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Abstract: Utilizing machine learning (ML)-based approaches for network intrusion detection systems
(NIDSs) raises valid concerns due to the inherent susceptibility of current ML models to various
threats. Of particular concern are two significant threats associated with ML: adversarial attacks
and distribution shifts. Although there has been a growing emphasis on researching the robustness
of ML, current studies primarily concentrate on addressing specific challenges individually. These
studies tend to target a particular aspect of robustness and propose innovative techniques to enhance
that specific aspect. However, as a capability to respond to unexpected situations, the robustness
of ML should be comprehensively built and maintained in every stage. In this paper, we aim to
link the varying efforts throughout the whole ML workflow to guide the design of ML-based NIDSs
with systematic robustness. Toward this goal, we conduct a methodical evaluation of the progress
made thus far in enhancing the robustness of the targeted NIDS application task. Specifically, we
delve into the robustness aspects of ML-based NIDSs against adversarial attacks and distribution
shift scenarios. For each perspective, we organize the literature in robustness-related challenges
and technical solutions based on the ML workflow. For instance, we introduce some advanced
potential solutions that can improve robustness, such as data augmentation, contrastive learning, and
robustness certification. According to our survey, we identify and discuss the ML robustness research
gaps and future direction in the field of NIDS. Finally, we highlight that building and patching
robustness throughout the life cycle of an ML-based NIDS is critical.

Keywords: network intrusion detection systems; robustness; machine learning; adversarial attacks;
distribution shifts

1. Introduction

Computer networks have revolutionized the way humans live, work, and communi-
cate, and their continued success and advancement will undoubtedly shape the future of
our interconnected world. With the development of computer networks, the attack surface
has increased too. To protect networks from various security threats, many defense mecha-
nisms against network attacks have been proposed, such as network intrusion detection
systems (NIDSs). In recent decades, machine learning (ML) methods have been considered
as a solution for solving intrusion detection problems.

ML has been widely applied in a broad range of industries and domains. For instance,
ML applications in many domains, such as computer vision (CV) [1] and natural language
processing (NLP) [2], have achieved significant success in the real world. At the same
time, many network security tasks have also been built on the benefit of leveraging ML
techniques. Recent NIDS advances [3,4] take advantage of deep learning (DL) to drive
malicious network traffic detection and classifications. ML-based NIDSs can automatically
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extract high-level features by learning from training datasets to achieve excellent detection
performance and be more convenient than traditional signature-based NIDSs.

Despite the impressive performance of machine learning systems, their robustness
remains elusive and constitutes a critical issue that impedes large-scale adoption [5]. Pri-
marily for security tasks, such as NIDSs, robustness is the main concern for trustworthy
real-world ML applications [6]. The considerable demand for robustness partially con-
strains the real-world implementation of ML-based NIDSs [7]. On one hand, research on
the reliability and trustworthiness of ML-based NIDSs is still in the early stage [8,9]. On the
other hand, numerous studies [7,10] highlight the concern that the vulnerability of applied
ML will be part of the expanding attack surface. Furthermore, practical applications are
crucial for validating theoretical advancements and gaining real-world insights [11]. In or-
der to accelerate ML-based NIDS research with practical applications like CV and NLP,
addressing the robustness of ML-based NIDSs should be a top priority.

In acknowledgment of the robustness requirement, an expanding collection of liter-
ature centers around the development and evaluation of robust ML systems [5] for not
only NIDSs but also other fields. However, the increasing efforts at ML robustness are
dispersed in various stages of the ML workflow and focus on different viewpoints [12].
Given that robustness in ML often entails multiple meanings depending on the context and
use cases [13], a systematic survey on the state-of-the-art robustness studies for ML-based
NIDSs is important.

