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Abstract: Predicting the remaining useful life (RUL) is a pivotal step in ensuring the reliability
of lithium-ion batteries (LIBs). In order to enhance the precision and stability of battery RUL
prediction, this study introduces an innovative hybrid deep learning model that seamlessly integrates
convolutional neural network (CNN) and gated recurrent unit (GRU) architectures. Our primary goal
is to significantly improve the accuracy of RUL predictions for LIBs. Our model excels in its predictive
capabilities by skillfully extracting intricate features from a diverse array of data sources, including
voltage (V), current (I), temperature (T), and capacity. Within this novel architectural design, parallel
CNN layers are meticulously crafted to process each input feature individually. This approach enables
the extraction of highly pertinent information from multi-channel charging profiles. We subjected
our model to rigorous evaluations across three distinct scenarios to validate its effectiveness. When
compared to LSTM, GRU, and CNN-LSTM models, our CNN-GRU model showcases a remarkable
reduction in root mean square error, mean square error, mean absolute error, and mean absolute
percentage error. These results affirm the superior predictive capabilities of our CNN-GRU model,
which effectively harnesses the strengths of both CNNs and GRU networks to achieve superior
prediction accuracy. This study draws upon NASA data to underscore the outstanding predictive
performance of the CNN-GRU model in estimating the RUL of LIBs.

Keywords: battery RUL prediction; convolutional neural networks; gated recurrent unit; hybrid deep
learning; feature extraction; predictive maintenance

1. Introduction

Lithium-ion batteries (LIBs) have garnered widespread adoption across various indus-
tries, including electric vehicles, portable electronics, the aerospace industry, submarines,
and more. This is attributed to their remarkable advantages, including their increased
energy density, elevated output voltage, minimal self-discharge, absence of memory ef-
fects, broad operational range, and eco-friendliness. Since their initial introduction, these
advantages have firmly established LIBs as the preferred energy storage solution [1]. As
the emphasis on environmental preservation continues to grow, many individuals are
opting for energy-powered vehicles. When choosing such vehicles, two critical consid-
erations come to the forefront: their range and safety features. However, it is essential
to recognize that the chemistry of LIBs degrades over time, presenting a range of sig-
nificant challenges [2]. Efficiently projecting the RUL of LIBs and providing preventive
maintenance guidance to mitigate the risks associated with overcharging and discharging
are imperative tasks. This critical endeavor is essential for upholding the security and
dependability of the system and integrity of LIBs [3]. The reserve RUL estimates how old a
battery is and how many cycles of charging and discharging it can withstand before failing
in a given circumstance. Typically, a battery’s rated capacity is conservatively established
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between 70% to 80% of its failure threshold (FT) [4]. Prompt battery replacement becomes
essential once the capacity reaches the FT. Failure to do so can result in LIB malfunction,
jeopardizing energy storage equipment and even giving rise to catastrophic incidents [5].
Because battery capacity and RUL are closely correlated, most current RUL prediction
techniques concentrate on predicting changes in LIB capacity. Enhancing the precision of
RUL prediction for LIBs facilitates proactive maintenance approaches [6]. The degradation
of a battery during a charge–discharge cycle is promptly evident through a reduction in
battery capacity. To analyze battery performance deterioration and predict the RUL of LIBs,
capacity is a direct indicator of health. The RUL can be described as follows in Equation (1):

RUL = Total Available Cycles−Current Cycle (1)

The term “total available cycles” refers to a predefined number of charge–discharge
cycles that a battery can endure, while the current cycle represents the ongoing charge–
discharge cycle of the battery at a specific moment. Equation (1) calculates the remaining
charge–discharge cycles that the battery can undergo before reaching its intended end of
life. This calculation is based on the initial estimation of the total available cycles and the
current usage [7]. The three main methods used to project the RUL of LIBs at this time are
mechanism-based approaches, data-driven prediction techniques, and integrated predic-
tion methodologies [8]. RUL prediction strategies are grounded in mechanism models such
as the equivalent circuit process [9] and empirical degradation model method [10], which
offer precise RUL forecasts under relatively stable external circumstances. However, these
models’ accuracy can be susceptible to variations in external conditions. Employing histor-
ical feature data, the data-driven method of RUL prediction determines the correlations
between battery characteristics and RUL. Techniques such as relevance vector machines
(RVM)s [11] and neural networks (NNs) [12] belong to this category, and they have demon-
strated remarkable flexibility and gained widespread adoption. A long short-term memory
(LSTM) network optimized using an improved sparrow search algorithm (ISSA) was used
to present a novel RUL prediction approach. Using the ISSA, hyperparameters that im-
pacted prediction accuracy were tuned. Comparative tests revealed that the suggested
process worked better than others, such as the SVR, CNN, RNN, and LSTM, thus enabling
improved battery consumption [13].

A highly adaptable and resilient RUL prediction strategy was developed, and the
method utilized multi-kernel RVMs that were optimized with the gray wolf optimizer to
predict aging features for RUL prediction. In order to use complementary in ensemble
empirical mode decomposition and, that the quantifiable and historical aging character-
istics were split into high- and low-frequency signals. An LSTM NN and a feedforward
neural network (FNN) were then used to model and forecast these signals with changing
frequency, respectively [14]. The extensive utilization of deep-learning neural networks,
particularly the LSTM NN, excels in accurately forecasting battery capacity and RUL,
making it a valuable tool for measuring battery aging data. Its proficiency in storing and
updating information over extended periods without encountering the vanishing gradient
issue significantly contributes to its elevated prediction precision. Chinomona et al. [15]
employed a forward-selection LSTM technique. The approach adeptly extracted an optimal
feature subset from raw signals by filtering out irrelevant features. Park et al. [16] presented
a many-to-one LSTM structure to correctly predict the RUL for LIBs. In their study, a
data-driven ELM neural network model was employed to address the challenging task
of predicting the RUL of LIBs. An ELM neural network was used for passive mapping
to transform the problem into a high-dimensional space, and random input weights and
thresholds were introduced [17]. The sliding time window technique was employed to
process input data samples to capture valuable feature information from the input data
and predict the RUL. These feature-rich data were then leveraged to make RUL predic-
tions. Within the domain of RUL prediction, the LSTM NN, a notable improvement over
traditional recurrent NNs, plays a pivotal role. In this context, the RUL prediction method
developed by [18] is a noteworthy contribution.
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Batteries are essential for many contemporary technologies, including electric cars,
renewable energy sources, and portable electronics. Ensuring their reliable performance
and longevity is paramount to the functionality and sustainability of these applications.
Predicting the RUL of batteries has emerged as a critical challenge, as it allows for proactive
maintenance and replacement strategies, ultimately reducing downtime and operational
costs. Conventional RUL prediction methods have traditionally relied on statistical and
physics-based models. While effective to some extent, these methods often struggle to
capture the complex and nonlinear behaviors exhibited by batteries, particularly when
confronted with diverse operational conditions and varying usage patterns. In this study,
we address and confront two fundamental challenges. Firstly, our goal is to improve LIB
RUL prediction accuracy. This goal unites researchers in the pursuit of the most precise
results. Secondly, we grapple with the challenge of optimizing the overall execution
time of our hybrid method. This process encompasses various tasks, including data
extraction, formatting, model training, validation, and performance computation, all of
which can be time-consuming. Given the complexity of our hybrid approach, it is essential
to streamline these operations to achieve quicker and more efficient RUL predictions. These
two issues serve as the foundation for our research, which aims to increase the accuracy
and effectiveness of RUL prediction for LIBs.

