related to liver disorders.
11. Mammographic dataset [71], used to identify breast tumors.
12. Parkinsons dataset, a medical dataset related to Parkinson’s disease (PD) [72].
13. Pima dataset [73], used to detect the presence of diabetes.
14. Popfailures dataset [74], a dataset related to climate measurements.
15. Regions2 dataset, medical dataset related to hepatitis C [75].
16. Saheart dataset [76], a medical dataset related to heart diseases.
17. Segment dataset [77], an image processing dataset.
18. Wdbc dataset [78], a medical dataset related to breast tumors.
19. Wine dataset, used to detect the origin of wines [79,80].
20. Eeg datasets, a medical dataset related to EEG measurements [81]. There are three

different cases from this dataset used here denoted as Z_F_S, ZO_NF_S, ZONF_S.
21. Zoo dataset [82], used to classify animals.

The descriptions of the used regression datasets are as follows:

1. Abalone dataset [83], used to to predict the age of abalone from physical measurements.
2. Airfoil dataset, derived from NASA [84].
3. Baseball dataset, used to estimate the salary of baseball players.
4. BK dataset [85], used to predict the points scored in a basketball game.
5. BL dataset, an electrical engineering dataset.
6. Concrete dataset [86].
7. Dee dataset, used to predict the price of electricity.
8. Diabetes dataset, a medical dataset.
9. Housing dataset, provided in [87].
10. FA dataset, used to predict the fit body fat.
11. MB dataset, available from from Smoothing Methods in Statistics [85].
12. MORTGAGE dataset, related to economic data from the USA.
13. PY dataset, (Pyrimidines problem) [88].

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html 
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14. Quake dataset, used to predict the strength of earthquakes.
15. Treasure dataset, related to economic data from the USA.
16. Wankara dataset, a dataset related to weather.

3.2. Experimental Results

The proposed method was coded in ANSI C++, and the optimization methods were
obtained from the freely available OPTIMUS computing environment, downloaded from
https://github.com/itsoulos/OPTIMUS/(accessed on 9 September 2023). The results were
validated using the 10-fold validation technique in all datasets. The experiments were
executed 30 times for each dataset using a different seed for the random generator each
time. The average classification error is reported for the case of classification datasets
and the average mean test error for the regression datasets. The machine used in the
experiments was an AMD Ryzen 5950X with 128GB of RAM, running the Debian Linux
operating system. The experimental settings are listed in Table 2. The experimental results
for the classification datasets are shown in Table 3, while for the regression datasets, the
results are shown in Table 4. The following apply to the results tables:

1. A genetic algorithm where the parameters have the values of Table 2 used to train
a neural network with H hidden nodes. The results in the experimental tables are
denoted by the label GENETIC.

2. The Adam optimization method is used to train a neural network with H hidden
nodes. The column ADAM denotes the results for this method.

3. The RPROP method is used to train a neural network with H hidden nodes. The
corresponding results are denoted by RPROP in the relevant tables.

4. The NEAT method (NeuroEvolution of Augmenting Topologies ) [89], where the maxi-
mum number of allowed generations is the same as in the case of the genetic algorithm.

5. The proposed method (denoted as PROPOSED) was used with the experimental
settings and are shown in Table 2.

6. An extra line was also added to the experimental tables under the title AVERAGE.
This line represents the average classification or regression error for all datasets.

Table 2. Experimental parameters.

Parameter Value

H 10
NC 200
NS 50
Nt 200
ps 0.10
pm 0.01

Table 3. Experimental results for classification datasets. The values in cells indicate average classifica-
tion error as measured on test set. The numbers in parentheses denote the standard deviation.

Dataset Genetic Adam Rprop Neat Proposed

Appendicitis 18.10% (6.32) 16.50% (7.73) 16.30% (5.27) 17.20% (4.12) 17.00% (6.23)
Australian 32.21% (5.99) 35.65% (5.83) 36.12% (5.52) 31.98% (6.03) 24.55% (4.64)

Balance 8.97% (2.64) 7.87% (3.09) 8.81% (2.36) 23.14% (4.16) 16.71% (3.98)
Cleveland 51.60% (6.39) 67.55% (6.98) 61.41% (9.10) 53.44% (7.26) 47.91% (4.78)

Dermatology 30.58% (4.75) 26.14% (3.11) 15.12% (2.40) 32.43% (4.74) 8.93% (2.36)
Hayes Roth 56.18% (6.97) 59.70% (5.41) 37.46% (4.41) 50.15% (4.43) 32.21% (2.58)

