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Abstract: This paper presents a new chance-constrained optimization (CCO) formulation for the
bulk carrier conceptual design. The CCO problem is modeled through the scenario design approach.
We conducted extensive numerical experiments comparing the convergence of both canonical and
state-of-the-art metaheuristic algorithms on the original and CCO formulations and showed that the
CCO formulation is substantially more difficult to solve. The two best-performing methods were
both found to be differential evolution-based algorithms. We then provide an analysis of the resulting
solutions in terms of the dependence of the distribution functions of the unit transportation costs and
annual cargo capacity of the ship design on the probability of violating the chance constraints.
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1. Introduction

In the last few decades, the role of optimization in engineering design has been
steadily growing in importance. This is especially true in the domains that seek an optimal
design of large and complex systems. In such cases, the utilization of appropriate and
effective optimization techniques often leads to an improvement in product quality and
better functionality [1]. One of the main obstacles to successfully employing optimization
methods often lies in the appropriate modeling of the engineering problem at hand, as
one needs to balance the precision of the constructed model with the computational costs
that are incurred during the evaluation of a proposed design as well as the computational
complexity of the suitable algorithms.

In almost all real-world applications, the problems to be solved are frequently affected
by various sources of uncertainty. In the context of design optimization, these uncertainties
can stem, for instance, from inherent material imperfections, varying loading conditions,
unavoidable inaccuracies in performed simulations or conducted analyses, inadequate
manufacturing precision, imprecise geometries, or fluctuations of the model’s parameters
over time. The uncertainty in the design optimization process can be roughly divided
into two main categories [2]. In the first category is the so-called irreducible uncertainty
(sometimes also called the aleatory uncertainty or the random uncertainty), which is
inherent to the modeled system, such as varying material properties, the background noise,
or quantum effects. In the second category, we have the so-called epistemic uncertainty
(also called the reducible uncertainty), which is the uncertainty that is directly caused by a
subjective lack of knowledge possessed by the designer. Such uncertainty frequently arises
from the various approximations used in the formulation of the model and the numerical
errors that are introduced by computational methods that evaluate the solutions.

Quite a few complementary approaches have been proposed that help us with mod-
eling the effects of the uncertainty in the design optimization problems. The two main
categories here are the set-based approaches of robust optimization [3] and the probabilistic-
based approaches of stochastic programming [4]. Other possible approaches include the
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Dempster–Shafer theory [5], the fuzzy-set theory [6], the possibility theory [7], and the
information-gap decision theory [8]. In the set-based uncertainty approaches, it is assumed
that the uncertain variable ξ belongs to a set Ξ (which one might think of as the support
of the distribution of ξ), but these approaches make no assumptions about the relative
likelihood (probability) of different points within this set. On the other hand, the models
of probabilistic uncertainty use known distributions over the set Ξ. These uncertainty
models can provide much more detailed information than their set-based counterparts,
and consequently allow the designer to take into account the probabilities of different
outcomes of the chosen design. The underlying distributions are usually constructed by
either utilizing expert knowledge or they can be learned from the available data. The
chance-constrained optimization (CCO) formulation (sometimes also called the probabilis-
tic constrained formulation) that will be further investigated in this paper falls into the
category of stochastic programming approaches.

Among the most-used approaches for solving complex engineering design optimiza-
tion problems are the metaheuristic (or the evolutionary computation) techniques. These
methods take their primal inspiration from the behavior of various organisms that can be
found in nature. Among them are classical techniques such as the genetic algorithm (GA),
the evolutionary strategy (ES), differential evolution (DE), or particle swarm optimiza-
tion (PSO). Many of these methods found their use in diverse and complex applications,
where the utilization of exact optimization algorithms was either found to be inadequate or
computationally too expensive [9], such as the design of mechanical components [10] and
quantum operators [11], feature selection [12,13], landslide displacement prediction [14],
airfoil geometry design [15], or barrier option pricing in economics [16]. Another class
of methods that is popular for such complex optimization problems is the class of the
deterministic DIRECT (which is an acronym of DIviding RECTangles) algorithms [17].
The DIRECT algorithms are space-decomposition techniques that perform a division of
the search space into non-overlapping hyper-rectangles. Lastly, for design optimization
problems in which the evaluations of the functions are prohibitively expensive (such as
analysis requiring finite element method computations or computational fluid dynamics
simulations), the so-called surrogate-assisted methods are currently the most used tech-
niques [18]. These methods utilize the surrogate models (or metamodels) for approximating
the expensive evaluations, and leverage their use in the optimization process.

Although the role of the various sources of uncertainty in design optimization is largely
acknowledged, the approaches utilizing such formulations together with metaheuristic
algorithms are still relatively rare. Among the first ones was the optical coating design
problem studied in [19,20], which used both stochastic sampling-based approaches. The
construction of robust solutions by evolutionary algorithms (EAs) was investigated in [21].
The extensions to GAs that enable them to search for robust solutions were proposed in [22]
for the single-objective case and [23] for the multi-objective one. The use of a GA to solve
a CCO formulation for air quality management was investigated in [24]. The six-sigma
robust design approach using EAs was developed in [25]. To save the computational time
required for repeated function evaluations, some studies used surrogate models [26,27] for
calculating the required statistics of the resulting distributions.