We developed the CNN-GRU approach to address these challenges; this was designed
to combine CNN and GRU architectures. In this study, we address the pressing need for
more accurate predictions of the RUL of LIBs. These batteries play a crucial role in various
industries, and ensuring their reliability and efficiency is paramount. However, existing
methods have limitations in their ability to accurately estimate RUL. To overcome these
limitations, we harness data-driven approaches, capitalizing on the power of machine
learning techniques, which have gained increasing attention in recent years due to their
potential to significantly enhance RUL predictions. Notably, the integration of deep learning
architectures has brought about innovation in this field. Deep learning models, such as
CNNs, have demonstrated remarkable capabilities in uncovering intricate data patterns
and relationships, particularly in multi-dimensional data. This makes them exceptionally
well suited for extracting crucial information from various battery parameters, including
V, I, and T. Simultaneously, RNNs, including LSTM and GRU, have demonstrated their
efficacy in simulating temporal relationships in sequential data. Our research presents a
fresh and groundbreaking method for predicting battery RUL. We combine the best features
of CNNs and GRUs into a hybrid architecture with the intention of drastically improving
the precision and efficacy of RUL predictions. This innovative CNN-GRU hybrid model
concurrently extracts spatial and temporal features from multi-channel charging profiles.
While CNNs capture spatial information from V, I, and T data streams, the GRU model
captures the time-dependent patterns associated with battery capacity. To validate the
effectiveness of our method, we conducted extensive experiments using NASA’s battery
datasets.

The main contributions of this article are summarized as follows:

• We introduce a hybrid deep learning model for accurate battery RUL prediction by
combining CNN and GRU architectures.

• Our model utilizes the parallel processing of multiple measurable datasets (V, I, T, and
capacity) with the CNN and GRU to extract relevant features.

• The CNN captures spatial information from multi-channel charging profiles, while
the GRU focuses on time-dependent data derived from previous capacity profiles.

• Our extensive experiments demonstrate a significant improvement in precision for
the estimation of the remaining charge and prediction of the RUL using our model.

• We provide a comparative analysis of our RUL prediction results with those from
relevant studies in the literature.

The remainder of this paper is structured as follows: Section 2 delves into the related
work concerning the RUL prediction model. Section 3 elaborates on the proposed method-
ology. We provide details about the dataset in Section 4, and Section 5 is dedicated to
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presenting experimental results and discussions. Lastly, we conclude the paper and outline
potential future research directions.

2. Literature Review

In recent years, battery management and predictive maintenance have seen significant
growth due to the escalating demand for efficient energy storage solutions across various
applications. The accurate prediction of RUL is a pivotal component of effective battery
management, and it has attracted substantial attention from academia and industry. This
section extensively reviews existing RUL prediction methodologies while focusing on
applying machine learning techniques to address this complex challenge.

2.1. RUL Definition

The RUL of LIBs is a fundamental metric in battery management and predictive
maintenance. Its standard definition is the amount of time that passes between the present
cycle and the battery’s end-of-life (EoL) stage. The EoL represents a critical point in a
battery’s lifecycle, signifying the end of its reliable performance. Traditionally, the EoL is
recognized when a battery’s capacity degrades to approximately 70% to 80% of its nominal
capacity. This specific range of capacity degradation—often referred to as the “end-of-
life threshold”—serves as a widely accepted parameter for characterizing the remaining
lifespan of LIBs. Therefore, estimating a battery’s RUL is akin to determining the probability
distribution function (PDF) when the battery’s capacity satisfies these well-established EoL
criteria [19]. This definition of the EoL based on capacity degradation has been widely
adopted in battery management [20,21]. The RUL is a valuable and concrete measure of a
battery’s remaining usable life and an essential parameter for many applications, including
electric vehicles and renewable energy storage. The accuracy of RUL predictions is vital
for optimizing battery maintenance strategies, ensuring safety, and preventing unexpected
failures in real-world scenarios.

2.2. RUL Prediction Methods and Strengths and Weaknesses of Existing Methodologies

The field of RUL prediction for batteries has experienced a significant transforma-
tion, moving away from conventional empirical techniques to embrace more advanced
data-driven approaches. Early methodologies primarily relied on simple time-based degra-
dation models, which had limited adaptability when confronted with battery degradation’s
dynamic and nonlinear nature under varying operational conditions. However, recent
advancements have introduced numerous techniques that harness the wealth of data col-
lected during battery operation, significantly enhancing the accuracy of RUL predictions.
The landscape of battery RUL prediction can be categorized into three key approaches:
physics-based models, data-driven models, and hybrid models. Each approach possesses
unique strengths and limitations, and their utilization depends on specific requirements.
Physics-based models delve into the intricacies of battery processes, offering insights into
the causes of degradation but requiring precise calibration. Data-driven models leverage ex-
tensive datasets, with both shallow and deep learning techniques contributing to enhanced
prediction accuracy. Hybrid models merge the strengths of data-driven and mechanistic
models, improving stability and precision. Predicting the RUL of LIBs is a complex task
influenced by various factors, presenting opportunities for innovative research to enhance
accuracy and address existing challenges [22]. RUL prediction plays a pivotal role in battery
health management and assessing the value of retired batteries. In cascading utilization,
estimating the RUL ensures timely replacement, preventing safety issues. Calculating a
battery’s reserve life (RUL) is difficult because of the variety and complexity of the elements
that affect it, including the battery’s health, past performance, and failure modes. RUL
prediction methods can be broadly categorized into two main groups: data-driven and
hybrid approaches, as shown in Figure 1.
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Figure 1. Classification of RUL prediction methods.

The amalgamation approach involving data-driven and mechanistic models primarily
entails the integration of mechanistic models guided by electrochemical principles and
empirical mathematical models. As outlined in [23], in order to utilize this technique, the
battery is subjected to a series of precise current excitations that are used to determine
the parameters for a reduced electrochemical model. The particle filter (PF) method then
utilizes these parameters as state variables to create an observation equation. In turn, the ob-
servation equation makes it easier to forecast the RUL for LIBs. Guha et al. [24] formulated
an empirical model delineating the progression of internal resistance alongside a capacity
degradation model that leveraged data extracted from EIS tests. The resultant model
was harnessed within the PF framework to prognosticate the RUL of LIBs across distinct
lifecycle phases. However, the advancement of this fusion prediction model is impeded by
the challenges posed in constructing more intricate and precise mechanism models, along
with issues such as excessive noise and particle depletion in predictions [25]. In [26], a new
strategy was suggested to extend the lifespan of power conversion designs with modular
connections, which are widely utilized in various power electronics applications. The
approach employed a Levenberg–Marquardt backpropagation neural network (LM-BPNN)
to estimate the system’s health without requiring complex mathematical models. It incorpo-
rated power routing, which allowed different power levels for cells based on their damage,
thus delaying the failure of highly damaged cells. Numerical simulations confirmed the
effectiveness of this approach in prolonging the system’s overall lifespan. The method was
experimentally verified with an interleaved DC–DC boost conversion setup.