Heart 28.34% (4.78) 38.53% (4.45) 30.51% (3.63) 39.27% (4.14) 17.40% (2.52)
HouseVotes 6.62% (2.11) 7.48% (1.81) 6.04% (1.17) 10.89% (2.30) 3.48% (1.43)
Ionosphere 15.14% (2.57) 16.64% (3.20) 13.65% (2.45) 19.67% (4.28) 7.14% (1.10)

Liverdisorder 31.11% (4.59) 41.53% (4.74) 40.26% (3.99) 30.67% (3.12) 28.90% (2.91)
Lymography 23.26% (3.84) 29.26% (4.72) 24.67% (3.48) 33.70% (4.17) 17.86% (2.42)

https://github.com/itsoulos/OPTIMUS/
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Table 3. Cont.

Dataset Genetic Adam Rprop Neat Proposed

Mammographic 19.88% (2.79) 46.25% (2.66) 18.46% (2.34) 22.85% (3.27) 17.32% (1.79)
Parkinsons 18.05% (3.16) 24.06% (3.28) 22.28% (2.79) 18.56% (1.87) 14.35% (1.79)

Pima 32.19% (4.82) 34.85% (4.26) 34.27% (4.24) 34.51% (4.67) 25.58% (2.55)
Popfailures 5.94% (1.71) 5.18% (1.79) 4.81% (1.81) 7.05% (2.87) 4.58% (1.32)

Regions2 29.39% (3.88) 29.85% (3.95) 27.53% (3.23) 33.23% (4.41) 28.32% (3.59)
Saheart 34.86% (4.90) 34.04% (4.74) 34.90% (4.75) 34.51% (5.57) 27.43% (3.88)

Segment 57.72% (2.71) 49.75% (3.01) 52.14% (4.85) 66.72% (4.74) 20.68% (2.17)
Wdbc 8.56% (2.90) 35.35% (5.06) 21.57% (4.55) 12.88% (3.48) 5.23% (1.66)
Wine 19.20 (2.66) 29.40% (3.37) 30.73% (3.78) 25.43% (3.19) 5.35% (1.74)
Z_F_S 10.73% (2.80) 47.81% (5.75) 29.28% (4.81) 38.41% (6.18) 6.56% (1.45)

ZO_NF_S 8.41% (2.35) 47.43% (5.79) 6.43% (2.35) 43.75% (6.98) 3.60% (1.05)
ZONF_S 2.60% (0.33) 11.99% (1.19) 27.27% (1.58) 5.44% (1.11) 2.21% (0.54)

ZOO 16.67% (3.28) 14.13% (2.52) 15.47% (3.10) 20.27% (6.47) 6.10% (1.67)
AVERAGE 23.60% 31.54% 25.65% 29.42% 16.23%

Table 4. Experimental results for regression datasets. The values indicate average regression error as
measured on test set. The numbers in parentheses denote the standard deviation.

Dataset Genetic Adam Rprop Neat Proposed

ABALONE 7.17 (1.11) 4.30 (0.55) 4.55 (0.75) 9.88 (1.61) 4.48 (0.52)
AIRFOIL 0.003 (0.002) 0.005 (0.003) 0.002 (0.001) 0.067 (0.002) 0.002 (0.001)

BASEBALL 103.60 (15.85) 77.90 (16.59) 92.05 (23.51) 100.39 (22.54) 51.39 (10.13)
BK 0.027 (0.009) 0.03 (0.004) 1.599 (0.15) 0.15 (0.02) 0.02 (0.005)
BL 5.74 (1.64) 0.28 (0.11) 4.38 (0.19) 0.05 (0.02) 0.002 (0.001)

CONCRETE 0.0099 (0.001) 0.078 (0.013) 0.0086 (0.001) 0.081 (0.004) 0.004 (0.0006)
DEE 1.013 (0.21) 0.63 (0.08) 0.608 (0.07) 1.512 (0.79) 0.23 (0.05)

DIABETES 19.86 (5.57) 3.03 (0.35) 1.11 (0.57) 4.25 (1.92) 0.41 (0.08)
HOUSING 43.26 (5.84) 80.20 (8.82) 74.38 (6.85) 56.49 (5.65) 24.55 (4.48)

FA 1.95 (0.44) 0.11 (0.021) 0.14 (0.01) 0.19 (0.014) 0.01 (0.005)
MB 3.39 (0.40) 0.06 (0.03) 0.055 (0.03) 0.061 (0.03) 0.048 (0.03)