Optimization techniques are also a pivotal tool in the maritime industry, where various
routing [28], speed optimization [29], and fleet deployment [30] models are frequently
used. These models are often multiobjective, trying for example to find the right balance
between the operating costs and the unwanted emissions [28,31]. The current review on
the integration of simulation and optimization in maritime logistics operations can be
found in [32]. Other applications of optimization in the maritime industry are the container
stacking problems [33], which increase the efficiency of maritime transport, and the design
of the unmanned surface vehicle-enabled maritime wireless communications networks [34].

The early ship design optimization models can be traced back to [35,36], where the
bulk carrier conceptual design was first proposed. The models were later expanded in [1]
to the robust optimization design setting and were solved by using the PSO algorithm. The
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PSO algorithm was also used to tackle the multidisciplinary optimization of conceptual ship
design proposed in [37], for solving the ship hydrodynamics problems in [38], and for the
high-fidelity global optimization of shape design with the assistance of surrogate models
in [39]. The DIRECT-type methods were employed for the ship hydrodynamic optimization
in [40] and for the multi-objective ship hull design in [41]. Stochastic optimization formula-
tions of the ship design, coupled with expensive computational fluid dynamics simulations
for the ship resistance and operational efficiency, were studied in [42]. Another stochastic
optimization approach coupled with adaptive surrogates was investigated in [43].

In this paper, we present a new extension of the conceptual bulk carrier design problem
first described in [35,36]. This extension follows the scenario design-based approach for
CCO formulations [44] to account for the different sources of uncertainty. We conducted
extensive numerical experiments that compare the convergence of both canonical and state-
of-the-art metaheuristic methods on the original and CCO formulations of the conceptual
bulk carrier design problem. We also provide an analysis of the resulting solutions in terms
of the dependence of the distribution functions of the unit transportation costs and annual
cargo capacity on the probability of violating the imposed chance constraints. The code
for the CCO formulation, as well as the codes for all the methods used in the numerical
comparisons, are publicly available in the Zenodo repository [45].

The rest of the paper is organized as follows. The general CCO formulation is described
in Section 2, while the particular CCO formulation of the bulk carrier conceptual design is
developed in Section 3. The selected metaheuristic methods for the numerical tests and the
experimental setup are discussed in Section 4. The results of the experiments are reported
and discussed in Section 5. Finally, concluding remarks and future work are addressed in
Section 6.

2. Chance-Constrained Optimization

We start by defining the general CCO problem, which can be formulated as follows.
Let X ∈ Rn be the domain of optimization in an n−dimensional space and consider a
“family” of constraints x ∈ Xξ that is parameterized by ξ ∈ Ξ. Here, the uncertain parameter
ξ is used to describe the different possible instances of the uncertain optimization scenario
(i.e., the different possible values of the parameters of the model). In this setting, we use
the probabilistic description of uncertainty with a probability measure P that describes the
probability with which the uncertain parameter ξ takes value in its support Ξ. Then, the
CCO problem can be written as:

minimize E[ f (x, ξ)] (1)

subject to x ∈ X , (2)

P{ξ : x ∈ Xξ} ≥ 1− ε, (3)

where f : Rn × Σ → R is the objective function and E is the expectation. In the CCO
problem (1)–(3) constraint violation is tolerated, but the size of the violated constraint set
(in terms of its probability) must be no larger than a pre-specified value ε. The parameter
ε gives us the opportunity to trade the robustness of the solution (i.e., the probability of
violating the constraints) for the performance (i.e., better levels of the objective function
values). The optimal objective value of (1)–(3) is, therefore, a decreasing function of ε. For
ε = 0, the formulation transforms into a robust optimization design problem [3]. There are
also other possibilities for the risk measure to optimize instead of the expectation, such as
the variance or the expected shortfall [46], that can be utilized in engineering optimization
under uncertainty [47]. In this work, we focus only on the expectation measure.

The CCO formulations have a long history going back to the 1950s [48] and have
since enjoyed focused attention from the optimization community. The majority of the
developed theory focuses on problems where convexity assumptions about f ,X , and
additional assumptions about Xξ and ξ are needed [4]. Although CCO problems can be
efficiently solved in some very special cases [49,50], the feasible set of CCO is in general
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non-convex, even with assumptions about convexity of f ,X , and Xξ , and exact numerical
solutions to CCO problems are in general extremely hard to find. Current research on
using metaheuristic algorithms for solving these CCO formulations focuses mainly on
submodular functions [51,52] and the specific EAs for the chance-constrained knapsack
problem [53].