These difficulties similarly constrain the performance of the forecast. Numerous
data-driven fusion strategies have attracted much interest and support in RUL prediction.
Interestingly, deep and shallow machine learning methods often employ data-driven
methodologies. An artificial bee colony (ABC) was used in the RUL prediction approach
of Wang et al. [27] to optimize support vector regression (SVR) kernel parameters. This
method successfully resolved the difficulty of figuring out the SVR kernel settings. Cai
et al. [28] pioneered the utilization of the artificial fish swarm algorithm (AFSA) to fine-tune
the kernel parameters of the RVM. They subsequently employed a discrete gray model
to project trends, effectively amalgamating the nonlinear regression capabilities of the
relevance vector machine. Through this comprehensive approach, the prediction of the
RUL for LIBs was successfully achieved. A fusion method that combined SVR and PF
was used in [29] to forecast the RUL for LIBs. Interestingly, the common practice in these
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approaches was to combine an optimization algorithm with a single data-driven algorithm
to predict the RUL. This methodology is rooted in the intrinsic instability of prediction
results due to uncertainty around important parameters in various single data-driven
algorithms. As a result, combining data-driven algorithms with optimization approaches
has become a standard method of improving the predictive stability of models. In [30,31],
it has introduced an innovative approach based on Support Vector Machines (SVM) for
predicting the RUL of LIBs. The method has attained precise real-time RUL predictions
by extracting pivotal features from the battery data. Several methods have demonstrated
success in predicting RUL for LIBs. For instance, SVR optimization techniques, such as
the ABC algorithm, have proven effective in optimizing kernel parameters. Additionally,
models like the RVM have been employed alongside optimization algorithms to enhance
predictive accuracy. These algorithms excel in handling intricate patterns and nonlinear
correlations within battery data. Deep learning—particularly with LSTM networks and
hybrid neural networks—has emerged as a standout choice for modeling RUL prediction.
LSTM, with its capability of capturing temporal dependencies, is well suited for handling
the complex patterns observed in LIBs.

2.3. The RUL Based on Machine Learning Models

Due to their ability to recognize intricate patterns and nonlinear correlations in battery
data, ANNs have become renowned as versatile and effective methods for RUL prediction.
ANNs assess incoming data and generate predictions through organized networks of in-
terconnected nodes or neurons. One of their primary advantages is the ability to handle
multivariate time-series data, including voltage, current, temperature, and impedance mea-
surements. Their architecture enables them to capture temporal dependencies and dynamic
patterns in battery operation, ultimately contributing to more accurate RUL predictions.
Several ANN architectures have been explored for RUL prediction, including feedforward
networks, recurrent networks, and hybrid models that combine different neural layers.
Additionally, ensemble techniques and regularization methods have been integrated to
enhance ANN models’ robustness and generalization capabilities. In the realm of deep
learning, RNNs are prevalent, with LSTM algorithms being a standout choice. LSTM’s pro-
ficiency in modeling sequences and capturing temporal dependencies makes it well-suited
for predicting the RUL in domains such as LIBs. The architecture’s ability to retain and
utilize historical information over extended sequences addresses challenges such as vanish-
ing gradients, which are crucial for understanding battery degradation patterns. LSTM’s
versatility in capturing short-term fluctuations and long-term trends contributes to accurate
RUL predictions for optimizing resource utilization and maintenance strategies [32,33].

In [34], a dynamic LSTM approach that enabled online RUL prediction was introduced.
Notably, health index creation relied on indirect voltage measures instead of battery capacity.
In [35], an ensemble strategy incorporating LSTM was proposed, accounting for uncertainty
through Bayesian model averaging. Furthermore, the authors of [36] merged LSTM with
particle swarm optimization and enhanced LSTM parameters that were computed by
aligning with the designated topology. LSTM excels at modeling sequences that are suitable
for battery performance time series. Hybrid NNs combine these strengths, yielding accurate
RUL predictions by leveraging various network structures, as NNs have enhanced RUL
prediction accuracy and handle intricate LIB behaviors effectively [37]. The authors of [38]
introduced an enhanced variant of the LSTM neural network, demonstrating heightened
information extraction capabilities. Wang et al. [39] employed an enhanced RVM approach
that considered inevitable uncertainties and integrated expectation–maximization (EM) for
model refinement. Despite the advantageous trait of requiring minimal training data, both
the SVM and RVM face challenges of diminished prediction accuracy due to significant
sparsity and limitations in addressing time-series issues. In the realm of predicting the
RUL for LIBs, NN methods have played a crucial role. Approaches such as the extreme
learning machine (ELM), LSTM, GRU, and hybrid NNs have been widely utilized. The
ELM stands out due to its efficient training and adaptability to diverse architectures. This
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versatile method has undergone innovative adaptations to enhance its applicability. These
adaptations target the elimination of the need to predefine neuron counts and hidden layer
weights, catering to the diverse demands of battery RUL prediction.

Notable among these adaptations is the kernel ELM (KELM) [40,41], which introduces
a kernel-based approach in order to augment the ELM’s capabilities, enabling it to tackle
complex patterns in battery data. Additionally, the emergence of the multiple-kernel ELM
(MKELM) [42] signifies a stride towards accommodating varying data representations,
thus contributing to the refinement of RUL estimates. This study introduced a new model
for predicting the RUL of batteries named the particle filter–temporal attention mechanism–
bidirectional gated recurrent unit (PF-BiGRU-TSAM). The model added importance to
battery capacity at different time points by combining an offline-trained BiGRU-TSAM
with historical data training. The advantages of both model-based and data-driven models
were combined and allowed to complement one another throughout the online prediction
phase [43]. The expectation–maximization–unscented particle filter–Wilcoxon (EM-UPF-
W) approach was developed in this study to properly detect capacity regeneration and
estimate noise factors in battery deterioration models. To be more precise, the method
produced a dynamic deterioration model for individual batteries that had been exposed
to UPF. Additionally, the EM technique was used to adaptively estimate noise variables,
especially when a few samples were without labels. Furthermore, the Wilcoxon rank sum
test was presented in order to determine the capacity regeneration point and, eventually,
reduce forecast errors [44]. A comprehensive comparative analysis of diverse model-based
techniques for the prediction of the RUL has been presented, and valuable insights into
their strengths and advantages are offered in Table 1.