MORTGAGE 2.41 (0.26) 9.24 (1.24) 9.19 (1.62) 14.11 (3.34) 0.65 (0.16)
PY 5.41 (0.63) 0.09 (0.013) 0.039 (0.019) 0.075 (0.022) 0.025 (0.012)

QUAKE 0.040 (0.004) 0.06 (0.017) 0.041 (0.006) 0.298 (0.13) 0.038 (0.005)
TREASURY 2.929 (0.69) 11.16 (1.37) 10.88 (1.26) 15.52 (2.52) 0.84 (0.29)
WANKARA 0.012 (0.005) 0.02 (0.005) 0.0003 (0.001) 0.005 (0.001) 0.0002 (0.0001)
AVERAGE 12.30 11.70 12.44 12.70 5.17

In general, the proposed technique outperforms the rest of the techniques in the
experiments. In fact, in many cases, the test error is reduced by more than 70%. Additionally,
more experiments were conducted using the number of processing nodes (H) as well as
the number of generations (Nt), to determine the stability of the proposed technique. The
average classification error for the classification datasets using different values for the
H parameter is shown graphically in Figure 3. Furthermore, the average classification
error of the proposed method for different numbers of maximum generations Nt is shown
graphically in Figure 4. The proposed technique does not show significant changes in its
behavior as the critical parameters change, and therefore, its stability to changes is evident.
Moreover, the average execution time for different values of the Nt parameter is outlined
in Figure 5. Judging from the above experiments, it can be said that the choice of values for
the critical parameters H and Nt is a compromise between performance and speed for the
proposed technique.
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Figure 3. Average classification error using the proposed method and different values for the number
of hidden nodes H.

Figure 4. Average classification error of the proposed method using different values for the maximum
number of allowed generations Nt.

Figure 5. Average execution time of the proposed method, using different values of the Nt parameter.

The numerical superiority of the proposed technique over the others in the performed
experiments is presented graphically in Figures 6 and 7, where Wilcoxon signed-rank tests
were performed on the executed experiments. However, since the proposed technique
consists exclusively of a series of genetic algorithms, it can be significantly accelerated by
the use of parallel computing techniques, since one of the main characteristics of genetic
algorithms is their ease of parallelization [90,91]. Programming techniques that can be used
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to parallelize the method could be the MPI programming interface [92] or the OpenMP
programming library [93].

Figure 6. Scatter plot representation and the two-sample paired (Wilcoxon) signed-rank test results
of the comparison for each of the four (4) classification methods (GENETIC, ADAM, RPROP, and
NEAT) with the PROPOSED method regarding the classification error in twenty-four (24) different
public available classification datasets. The stars only intend to flag significance levels for the two
most used groups. A p-value of less than 0.0001 is flagged with four stars (****).

Figure 7. Scatter plot representation and the Wilcoxon signed-rank test results of the comparison for
each of the four (4) regression methods (GENETIC, ADAM, RPROP, and NEAT) with the PROPOSED
method regarding the regression error in sixteen (16) different publicly available regression datasets.
Star links join significantly different values: two stars (**) stands for p < 0.001, and four stars (****)
stand for p < 0.0001.
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4. Conclusions

This paper proposed a two-step technique to efficiently find a reliable interval of
values for the parameters of artificial neural networks. In the first stage with partitioning
techniques and using grammatical evolution, a range of parameter values was searched,
and in the second stage, a genetic algorithm trained the artificial neural network within the
optimal range of values of the first stage. The proposed technique is highly general and
was successfully applied to both data fitting and classification problems. In both cases, the
experimental results demonstrate its superiority over other techniques appearing in the
relevant literature on the training of artificial neural networks. In fact, in many cases in
the performed experiments, the proposed method outperforms others that were tested in
percentages that exceed 70%. In the future, a series of actions can be carried out to improve
the results and speed up the proposed method, such as:

1. There is a need for more efficient techniques for initializing the value space for artificial
neural network parameters. In the present work, the optimal result from the execution
of a limited number of steps by a genetic algorithm was used as an initial estimate of
the value interval.

2. In the present work, the same techniques as in any whole-chromosome genetic algo-
rithm were used to perform the crossover and mutation operations. Research could
be conducted at this point to find more focused crossover and mutation techniques
for this particular problem.

3. The present technique consists of two phases, in each of which a problem-adapted
genetic algorithm is executed. This means that significant computational time is
required to complete the algorithm. However, since genetic algorithms are inherently
parallelizable, modern parallel programming techniques could be used here.
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