In this paper, we will model the CCO problem (1)–(3) by utilizing the scenario design
approach developed in [44,54]. Here, we assume that the uncertainty is fully described by S
scenarios ξ1, . . . , ξS that have equal probabilities of occurring. A scenario design approach
is then given by the following optimization problem:

minimize
1
S

S

∑
i=1

f (x, ξ i) (4)

subject to gd(x) ≤ 0, (5)(
S

∑
i=1

(
gs(x, ξ i) ≤ 0

))
/S ≥ 1− ε, (6)

where the functions gd (for the deterministic constraints) and gs (for the scenario constraint)
describe the sets X and X∼, respectively. Note that using scalar-valued constraint functions
can be assumed here, since multiple constraints g1(x) ≤ 0, . . . , gm(x) ≤ 0 can be modeled
by a single scalar-valued constraint as g(x) = maxj=1,...,m gj(x). The chance constraint
Equation (6) demands that the proportion of scenarios in which the constraint gs(x, ξ i) ≤ 0
(or, alternatively x ∈ Xξ i ) is violated must be less than ε.

3. Bulk Carrier Conceptual Design

In this section, we develop the specific CCO model for the conceptual design of a bulk
carrier that is subjected to the uncertain usage conditions. More specifically, the parameters
that are assumed uncertain (the port handling rate PHR, the round trip miles RTM, and the
fuel price FP) are summarized in Table 1, while the optimization (alternatively design or
decision) variables are described in Table 2. Here, we assume that the uncertain parameters
involved in the design optimization process are independent of each other (uncorrelated).
The ranges of the optimization variables put the conceptual bulk carrier in the Capesize
category.

The original version of the presented model was proposed in [35] and further devel-
oped (with corrections made to the computation of the Froude number Fn) in [36]. The
approximate model utilizes the Admiralty coefficient method for the estimation of the
power P with the Admiralty coefficient expressed as a function of the block coefficients Vk
and Fn. This model was also used for the development of an integrated multidisciplinary
design optimization framework with the PSO [37]. In [1], the model was modified to fit the
robust design optimization paradigm.

Table 1. Uncertain parameters used in the CCO formulation.

Uncertain Parameter Symbol Unit Distribution Type Lower Bound Upper Bound

Port handling rate PHR ton/day uniform 5000 10,000
Round trip miles RTM nm uniform 3000 7000

Fuel price FP GBP/ton uniform 80 140

Table 2. Optimization variables used in the CCO formulation.

Variable Symbol Unit Lower Bound Upper Bound

Length L m 100 600
Beam B m 10 100
Depth D m 5 30
Draft T m 5 30

Block coefficient CB - 0.63 0.75
Cruise speed Vk knots 14 18
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In our work, the objective function (7) is the expected annual cargo capacity ACC (with
the unit [M ton]), which we will want to maximize (the model is written in a minimization
format so we flip the sign). The chance constraint will concern the unit transportation cost
UTC, which we would like to be less than a certain threshold THR with a high probability
1− ε. We assume that the probability distribution of the three uncertain parameters is
described by S scenarios, i.e., that we have PHRi, RTMi, FPi, i = 1, . . . , S. The chance-
constrained model then has the following form:

min − 1
S

S

∑
i=1

ACCi (annual cargo capacity) (7)

s.t. KG = 1.0 + 0.52 · D, (vert. center of gravity) (8)

BMT =
(0.085 · CB − 0.002) · B2

T · CB
, (metacentric radius) (9)

KB = 0.53 · T, (vert. center of buoyancy) (10)

Ws = 0.034 · L1.7 · B0.7 · D0.4 · C0.5
B , (steel weight) (11)

Wo = L0.8 · B0.6 · D0.3 · C0.1
B , (outfit weight) (12)

DPC = 1.025 · L · B · T · CB, (displacement) (13)

V = 0.5114 ·Vk, (14)

g = 9.8065, (15)

Fn =
V

(g · L)0.5 , (Froude number) (16)

a = 4977.06 · C2
B − 8105.61 · CB + 4456.51, (17)

b = −10847.2 · C2
B + 12817 · CB − 6960.32, (18)

P = DPC2/3 ·
V3

k
a + b · Fn

, (power) (19)

Wm = 0.17 · P0.9, (machinery weight) (20)

LSW = Ws + Wo + Wm, (light shipweight) (21)

DWT = DPC− LSW, (deadweight) (22)

RC = 40000 · DWT0.3, (running costs) (23)

DC =
0.19 · P · 24

1000
+ 0.2, (daily consumption) (24)

PC = 6.3 · DWT0.8, (port cost) (25)

MDWT = 2.0 · DWT0.5, (miscellaneous deadweight) (26)

SC = 1.3 · (2000 ·W0.85
s + 3500 ·Wo + 2400 · P0.8), (ship cost) (27)

CC = 0.2 · SC, (capital costs) (28)

6− L
B
≤ 0, (29)

L
D
− 15 ≤ 0, (30)

L
T
− 19 ≤ 0, (31)