Table 1. Comparison of several model-based approaches to lithium-ion battery RUL prediction.

Ref-No. Approaches Advantages Strength of Review

[45]

Machine-learning-
based data-driven
fault detection
diagnosis

Enhanced safety,
efficient state prediction,
promising feature of ML

Centered on data-driven,
machine-learning-based
techniques

[46]
Support vector
regression (SVR)
and Markov chain (MC)

Good performance,
good accuracy, prospects

Used of real-world data,
hybridization strategy,
empirical validation

[47]

Whale optimization
algorithm–variational
mode decomposition–
long short-term
memory (WOA-VMD)
and (LSTM)

Safety enhancement,
proactive maintenance,
problem-specific
solutions, innovative
fusion approach

Safety-centered focus,
practical relevance,
innovative hybrid model

[48]

Health indicator and
Gaussian process
regression model
(HIGPRM)

Validation with real data,
enhanced accuracy,
stability

Presented RUL
prediction method
combining kernel
principal component
analysis (KPCA)

[49]

The hybrid approach
combines adaptive
Levy flight (ALF), an
optimized particle filter
(PF),
and long short-term
memory (LSTM)

Improved prediction
accuracy learning,
degradation model,
outperformance

Used advanced
techniques including
ALF and LSTM,
improving the safety
and reliability of
energy storage systems
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3. Methodology

In this section, we present our innovative methodology for precise RUL prediction
in LIBs. Our approach consists of a carefully structured process designed to maximize
prediction accuracy and robustness. The first phase of our methodology begins with
rigorous data preprocessing to ensure the quality of the input data. This phase addresses
data anomalies, removes outliers, handles missing values, and normalizes the dataset. The
second phase involves selecting input features, including voltage (V), I, T, and capacity.
These choices are rooted in their fundamental significance for battery behavior. Voltage is a
vital indicator of electrochemical reactions within the battery, reflecting variations in energy
output. Current, representing the flow of energy, plays an essential role in understanding
the dynamic state of a battery. Temperature, another crucial factor, directly impacts a
battery’s aging process, influencing its overall health. Lastly, capacity characterizes a
battery’s energy storage capabilities and its ability to maintain charge. In the third step,
our methodology leverages a hybrid model combining a CNN and GRU. This decision
was made because it is necessary to record temporal and geographical relationships in the
battery data. Parallel CNN branches are used for each input feature (V, I, T) to capture
spatial information independently.

Simultaneously, a GRU layer models the temporal dependencies in capacity data,
which are inherently related to time-dependent behavior. The fourth phase divides the
preprocessed data into training, validation, and testing sets. This division ensures that
the model is effectively trained on historical data, validated for robustness, and rigorously
tested for predictive accuracy. The selected model architecture is fine-tuned and trained
using preprocessed data during training. This process enables the models to capture
intricate patterns in battery behavior, further enhancing the predictive capabilities. Our
trained models estimate and evaluate the battery’s RUL in the final phase. We evaluate the
precision and dependability of our predictions using specialized error measures designed
for RUL prediction tasks. The process begins with step 1, battery data, where essential
information related to the batteries is gathered. In step 2, data preprocessing, this collected
data undergoes cleaning and organization. In step 3, train model for RUL estimation, the
preprocessed data is utilized to train a model capable of estimating the batteries’ remaining
useful life (RUL). The final step, step 4, method evaluation, involves evaluating the model’s
performance to determine its effectiveness in predicting battery life. These four steps
provide a structured workflow for managing battery data and estimating RUL, as shown in
Figure 2, which illustrates the overall framework of the proposed approach.

3.1. Theoretical Background of the Study

Before delving into the core of our study, it is essential to lay a strong theoretical
foundation. In this section, we will elucidate the essential ideas and architectures that form
the basis of our research. We will explore CNNs, LSTM, and GRUs. Additionally, we will
present the proposed framework models, including their hybrid variations: CNN-LSTM
and CNN-GRU.

3.1.1. Convolutional Neural Network Model

CNNs are a potent class of neural networks that are highly renowned for their profi-
ciency in various deep-learning applications. They are a specific type of feedforward neural
network (FNN). The architecture of CNNs comprises convolutional and pooling layers,
which are particularly adept at extracting pertinent features from data. Subsequently, one
or more fully connected layers come into play, and these features are leveraged to make
predictions. During the training process, the CNN acquires the ability to correlate the ex-
tracted features with the appropriate labels. This achievement is unlocked through iterative
mechanisms such as backpropagation and optimization [50,51]. A typical CNN comprises
several essential layers, including the input, convolutional, pooling, fully connected, and
output layers. These networks are widely used in various deep-learning tasks. CNNs are
designed to operate on multi-dimensional input feature vectors. The convolutional layers
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play a crucial role in identifying intrinsic relationships within the data by extracting feature
maps. These feature maps are then processed through pooling layers, which perform sub-
sampling to reduce network complexity and prevent overfitting. The convolutional kernel
operates on the width of the convolution development, further improving the extraction
of relevant feature information. Finally, the fully connected layers integrate the processed
data following the convolution and pooling stages. These merged data are subsequently
fed into the final layers of the network, often including a fully connected or recurrent layer
for making predictions, as shown in Figure 3, which is a basic CNN architecture.
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3.1.2. LSTM Model

Due to the nature of the data collected from LIBs, which involve charging and dis-
charging cycles and are essentially time-series data, using an RNN is a reasonable choice
for processing such sequences while leveraging internal memory. RNNs are equipped with
internal feedback and feedforward connections among their processing units, allowing
them to handle sequential information. However, it is important to note that RNNs have
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limitations, particularly when dealing with long sequences. They can only store a portion
of a sequence, which can lead to reduced accuracy when dealing with longer sequences [52].
In this context, where LIB data sequences are relatively lengthy and consist of numerous
time series, LSTM networks are preferred over traditional RNNs. LSTM is a specialized
type of RNN designed to overcome the challenge of handling long-distance dependencies
in sequences. LSTM networks are particularly effective at capturing and learning from
sequences with extended context, making them well-suited for tasks involving time depen-
dencies. For instance, LSTM models can effectively model how a battery’s capacity changes
over time during discharging profiles. One key feature of LSTM is its ability to maintain
a certain level of correlation between hidden-layer nodes. When the network receives
sequential data, the hidden-layer nodes’ computations rely on both the current input and
the activation levels of the nodes from earlier time steps. When processing sequences that
are input-related for LIBs, the LSTM network layer processes both the output and hidden-
layer sequences. This allows it to efficiently identify intricate patterns and dependencies
in the data. The input gate, forgetting gate, and output gate are the three gates that allow
the LSTM to function. Together, these gates enable the data to write, read, and maintain
long-term dependencies. Figure 4 depicts the layout of the LSTM abstraction network.

Figure 4. The proposed architecture of the LSTM abstraction network.