T − 0.45 · DWT0.31 ≤ 0, (32)

T − 0.7 · D− 0.7 ≤ 0, (33)

25000− DWT ≤ 0, (34)

DWT − 500000 ≤ 0, (35)
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Fn− 0.32 ≤ 0, (36)

− KB− BMT + KG + 0.07 · B ≤ 0, (37)

SDi =
RTMi

24 ·Vk
, i = 1, . . . , S, (sea days) (38)

FRi = DC · (SDi + 5), i = 1, . . . , S, (fuel carried) (39)

CDWTi = DWT − FCi −MDWT, i = 1, . . . , S, (cargo deadweight) (40)

PDi = 2 · (CDWT
PHRi + 0.5), i = 1, . . . , S, (port days) (41)

RTPAi =
350

(SDi + PDi)
, i = 1, . . . , S, (round trips per year) (42)

ACCi = DWT · RTPAi, i = 1, . . . , S, (annual cargo capacity) (43)

FCi = 1.05 · DC · SDi · FPi, i = 1, . . . , S, (fuel cost) (44)

VCi = (FCi + PC) · RTPAi, i = 1, . . . , S, (voyage costs) (45)

ACi = CC + RC + VCi, i = 1, . . . , S, (annual cost) (46)

UTCi =
ACi

ACCi , i = 1, . . . , S, (unit transportation cost) (47)(
S

∑
i=1

(
UTCi − THR ≤ 0

))
/S ≥ 1− ε. (48)

The constraints (8)–(28) define the parameters of the bulk carrier (such as the displace-
ment, the power, the deadweight, the ship cost, etc.) that are not affected by the values of
the uncertain parameters. The constraints (29)–(37) need to be met in order for the bulk
carrier to be structurally sound. The constraints (38)–(47) then define the parameters of
the bulk carrier (such as the sea days, the annual cost, etc.) that are affected by the values
of the uncertain parameters (and thus need to also be indexed by the given scenario i).
Finally, the last constraint (48) demands that the proportion of scenarios in which the unit
transportation cost ACCi is less than the threshold THR is at least 1− ε.

4. Selected Methods and Experimental Setup

As the resulting chance-constrained model (7)–(48) is highly nonlinear and nonconvex,
there are no algorithms that would have guaranteed convergence to the global optimum in
a reasonable amount of time. In such situations, the use of nature-inspired metaheuristic
algorithms is well-justified, as they have been consistently shown to find good solutions
for complex optimization problems even with a severely restricted computational budget.

There is now an extremely wide range of metaheuristic algorithms that one can
choose from for the optimization of the proposed CCO model. However, many of the
recently proposed methods have been found to be just a “re-branding” of already known
methods [55,56] or have dubious quality [9,57–59]. For the selection of the metaheuristic
methods, we followed the guidelines in [60]. As the representative metaheuristic methods,
we chose two standard and extensively utilized methods (PSO and DE). Furthermore, we
included some of the best-performing methods from the recent Congress on Evolutionary
Computation (CEC) Competitions on Real-Parameter Single Objective Optimization. Many
of these methods utilize linear population size reduction (LPSR) schemes to efficiently
use the available computational budget by having larger populations at the beginning
of the search (hence, leading to more exploitation capabilities at the start) and reducing
the population as iterations progress (focusing more on exploitation of the best-found
solutions). We briefly present the selected methods (their main principles and reasons for
selection) in alphabetical order. The implementation of the selected methods, as well as
all the important information about their parametrization and the implementation of the
optimization model, can be found in a public Zenodo repository [45].
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4.1. Brief Description of Selected Methods

The first selected method was the Adaptive Gaining-Sharing Knowledge (AGSK)
algorithm, which was the second-best-scoring method at the CEC’20 competition. The
algorithm presented an improvement on the original GSK algorithm [61] by extending its
adaptive settings to the two control parameters, which control junior and senior gaining
and sharing phases during the process of optimization [62]. The AGSK algorithm was also
found to be one of the most effective methods for complex robotics problems [63].

The second selected method was the hybridization of the AGSK algorithm by a DE vari-
ant called the IMODE algorithm [64]—we denote this method by APGSKI. While IMODE
won the CEC’20 competition, the hybridized APGSKI ranked fourth in the CEC’21 one.

The third selected method was DE, which is one of the oldest but still widely popular
evolutionary computation techniques [65]. At its core, DE is a method that aims at main-
taining and creating new populations of candidate solutions by using the combinations of
existing solutions by following specific rules and keeping the candidate solution with the
best properties for the optimization problem in question. There has been extensive research
performed on extending and hybridizing DE [66,67] and on its applications to engineering
problems [68]. DE also serves as a basis for many surrogate-assisted techniques [69].

The fourth selected method was another hybrid method called EA4eig, which uses
three different algorithms based on DE with Success History Based Adaption (SHBA),
LSPR, and an Eigen transformation approach that is based on the evolution strategy with
the Covariance Matrix Adaptation (CMA-ES) algorithm [70]. EA4eig was the winner of the
CEC’22 competition.

The fifth selected method was the Effective Butterfly Optimizer (EBO), which is a
swarm-based method that also utilizes SHBA, LSPR, and a so-called covariance matrix
adapted retreat, which uses a similar strategy to the CMA-ES algorithm. EBO was the
winner of the CE’17 competition.

The sixth selected method was the LSHADE or Success History-based Adaptive
Differential Evolution with linear population size reduction [71]. This metaheuristic method
has its basis in adaptive DE, and is perhaps the best-known and widely used example of
the utilization of the LPSR and SHBA schemes [72].

The last selected method was PSO, which is another canonical algorithm [73]. This
pivotal swarm-based method was designed by simulating an approximated social model
inspired by the foraging behaviors of a school of fish or a flock of birds [74]. PSO is also still
among the most utilized and studied evolutionary computation methods [75,76] and there
is an unyielding interest in its possible parametrizations [77]. Variants of the PSO algorithm
were also the methods selected for solving the ship design optimization formulations
in [37–39].

4.2. Experimental Setup

For the numerical investigation of the selected algorithms on the bulk carrier op-
timization problem, we chose six different parametrizations of the model based on the
chance-constraint parameter ε = [0.01, 0.05, 0.10, 0.15, 0.20, 0.25] with the threshold value
THR = 12. For the description of the uncertainty, we used 105 scenarios sampled from the
distributions described in Table 1. These scenarios remained fixed for all instances and runs
(i.e., we did not resample them). To demonstrate the difficulty of the CCO formulation, we
also performed the computational analysis for a deterministic case, where only one scenario
for the uncertain parameters was considered (with PHR = 8000, RTM = 5000, FP = 100),
and the constraint (48) was neglected.

As the selected metaheuristic algorithms are stochastic methods, each of them was run
20 times on the given model parametrization in order to obtain statistically representative
results and provide a solid basis for the subsequent algorithmic comparison. The maxi-
mum number of function evaluations was set to 30,000. The different hyperparameters for
the selected methods either followed generally recommended settings (for the standard
methods) or were taken from the implementations of the methods for the CEC competition.
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All values of these hyperparameters can be found in the Zenodo repository [45]. We did
not perform any parameter tuning [78]. Both the optimization model and implementations
of the chosen metaheuristic algorithms were programmed in MATLAB R2022b and the ex-
periments were run on a workstation with 3.7 GHz AMD Ryzen 9 5900X 12-Core processor
and 64 GB RAM. Even with the relatively low number of available function evaluations,
the computation times for the methods were rather high because of the high number of
scenarios used for the description of the uncertainty. Each run of one of the algorithms on
the CCO model took roughly 330 s. There was no significant difference in the runtime of
the different methods, as the computation time was dominated by the evaluation of the
solutions (i.e., the computation of the CCO model).

5. Results and Discussion
5.1. Performance Comparison of the Selected Methods

We first evaluated the performance of the selected methods on the deterministic case.
In the analysis of the results, we decided to truncate the obtained best-found objective
values to the seventh decimal place. The results of the computations (the statistics of the 20
independent runs) are summarized in Table 3. Here, we find that almost all of the selected
methods, with the exception of the PSO, were able to find the same solution and, except for
the EBO, all of the methods found this solution consistently. The unit transportation cost of
this solution was UTC = 13.6.

Next, we investigated the results of the computations on the CCO model, which are
reported in Table 4. Here, the situation changed substantially to the deterministic case. The
only method that could consistently find the best solution with the available computational
budget was the LSHADE algorithm. The second method that was also very consistent in
finding the best solution was DE—the only instances where it was not successful were for
ε = 0.10. One thing to notice is the quite bad performance of the EBO, which in many cases
failed to find a feasible solution, which resulted in large values of the objective function
(the details on the used penalization method can be found in [45]).

The convergence plots of the average function values of the selected methods to the
best-found solution on the CCO models are depicted in Figure 1, where the differences
smaller than 1 × 10−8 were neglected. Here, we can find some interesting insights into the
suitability of the different methods for solving the CCO model. Although the DE algorithm
has the best convergence in the first 10,000 iterations, it is eventually overtaken by the
LSHADE, which dominates the rest of the computational budget. The third and fourth best
methods were the AGSK and the EA4eig. We can find that the problems with larger values
of ε become more difficult, which is especially noticeable in the convergence of the AGSK
(but also the other methods have their convergence negatively affected by larger values
of ε). Also interesting is the fact that the “improved” version of the AGSK, the APGSKI
method performed significantly worse than its predecessor and was only barely better than
the PSO.