3.1.3. Gated Recurrent Unit Model

The development of RNNs—particularly LSTM networks—successfully addresses a
critical issue faced by fully connected neural networks. The problem is that fully connected
networks tend to experience data loss in either space or time, which results in challenges
related to vanishing and exploding gradients. These two issues, known as vanishing and
exploding gradients, were effectively resolved by introducing the concept of gates in the
LSTM network. Input, output, and forgetting gates are components of an LSTM network
that regulate and control information flow. This innovation allows LSTM to capture and
learn from sequences with long-range dependencies, addressing the challenges associated
with data loss. Another noteworthy advancement in this context is the GRU, which can
be considered an enhanced version of the LSTM model. The GRU retains the training
effectiveness of LSTM while streamlining the network’s topology and reducing the number
of training parameters. This makes the GRU a more efficient choice for handling sequential
data such as LIB charging and discharging profiles. A single step of the GRU update
equations is shown in Figure 5; at the core of this architecture are two crucial gates: the
update gate Zt and the reset gate rt. These gates play pivotal roles in regulating information
flow and capturing temporal dependencies within the data.
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Figure 5. The basic structure of a GRU.

The update gate combines the functions of the forgetting and input gates in traditional
recurrent networks. It determines what information to retain from the previous state and
what new information to add. The formula for Zt is shown in Equation (2):

Zt = σ(Wz × [ht−1, Xt] + cz) (2)

where Zt is the update gate at time step t in a GRU model that determines how much of
the previous hidden state to retain and how much new information to incorporate σ. The
activation function squeezes values between 0 and 1, controlling information flow. Wz is
the weight matrix for the update gate, and it influences the importance of input Xt and the
prior hidden state ht−1. [ht−1, Xt] is a concatenation of the current input Xt and previous
hidden state ht−1 to form the update gate’s input. cz is a bias term that shifts the sigmoid’s
decision boundary to fine-tune the gate’s behavior in Equation (2).

The reset gate, represented by rt, is another integral component of our architecture.
When calculating the present state, it sets the amount of the prior condition that should
be erased or reset. By modulating the memory resetting, rt allows the network to selec-
tively keep or discard details from previous time steps and capture relevant patterns and
dependencies in the data. The formula for rt is as follows:

rt = σ(Wr × [Xt, ht−1] + cr) (3)

where rt (the reset gate) defines how much of the last hidden state ht−1 to reset or forget
when computing the new hidden state at time step t based on the current input Xt. The
sigmoid activation function σ squashes the weighted sum of the input and previous hidden
state, ensuring that rt takes values between 0 and 1, thus controlling the amount of reset
involved in Equation (3).

3.1.4. CNN-LSTM Model

Our battery RUL prediction methodology uses a hybrid deep model that combines a
CNN and an LSTM network in a data-driven manner. In order to extract characteristics
from several quantifiable data sources, such as voltage, current, temperature, and capacity,
these two components operate in parallel, as shown in Figure 6. The CNN focuses on
extracting features from multi-channel charging profiles, while the LSTM specializes in
capturing features from historical capacity data associated with discharging profiles while
considering their time-dependent nature.
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Figure 6. The proposed architecture of the CNN-LSTM network.

3.1.5. CNN-GRU Model

The CNN-GRU architecture is a powerful fusion of CNNs and GRUs that is meticu-
lously designed for complex data analysis tasks. This hybrid model seamlessly combines
the spatial feature extraction capabilities of CNNs with the temporal dependency modeling
strengths of GRUs. In the context of battery RUL prediction, CNNs play a pivotal role
in extracting essential spatial features from various input data sources, such as V, I, T,
and capacity. These extracted features are then seamlessly integrated into the GRU layer,
which excels in capturing temporal relationships and historical capacity data. The overall
framework of the CNN-GRU model suggested in this research consists of four key layers:
the input, CNN, GRU, and output layers. The process begins with the CNN layer, which
extracts essential information related to lithium battery health factors by mining the natural
correlations between feature quantities and lithium battery capacity. Following this, the
pooling layer conducts computations by utilizing convolution kernels to extract additional
feature data and broaden the scope of the convolution results. The preprocessed lithium
battery data are then passed into the GRU network for optimization training through a
fully connected layer. Within the GRU layer, the model learns the underlying patterns and
internal variability, which are crucial for making accurate predictions. Finally, the output
layer generates valuable predictions related to lithium battery capacity, providing valuable
insights into the battery’s RUL. This comprehensive architecture enables accurate RUL
predictions for LIBs to the benefit of various applications and industries. The hybrid RUL
prediction model was constructed using a CNN-GRU channel attention mechanism, as
shown in Figure 7.
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Figure 7. Model structure diagram of the CNN-GRU model.

4. Data Description

Our study commences with an introductory examination of the dataset in [53], which
encompasses four LIBs, namely, B0005, B0006, B0007, and B0018. These batteries have
undergone a series of charge, discharge, and impedance operations. The impedance
analysis was conducted using electrochemical impedance spectroscopy (EIS) across varying
frequencies. Consecutive charge and discharge cycles have led to the expedited aging of the
batteries, and this aging process was reflected in the evolving internal battery parameters,
as unveiled by the impedance measurements. The selection criteria were their initial state
of health (SoH), capacity, and model name. There were two thorough steps in the billing
procedure. The end-of-life (EoL) criterion was reached, which signified a 30% capacity
decline from the initial rated capacity of 2 ampere-hours (Ahr) to 1.4 Ahr. At that point,
the studies were terminated. These datasets hold valuable potential for forecasting the
residual charge (within a designated discharge cycle) and the batteries’ RUL. This study’s
dataset included aging data for 18,650 lithium cobalt oxide batteries with a 2 Ah capacity,
which were generously provided by NASA. The analysis focused on the cycling behavior
of four specific lithium batteries, and all analyses were conducted at room temperature.
The results of this analysis unveiled the capacity decay curves for B0005, B0006, B0007, and
B0018 at a temperature of 24 ◦C, as illustrated in Figure 8.
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Figure 8. A battery’s capacity deterioration curve.

4.1. Charge, Discharge and Impedance Profiles

The charge profiles exhibited striking consistency across all battery tests, offering
a clear window into the intricate behaviors of the system. The charging procedure was
meticulously executed, commencing with a stable power input through a constant current
(CC) mode, which was precisely set at 1.5 A. This phase persisted until the battery voltage
reached its highest point, peaking at 4.2 V. A transition occurred, moving into a constant
voltage (CV) mode. This mode was maintained until the charge current gently diminished
to a mere 20 mA. In contrast, the discharge phase presented an array of diversity, with each
battery showcasing its distinctive characteristics. The discharge process was meticulously
regulated by a controlled CC regimen, spanning a range from 1 A to 4 A, which was
tailored to the specific battery under investigation. This discharge process persisted until
the battery voltage gracefully descended to well-defined thresholds: 2.7 V, 2.5 V, 2.2 V, and
2.5 V. These distinct thresholds illuminated the batteries’ unique resilience and performance
attributes as they navigated the discharge process, offering insights into their behaviors
across various energy levels. Furthermore, the impedance measurements furnished a
multifaceted understanding of battery dynamics, transcending the boundaries of voltage
and current.

The batteries’ internal responses came to life by deploying EIS across frequencies.
These measurements uncovered intricate electrochemical processes and material behaviors
within the battery systems. Impedance measurements were conducted using EIS with a
frequency sweep spanning from 0.1 Hz to 5 kHz. The experiments were concluded when
the batteries met specific EoL criteria. For instance, one criterion involved a 30% reduction
in rated capacity, declining from 2 Ampere-hours (Ahr) to 1.4 Ahr. Additionally, alternative
stopping criteria were employed, including a 20% reduction in a rated capacity. Table 2
presents a summary of the experimental specifications for the battery dataset, including the
various charging, discharging, and impedance modes.
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Table 2. Experimental specifications of the battery dataset.

Battery
Number Charging CC Charging Charge

(Cut-Off Voltage) Discharging CC Discharge
(Cut-Off) Temperature

Battery 0005 1.5 4.2 2.0 2.7 24 ◦C

Battery 0006 1.5 4.2 2.0 2.5 24 ◦C

Battery 0007 1.5 4.2 2.0 2.2 24 ◦C

Battery 0018 1.5 4.2 2.0 2.5 24 ◦C

4.2. Data Preprocessing

Data preprocessing is essential for predicting the RUL of LIBs. This critical phase
includes key techniques that enhance the quality of input data, directly impacting the
RUL prediction accuracy. Handling missing values is crucial, as sensor-read gaps (V, I, T,
capacity) can disrupt data continuity. Imputing missing values—often by using mean or
median imputation methods—ensures data integrity and more precise predictions. Outliers
represent extreme deviations or anomalies in the data, introducing unwanted noise during
model training. Removing these outliers improves model performance and enables accurate
pattern learning in LIB RUL prediction. Also, normalization is a critical step because LIB
data come from diverse sensors with varying units and scales. Normalization standardizes
these features to a consistent range (usually between 0 and 1), preventing any single
feature from dominating the model’s learning process. This facilitates more efficient model
convergence and enhances prediction accuracy.

5. Experimental Results and Discussion

This section is divided into three main components; the first part encompasses the
evaluation criteria and system configuration of the RUL prediction model. The second part
presents the prediction results and comprehensively discusses the RUL prediction model.
Finally, the third part provides a summary of the suggested technique.

5.1. Evaluation Criteria and System Configuration

During the model training phase, the CNN network employs the same convolution
technique while utilizing 8, 16, and 32 convolution kernels in three convolution layers and
one pooling layer. Every battery dataset was first divided into testing and training sets,
with a data split of 20% and 80%, respectively. Batteries were combined in many ways for
testing, validation, and training, and three situations were employed in our investigation.
For example, in scenario 1, battery B0006 and battery B0007 were used as a training set,
while battery B0005 was employed for validation, and battery B0018 served as the testing
set. Similarly, in scenario 2, battery B0005 and battery B0006 constituted the training sets,
with battery B0007 being used for validation and battery B0018 being used as the testing set.
This approach allowed the model’s performance to be comprehensively evaluated across
different battery datasets and configurations, with the same process being followed for all
battery data. To emphasize the comprehensive validation of the experiment, we employed
the following four evaluation criteria to assess the CNN-GRU model’s performance in
predicting the RUL.

In Equation (4), the mean absolute error (MAE), for which a lower value indicates
superior prediction performance, is expressed as follows:

(MAE)RUL =
1
M

M

∑
i=1
|RULi − R̂ULi| (4)
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In Equation (5), the root mean square error (RMSE), for which a lower value signifies
superior prediction performance, is expressed as follows:

(RMSE)RUL =

√√√√ 1
M

M

∑
i=1

(RULi − R̂ULi)2 (5)

In Equation (6), the mean absolute percentage error (MAPE) provides a meaningful
way to assess prediction accuracy, particularly when understanding the relative error is
crucial, and lower MAPE values indicate better prediction performance.

(MAPE)RUL =
1
M

M

∑
i=1

∣∣∣∣∣RULi − R̂ULi
RULi

∣∣∣∣∣× 100% (6)

In Equation (7), the mean squared error (MSE) is valuable for assessing prediction
accuracy and places a higher weight on more significant errors due to the squaring oper-
ation. However, it is sensitive to outliers because it works with squared values. Lower
MSE values indicate better prediction performance, with zero representing a perfect match
between the predicted and actual values.

(MSE)RUL =
1
M

M

∑
i=1

(RULi − R̂ULi)
2 (7)

These metrics are frequently employed in prediction issues in Equations (4) to (7),
which represent the MSE, RMSE, MAE, and mean absolute MAPE calculations, respectively.
Here, M is the data size, and we denote the predicted capacity of a battery as R̂ULi and the
actual capacity as RULi; additionally, we employed another proposed model to assess and
compare its performance with that of the proposed method.

5.2. Performance of the Proposed Framework

The following tables and figures present the LIBs’ life prediction results based on
four approaches—GRU, LSTM, CNN-LSTM, and CNN-GRU—for the battery dataset. In
scenario 1 (Train) in Table 3, we assessed the prediction accuracy of four different models.
The MAE for LSTM was 0.037, with an MSE of 0.002, MAPE of 0.024, and a root RMSE of
0.045. For the GRU, the MAE was 0.024, the MSE was 0.0009, the MAPE was 0.015, and
the RMSE was 0.030. CNN-LSTM had an MAE of 0.029, an MSE of 0.001, a MAPE of 0.020,
and an RMSE of 0.040. Lastly, CNN-GRU resulted in an MAE of 0.069, an MSE of 0.006,
a MAPE of 0.047, and an RMSE of 0.079. These results offer valuable insights into the
performance of the models in scenario 1 (Train), enabling a comprehensive comparison of
their prediction accuracy.

Table 3. Comparing the prediction accuracy of the four methods in scenario 1 (Train).

Information Train

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.037 0.002 0.024 0.045Battery
B0006 GRU 0.024 0.0009 0.015 0.030

CNN-LSTM 0.029 0.001 0.020 0.0401 Battery
B0007

Battery
B0005

Battery
B0018

CNN-GRU 0.069 0.006 0.047 0.079

In scenario 1 in Table 4, we compared the prediction accuracy of the four different
models (GRU, LSTM, CNN-LSTM, and CNN-GRU). The MAE for LSTM was 0.043, with
an MSE of 0.002, a MAPE of 0.028, and an RMSE of 0.049. For the GRU, the MAE was
0.038, the MSE was 0.001, the MAPE was 0.024, and the RMSE was 0.043. CNN-LSTM
had an MAE of 0.055, an MSE of 0.004, a MAPE of 0.035, and an RMSE of 0.067. Lastly,
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CNN-GRU resulted in an MAE of 0.078, an MSE of 0.008, a MAPE of 0.053, and an RMSE
of 0.091. These results provide insights into the comparative performance of these models
in scenario 1 (Test), with lower values indicating better prediction accuracy.