To perform a solid statistical comparison of the selected algorithms on the CCO model,
we followed the guidelines published in [60]. First, we used the Kruskall–Wallis test to find
if significant differences are present among all the algorithms for the different values of
ε. The p-values for this test were [1.22 × 10−23, 2.58 × 10−23, 6.50 × 10−22, 8.81 × 10−22,
6.02 × 10−22, and 7.12 × 10−23] for the six studied values of ε = [0.01, 0.05, 0.10, 0.20],
respectively. As all these p-values were much lower than the recommended confidence
level α = 0.05, we can state that there are statistically significant differences between the
selected methods. Furthermore, we utilized the Wilcoxon signed-rank test to find out
whether statistically significant differences exist between the best algorithm (the LSHADE
algorithm) and the other selected methods. Once the pairwise p-values were obtained,
we applied the Holm–Bonferroni [79] correction method which counteracts the effect of
multiple comparisons by controlling the family-wise error rate [80]. The results of the
analysis are presented in Table 5. We can see that, in all cases, the LSHADE and the DE
algorithms were equivalent. The AGSK algorithm was also found to be as good as the
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LSHADE on the ε = 0.01 and ε = 0.05 instances. The last algorithm that was as good as
the LSHADE on one instance was the EA4eig on ε = 0.01.

Table 3. Statistics of the 20 runs of the selected methods on the deterministic case.

AGSK APGSKI DE EA4eig EBO LSHADE PSO

min −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2546087
mean −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2513056
max −1.2593538 −1.2593538 −1.2593538 −1.2593538 −1.2593536 −1.2593538 −1.2485806
std 0.000 0.000 0.000 0.000 4.472 × 10−8 0.000 1.594 × 10−3

Table 4. Statistics of the 20 runs of the selected methods on the CCO model.

ε AGSK APGSKI DE EA4eig EBO LSHADE PSO

0.01

min −0.9473943 −0.9473939 −0.9473943 −0.9473943 −0.8491422 −0.9473943 −0.9446069
mean −0.9473943 −0.9466775 −0.9473943 −0.9473941 212.9033097 −0.9473943 −0.9420872
max −0.9473943 −0.9403836 −0.9473943 −0.9473932 1043.7700147 −0.9473943 −0.9367206
std 0.000 1.548× 10−3 0.000 3.278× 10−7 3.248 × 102 0.000 2.166× 10−3

0.05

min −0.9991552 −0.9991529 −0.9991552 −0.9991552 −0.9691110 −0.9991552 −0.9982688
mean −0.9991552 −0.9982114 −0.9991552 −0.9991545 139.6795100 −0.9991552 −0.9958583
max −0.9991550 −0.9962695 −0.9991552 −0.9991514 607.0723893 −0.9991552 −0.9910965
std 6.156× 10−8 8.508× 10−4 0.000 1.106× 10−6 2.198 × 102 0.000 1.668× 10−3

0.10

min −1.0291039 −1.0290552 −1.0291039 −1.0291039 −0.9795876 −1.0291039 −1.0279124
mean −1.0291034 −1.0286804 −1.0291038 −1.0291013 7.1408294 −1.0291039 −1.0252982
max −1.0291014 −1.0276915 −1.0291017 −1.0290916 159.0656498 −1.0291039 −1.0194222
std 9.305× 10−7 3.949× 10−4 4.919× 10−7 3.574× 10−6 35.76 0.000 2.111× 10−3

0.15

min −1.0496266 −1.0496254 −1.0496266 −1.0496266 −1.0363353 −1.0496266 −1.0492396
mean −1.0496245 −1.0492608 −1.0496266 −1.0496221 42.7607508 −1.0496266 −1.0474384
max −1.0496125 −1.0479015 −1.0496266 −1.0496049 871.4141031 −1.0496266 −1.0431568
std 3.512× 10−6 4.669× 10−4 0.000 6.710× 10−6 1.950 × 102 0.000 1.631× 10−3

0.20

min −1.0679705 −1.0679607 −1.0679705 −1.0679705 −1.0284986 −1.0679705 −1.0675095
mean −1.0679691 −1.0673805 −1.0679705 −1.0679699 −0.8312606 −1.0679705 −1.0657167
max −1.0679652 −1.0660410 −1.0679705 −1.0679684 1.5861289 −1.0679705 −1.0628487
std 1.900× 10−6 6.352× 10−4 0.000 7.343× 10−7 5.802× 10−1 0.000 1.160× 10−3

0.25

min −1.0843175 −1.0843083 −1.0843175 −1.0843175 −1.0461846 −1.0843175 −1.0833582
mean −1.0843142 −1.0837891 −1.0843175 −1.0843170 −1.0317051 −1.0843175 −1.0809449
max −1.0843052 −1.0817133 −1.0843175 −1.0843145 −0.9836282 −1.0843175 −1.0772805
std 4.584× 10−6 6.152× 10−4 0.000 7.545× 10−7 1.475× 10−2 0.000 1.761× 10−3

When looking at the results, we can find interesting parallels between our findings
and the results of other studies. The observation that PSO does relatively well at the very
beginning of the search and the DE-type methods excel for larger computational budgets
was also identified in [81]. The relatively poorer performance of some of the methods
that were among the best-performing ones in the CEC Competitions (EA4Eig, AGSK,
AGSKI, and, most notably, EBO) probably comes down to these methods being fine-tuned
for the particular competition [82,83]. On the other hand, the excellent performance of
LSHADE should not be as unexpected, as this method (and similar DE hybrids) was found
to be among the best-performing ones on a variety of different problems [9,63,84–86]. The
surprising competence of the “old” DE method for various engineering problems was also
found in [9,68,85] and should be a point of further investigation.