Table 4. Comparing the prediction accuracy of the four methods in scenario 1 (Test).

Information Test

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.043 0.002 0.028 0.049Battery
B0006 GRU 0.038 0.001 0.024 0.043

CNN-LSTM 0.055 0.004 0.035 0.0671 Battery
B0007

Battery
B0005

Battery
B0018

CNN-GRU 0.078 0.008 0.053 0.091

Figure 9 provides a visual comparison of the predictive performance of the four
models (GRU, LSTM, CNN-LSTM, and CNN-GRU) concerning the discharge capacity (Ah)
prediction across multiple cycles in scenario 1; the x-axis shows cycle counts, while the
y-axis represents discharge capacity values. The lines correspond to model predictions;
the blue line is for LSTM, green is for GRU, magenta is for CNN-LSTM, and cyan is for
CNN-GRU, while the black line showing “True” represents the actual data. This graphical
representation facilitates the assessment of how these models predict discharge capacity
throughout the cycles in scenario 1.

Figure 9. Prediction results in scenario 1.

Table 5 compares the prediction accuracy for four distinct models—LSTM, GRU,
CNN-LSTM, and CNN-GRU—in scenario 2 (Train). These models are evaluated using key
performance metrics, including the MAE, MSE, MAPE, and RMSE. The findings reveal
that LSTM achieved an MAE of 0.015, an MSE of 0.0004, an MAPE of 0.009, and an RMSE
of 0.020. The GRU demonstrated an MAE of 0.020, an MSE of 0.0007, an MAPE of 0.011,
and an RMSE of 0.027. CNN-LSTM attained an MAE of 0.030, an MSE of 0.001, a MAPE
of 0.019, and an RMSE of 0.037, while CNN-GRU recorded an MAE of 0.023, an MSE of
0.0008, a MAPE of 0.014, and an RMSE of 0.028. This comprehensive assessment provides
valuable insights into these models’ predictive capabilities in scenario 2 (Train) and shows
how informed decisions can be made when selecting models for similar predictions.
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Table 5. Comparing the prediction accuracy of the four methods in scenario 2 (Train).

Information Train

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.015 0.0004 0.009 0.020Battery
B0005 GRU 0.020 0.0007 0.011 0.027

CNN-LSTM 0.030 0.001 0.019 0.0372 Battery
B0006

Battery
B0007

Battery
B0018

CNN-GRU 0.023 0.0008 0.014 0.028

Table 6 provides a comprehensive comparison of the prediction accuracy for the four
distinct models in scenario 2 (Test). The evaluation was based on key performance metrics.
LSTM yielded an MAE of 0.034, an MSE of 0.0017, an MAPE of 0.021, and an RMSE of 0.042.
The GRU exhibited an MAE of 0.026, an MSE of 0.001, an MAPE of 0.016, and an RMSE
of 0.036. CNN-LSTM demonstrated an MAE of 0.039, an MSE of 0.002, a MAPE of 0.024,
and an RMSE of 0.050. Finally, CNN-GRU recorded an MAE of 0.050, an MSE of 0.004, a
MAPE of 0.030, and an RMSE of 0.067. The model also consistently demonstrated superior
performance across the critical evaluation metrics in scenario 2 (Test).

Table 6. Comparing the prediction accuracy of the four methods in scenario 2 (Test).

Information Test

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.034 0.0017 0.021 0.042Battery
B0005 GRU 0.026 0.001 0.016 0.036

CNN-LSTM 0.039 0.002 0.024 0.0502 Battery
B0006

Battery
B0007

Battery
B0018

CNN-GRU 0.050 0.004 0.030 0.067

In Figure 10, we visually compare the predictive performance of the four deep learning
models for discharge capacity (Ah) prediction over multiple cycles in scenario 3. The x-axis
tracks the cycle counts, while the y-axis shows the discharge capacity values. The lines
represent model predictions: blue for LSTM, green for GRU, magenta for CNN-LSTM, and
cyan for CNN-GRU; in addition, the black line for True represents the actual observations.
This visualization helps assess how these models predicted discharge capacity throughout
the cycles.

Figure 10. Prediction results for scenario 2.

Table 7 provides a comprehensive assessment of the prediction accuracy of the four
distinct models for the training dataset in scenario 3. In this scenario, it became evident that
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the GRU model consistently outperformed the other models, showcasing its remarkable
predictive capabilities. The GRU model achieved the lowest values for the key performance
metrics. The GRU model attained the lowest MAE, indicating its minimal prediction errors.
Furthermore, it exhibited the lowest MSE, signifying its superior precision in prediction.
The MAPE metric, which measured prediction accuracy in terms of percentage, was also
the lowest for the GRU model, underscoring its reliability in forecasting. Finally, the RMSE
value, which represented the standard deviation of prediction errors, was the smallest
for the GRU model, reaffirming its consistency and accuracy. Hence, based on the results
presented in Table 7, the GRU model emerged as the optimal choice for predictive tasks
within the training environment of scenario 3.

Table 7. Comparing the prediction accuracy of the four methods in scenario 3 (Train).

Information Train

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.114 0.017 0.08 0.130Battery
B0005 GRU 0.056 0.004 0.037 0.066

CNN-LSTM 0.060 0.004 0.04 0.0703 Battery
B0007

Battery
B0006

Battery
B0018

CNN-GRU 0.119 0.018 0.082 0.134

Table 8 provides a comprehensive assessment of the prediction accuracy for the four
distinct models in scenario 3 (Test). The table details the key performance metrics, including
MAE, MSE, MAPE, and RMSE, for each model tested in scenario 3. These metrics are
crucial for evaluating predictive capabilities, with lower values indicating better prediction
accuracy. Notably, the CNN-GRU model consistently outperformed the other models in all
metrics. It achieved the lowest MAE, reflecting precise predictions with minimal absolute
errors. The CNN-GRU model also recorded the lowest MSE, demonstrating exceptional
accuracy in prediction tasks. Moreover, it exhibited the lowest MAPE, indicating reliable
predictions that were closely aligned with the actual values, and it had the smallest RMSE,
affirming its consistent and precise performance in forecasting outcomes. These metrics
collectively highlight the CNN-GRU model’s superior predictive capabilities compared to
those of the other models across all evaluated criteria.

Table 8. Comparing the prediction accuracy of the four methods in scenario 3 (Test).