One of the natural limitations of the presented study is that the performance compari-
son is valid only for the studied problem setting. Finding the reasons why certain methods
outperform others on different problems is an extremely important question that is closely
tied to one of the most debated topics in evolutionary computation (and also deterministic
optimization) communities—efficient algorithmic selection [87], i.e., how to decide (based
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on some problem characteristics) what kind of algorithm will perform well. Although one
can find efficient methods, for instance, for some convex optimization problems, for the
general nonconvex (and black-box) ones (such as the one discussed in this paper), no such
analysis is yet to be found. One could invoke a parallel to the no-free-lunch theorem, but
that was found not to be exactly the case for continuous problems [88]. In this context, it is
almost impossible to say why certain methods did not perform very well (or outperformed
others) on a given problem.

Table 5. Statistical analysis of the comparison of the selected methods.

ε = 0.01 ε = 0.05 ε = 0.10

p p∗ p p∗ p p∗

LSHADE
vs

other
methods

DE 1.00 1.00 7 1.00 1.00 7 1.00 1.00 7

AGSK 1.00 1.00 7 5.00 × 10−1 1.00 7 3.91 × 10−3 7.81 × 10−3

EA4eig 3.13 × 10−2 9.38 × 10−2 7 9.77 × 10−4 2.93 × 10−3 1.22 × 10−4 3.66 × 10−4

APGSKI 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4

PSO 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4

EBO 8.86 × 10−5 4.43 × 10−4 8.86 × 10−5 4.43 × 10−4 8.86 × 10−5 4.43 × 10−4

ε = 0.15 ε = 0.20 ε = 0.25

p p∗ p p∗ p p∗

LSHADE
vs

other
methods

DE 1.00 1.00 7 1.00 1.00 7 1.00 1.00 7

AGSK 6.10 × 10−5 3.66 × 10−4 1.22 × 10−4 3.66 × 10−4 1.24 × 10−4 3.73 × 10−4

EA4eig 2.90 × 10−4 5.80 × 10−4 2.44 × 10−4 4.88 × 10−4 1.68 × 10−4 3.73 × 10−4

APGSKI 8.86 × 10−5 4.43 × 10−4 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4

PSO 8.86 × 10−5 4.43 × 10−4 8.86 × 10−5 5.31 × 10−4 8.86 × 10−5 5.31 × 10−4

EBO 8.86 × 10−5 3.54 × 10−4 8.86 × 10−5 4.43 × 10−4 8.86 × 10−5 4.43 × 10−4

p: p-value computed by the Wilcoxon text p∗: p-value corrected with the Holm–Bonferroni procedure 7: statistical
differences do not exist with significance level α = 0.05.

ε = 0.01 ε = 0.05

ε = 0.10 ε = 0.15

Figure 1. Cont.
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ε = 0.20 ε = 0.25

Figure 1. Convergence plots of the average function values of the selected methods on the CCO
models.

5.2. Evaluation of the Best-Found Solutions

In the next step, we investigated the best-found solutions for the different instances.
The values of the optimization variables for these solutions are reported in Table 6. We can
see that, as the value of ε increases, the size of the conceptual bulk carrier ship (defined
by the variables L, B, D, and T) also increases. The depth variable D even gets to its upper
bound for ε = 0.25. The cruise speed variable Vk remains close to its lower bound, as it
has a high impact on the unit transportation costs. The only variable that has the same
value for all instances is the block coefficient CB with the value of its upper bound. We can
compare these solutions to the deterministic one, which does not take into account the unit
transportation costs. Here, the resulting size of the ship is even larger, and it is expected
to move at the maximum allowable cruise speed (this should be expected, as this setup is
only designed to maximize the annual cargo capacity).

Table 6. Values of the optimization variables for the best-found solutions for the different instances.

ε

Variable Symbol 0.01 0.05 0.1 0.15 0.2 0.25 Deterministic

Length L 275.5554 295.3920 308.5694 318.4319 327.2925 334.3526 412.3332
Beam B 45.9271 49.2330 51.4290 53.0728 54.5495 55.7262 68.7358
Depth D 24.9640 26.6760 27.8068 28.6498 29.4037 30.0000 30.0000
Draft T 18.1749 19.3732 20.1648 20.7549 21.2826 21.7000 21.7010

Block coefficient CB 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
Cruise speed Vk 14.0000 14.0000 14.0051 14.0236 14.1336 14.4225 18.0000

The effect of the chosen values of ε on the distributions of the unit transportation
cost UTC and annual cargo capacity ACC are shown in Figure 2. Unsurprisingly, as the
value of ε increases, we see a shift of the distribution of the unit transportation costs to
higher values, which can also be seen in the shift of the expected values to the right. Note
that the area under the probability distribution functions for values larger than the chosen
threshold THR = 12 must be ≤ ε (which is the effect of the chance constraint). A similar
shift can be seen in the distribution of the annual cargo capacity (which was the objective
we wanted to maximize).
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Figure 2. Estimated probability distribution functions of the unit transportation cost (left) and annual
cargo capacity (right) using the best-found solutions for the different instances. The expected values
are shown as crosses.