Information Test

Scenario Train Validation Test Models MAE MSE MAPE RMSE

LSTM 0.050 0.0030 0.034 0.057Battery
B0005 GRU 0.030 0.001 0.019 0.036

CNN-LSTM 0.040 0.002 0.027 0.0473 Battery
B0007

Battery
B0006

Battery
B0018

CNN-GRU 0.041 0.002 0.026 0.048

Figure 11 visually presents the predictive performance of various deep learning mod-
els, including LSTM, GRU, CNN with LSTM (CNN-LSTM), and CNN with GRU (CNN-
GRU), in predicting the discharge capacity in Ampere-hours (Ah) over multiple cycles,
as observed in scenario 3. The x-axis represents the cycle number, which reflects the
temporal progression of the data. The y-axis displays the discharge capacity (Ah) values.
The figure includes several lines: a blue line (LSTM-prediction) for the LSTM model’s
predictions, a green line (GRU-prediction) for the GRU model’s forecasts, a magenta line
(CNN-LSTM-prediction) for predictions from the CNN-LSTM model, and a cyan line
(CNN-GRU-prediction) for predictions from the CNN-GRU model. The black line labeled
’True’ represents the actual observed discharge capacity values.
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Figure 11. Prediction results in scenario 3.

Table 9 comprehensively compares various RUL prediction models for LIBs. The table
assesses the performance of these models based on four key evaluation metrics. Notably,
our proposed CNN-GRU hybrid model stands out, demonstrating exceptional performance
with significantly lower values for MAE, MSE, MAPE, and RMSE compared to those of
alternative models. This comprehensive evaluation highlights the remarkable accuracy of
our CNN-GRU model in estimating LIBs’ RUL compared to other models. The success of
the CNN-GRU model can be attributed to its effective feature extraction from diverse data
sources, including V, I, T, and capacity. Additionally, the use of the GRU over LSTM and
other recurrent networks enhances the model’s ability to capture long-term dependencies
in sequential data. This superior performance establishes our hybrid model as the preferred
choice for LIB RUL prediction.

Table 9. Comparison of evaluation matrices of the proposed method with the current method.

Ref. Models MAE MSE MAPE RMSE

[54]

Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
—Improved Gray Wolf Optimize—
Bidirectional Gated Recurrent Unit
(CEEMDAN–IGWO–BiGRU)

3.57 0.40 - 6.30

[55] Hybrid ensemble deep learning - - 8.54 114.05

[56] Denoising Transformer-
based Neural Network (DTNN) 0.0272 - 0.632 0.005

[57]
Gated Recurrent Unit-
Recurrent Neural Network
(GRU-RNN)

- - 9.94 127.65

Proposed method CNN-GRU 0.041 0.002 0.026 0.048

5.3. Summary and Discussion

LIBs are pivotal in numerous sectors, including those of electric vehicles, the aerospace
industry, and industrial production. Accurate RUL prediction for LIBs is essential for
prolonging battery lifespan, ensuring equipment safety, maintaining operational stability,
streamlining maintenance, and enhancing cost efficiency. Our study highlights the impor-
tance of selecting the right deep learning model that is tailored to specific training and
testing scenarios. In our research, LSTM demonstrated effectiveness in scenario 1, while
the GRU model excelled in scenario 2. However, the CNN-GRU model truly stood out
in scenario 3. Furthermore, our study introduced an advanced prediction model based
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on the CNN-GRU architecture. This novel model significantly improved the accuracy of
LIB life prediction, surpassing the performance of LSTM, GRU, and even the CNN-GRU
model. These findings emphasize the potential for more precise and reliable battery life
predictions, offering substantial benefits across various application domains. Our research
underscores the critical role of model selection in deep-learning-based RUL prediction and
demonstrates how tailored choices can optimize predictive outcomes for LIBs in diverse
scenarios. The proposed CNN-GRU model, with its superior predictive capabilities, repre-
sents a promising advancement in this field. It excels at capturing long-term dependencies
in sequential data, effectively adapts to various operational settings, and consistently out-
performs other models in crucial evaluation metrics. These qualities collectively make
it the preferred choice for industries seeking reliable and precise LIB management and
maintenance strategies.

6. Conclusions and Future Work

This study presents the key perspectives, contributions, and most significant quantita-
tive results from our research on predicting the RUL of LIBs. Our primary contribution
lies in the introduction of an innovative hybrid deep learning model that seamlessly inte-
grates CNN and GRU architectures. This model excels at extracting intricate features from
diverse data sources, including V, I, T, and capacity, significantly enhancing prediction
accuracy. The model’s architecture, which features parallel CNN layers that separately
process individual input features, sets the stage for improved predictions. Furthermore,
our model outperforms alternative models, including LSTM, GRU, and CNN-LSTM, with
a specific focus on the CNN-GRU model. Rigorous evaluations across three scenarios con-
firmed the model’s efficacy, resulting in noteworthy reductions in key evaluation metrics,
including the RMSE, MSE, MAE, and MAPE. In this study, our proposed method boasted
an MAE of 0.041, MSE of 0.002, MAPE of 0.026, and RMSE of 0.048, indicating its high
prediction accuracy and excellent performance compared to those of other methods. These
results underscore the model’s superior predictive capabilities. In our future work, we will
delve into the impact of temperature variations on battery RUL predictions. This research
will involve conducting experiments at various operating temperatures to gain a better
understanding of the battery’s performance under different environmental conditions. Ad-
ditionally, we will focus on optimizing our methodology while ensuring efficiency. We will
explore advanced optimization techniques to strike a balance between model accuracy and
computational efficiency, ensuring that our predictions remain of a high quality without
compromising processing time. Moreover, our research will emphasize the improvement
of the model’s generalization capabilities. By addressing these areas in our future work,
we aim to uphold our overarching goal of enhancing the safety and reliability of energy
storage systems.

The table of abbreviations below shows the primary notations employed in the pro-
posed approach.
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Abbreviations
The list of abbreviations and formula symbols are shown below.

Symbols
Voltage V
Current I
Temperature T
Ampere-hours Ahr
A Ampere
Acronyms
EV Electric Vehicle
SoH State of Health
BMS Battery Management System
RUL Remaining Useful Life
Convolutional Neural Networks CNN
Gated Recurrent Unit GRU
Convolutional Neural Network–Gated Recurrent Unit CNN-GRU
Convolutional Neural Network–Long Short-Term Memory CNN-LSTM
Lithium-Ion Batteries LIBs
Relevance Vector Machines RVM the
Neural Networks NNs
Long Short-Term Memory LSTM
Improved Sparrow Search Algorithm ISSA
Feedforward Neural Network FNN
End-of-Life EoL
Probability Distribution Function PDF
Particle Filter PF
Artificial Bee Colony ABC
Support Vector Regression SVR
Artificial Fish Swarm Algorithm AFSA
Expectation–Maximization EM
Extreme Learning Machine ELM
Support Vector Machines SVM
Multiple Kernel Extreme Learning Machine MKELM
Kernel Extreme Learning Machine KELM
Recurrent Neural Network RNN
Electrochemical Impedance Spectroscopy EIS
Constant Current CC
Constant Voltage CV
Mean Absolute Error MAE
Root Mean Square Error RMSE
Mean Absolute Percentage Error MAPE
Mean Squared Error MSE
Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise
Improved Gray Wolf Optimize
Bidirectional Gated Recurrent Unit

CEEMDAN–IGWO–BiGRU
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