The last bit of analysis we will discuss is the structure of the scenarios, for which the
chance-constraint (48) was violated for different values of ε. The visualization of these
scenarios was performed by using the alpha shapes [89], and is shown in Figure 3. From
these visualizations, we can infer that the uncertain parameter that has the largest negative
effect on the unit transportation cost UTC was the port handling rate PHR, as the violated
scenarios for all values of ε had values on the lower bound of PHR. The second uncertain
parameter that had a slightly lower impact was round trip miles RTM. The impact of the
fuel price FP was the lowest of the three (it might not be clearly visible from Figure 3, but it
was measurable).

Naturally, the provided analysis is only valid for the choices of distributions of the
uncertain parameters and variable ranges in Tables 1 and 2. However, the general frame-
work of the optimization model (7)–(48), with the CCO approach and the analysis of the
performance of the different methods, should be readily transferable into modified settings
(choosing other distributions, having dependence in the distributions, considering different
variable ranges, etc.).

ε = 0.01 ε = 0.05 ε = 0.10

ε = 0.15 ε = 0.20 ε = 0.25

Figure 3. Visualization of the violated scenarios (in red) for different values of ε. The blue lines
delimit the ranges of the uncertain parameters.



Computers 2023, 12, 225 13 of 17

6. Conclusions

In this paper, we introduced the extension of the conceptual bulk carrier design model
with the scenario-based chance-constrained approach that takes into account different
sources of uncertainty that can influence the design. We performed an extensive numerical
comparison of selected (canonical and state-of-the-art) metaheuristic algorithms on the
proposed model and found that the chance-constrained extension made the resulting prob-
lem significantly more challenging, even for the state-of-the-art evolutionary computation
techniques. We also investigated the effect of the chance-constraint parameter ε (i.e., the
probability of the violation of the chance constraint). Interestingly, the two best-performing
methods (the LSHADE and the DE algorithm) were not among the most recent ones (and
the DE is almost three decades old). For the overall best-found solution, we conducted a
computational analysis of the effect of ε on the distributions of unit transportation costs
and annual cargo capacity, the relationship between the two, and the relationship between
the three uncertain parameters in the violated scenarios.

There are several interesting possibilities for additional extensions and future work.
The CCO problem could be posed as a multi-objective optimization problem instead, and
the quality of the Pareto front (maximizing the annual cargo capacity and minimizing the
probability of violating the chance constraint) of different algorithms could be investigated.
It would also be interesting to study the differences in solutions obtained by the CCO and
the robust/reliability-based approaches for different kinds of probability distributions of
the uncertain parameters. Another direction might lie in the utilization and comparison
of DIRECT-type methods and various surrogate-assisted techniques. Lastly, it would
be interesting to investigate possible extensions of other engineering problems that are
currently used for benchmarking metaheuristics into the chance-constrained (or other
stochastic) formulations utilized in this paper.
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Data Availability Statement: The implementation of the selected methods, as well as the important
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found in a public Zenodo repository [45].
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Abbreviations
The following abbreviations are used in this manuscript:

AGSK adaptive gaining-sharing knowledge
ACC annual cargo capacity
AC annual cost
B beam
CB block coefficient
CC capital costs
CDWT cargo deadweight
CEC Congress on Evolutionary Computation
CMA-ES covariance matrix adaptation evolutionary strategy
Vk cruise speed
DC daily consumption
DWT deadweight
D depth
DE differential evolution
DPC displacement
DIRECT dividing rectangles
T draft
EBO effective butterfly optimizer
EA evolutionary algorithms



Computers 2023, 12, 225 14 of 17

ES evolutionary strategy
Fn Froude number
FR fuel carried
FC fuel cost
FP fuel price
GA genetic algorithm
CCO chance-constrained optimization
L length
LSW light shipweight
LPSR linear population size reduction
Wm machinery weight
BMT metacentric radius
MDWT miscellaneous deadweight
Wo outfit weight
PSO particle swarm optimization
PC port cost
PD port days
PHR port handling rate
P power
RTM round trip miles
RTPA round trips per year
RC running costs
SD sea days
SC ship cost
Ws steel weight
SHBA success history based adaption
LSHADE success-history based adaptive DE with LPSR
THR threshold (for probability)
UTC unit transportation cost
KB vertical center of buoyancy
KG vertical center of gravity
VC voyage costs
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