In this paper, we aim to fill this gap by systematically assessing the advancements
achieved so far on the robustness of the specific NIDS application task. Particularly, we
investigate the robustness from the perspective of the capability of ML-based NIDSs in
adversarial attacks and distribution shift scenarios. To gain insights into the robustness
study of ML-based NIDSs, we analyze the similarities and differences between the robust-
ness against adversarial attacks and distribution shifts through formulating and molding.
Furthermore, we group the robustness studies by mapping them into different stages of the
ML workflow to give a structured literature review. In addition, we highlight the research
gap between NIDSs and other fields on the topic of robustness. Finally, we analyze the
most prominent research trends within this field and compare the differences between
NIDSs and other fields from the point of view of applying ML methods which will project
into future research directions for robust ML-based NIDSs.

Our main contributions are as follows:

• We not only highlight the unique characteristics of ML-based NIDSs, and their rele-
vance to robustness (Section 2.2) but also conduct an analysis of existing survey papers
encompassing ML robustness and ML-based NIDSs (Section 2.3).

• We systematically summarize a taxonomy of existing ML-based NIDSs’ robustness
studies (Section 4.1). In our taxonomy, we arrange the robustness studies in six
stages of the ML workflow. For each stage, we introduce research topics related
to robustness challenges or robustness improvement methods for both adversarial
attacks and distribution shifts aspects. In addition to the ML-based NIDS works, we
also introduce some other fields’ advanced ML studies and techniques.

• Based on our analysis, we summarize the main takeaways. We give some future
research directions about the robustness of ML-based NIDS.

The rest of the paper is organized as follows. Section 2 introduces background related
to studies among ML robustness, ML-based NIDSs, and existing robustness survey papers
focusing on the NIDS task. The process of collecting valuable articles for our research topic
is presented in Section 3. Section 4 presents our taxonomy of existing ML-based NIDS ro-
bustness studies, and more details about the two main robustness perspectives, adversarial
attacks (Section 4.2) and distribution shifts (Section 4.3). Section 5 focuses on the inside
robustness challenges and built-in methods for improving robustness. Section 6 focuses
on the outside robustness challenges and patch-up methods for improving robustness.
Section 7 gives the main takeaways and future directions. Section 8 concludes this work.
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2. Background of ML Robustness, ML-Based NIDSs, and Existing Surveys

In this section, we give an overview of ML robustness background and identify the
varying robustness-related terms among different scopes (Section 2.1). We highlight the
unique characteristics of an ML-based NIDS and how they are related to its robustness
(Section 2.2). We briefly summarize the existing survey papers related to ML robustness
and ML-based NIDSs (Section 2.3). For readers’ convenience, we summarize the notation
table in Nomenclature.

2.1. The Concepts Related to ML Robustness

Robustness is a term that has become encompassed in a spectrum of interpretations
and even overloaded [14]. For instance, robustness encompasses a wide range of aspects,
including but not limited to raw task performance on test sets, the ability to sustain task
performance on manipulated or modified inputs, generalization within and across domains,
and resilience against adversarial attacks. Given the multifaceted robustness, we introduce
the related concepts and present a concept tree to illustrate their relationship in Figure 1.

Robustness

Trustworthy

Adversarial
Attacks

Distribution shifts

Transparency Generalization Reproducibility

ID
Generalization

OOD
Generalization

Positive
correlation

Negative
correlation

Figure 1. The concepts related to ML robustness. The red arrows refer to the negative correlation
between the two concepts and the green arrow refers to the positive correlation.

Trustworthy: Trustworthy ML refers to ML models that are designed, deployed,
and utilized in a manner that prioritizes ethical considerations, transparency (interpre-
tation), accountability, fairness, and reliability (robustness). The robustness of ML corre-
sponds to the reliability subfield of trustworthy ML.

Generalization: In the context of machine learning, generalization refers to a trained
model’s capacity to make accurate predictions on new, unseen data that were not part of its
training set.

Depending on the data domain/distribution that the unseen data belong to, two
cases of generalization are presented in the literature [15]. The first case is denoted as
in-domain (ID) generalization, in which the unseen data are sampled from the same do-
main/distribution as that of the training dataset. For the second case, the model’s capacity
for correctly inferring unseen data that are sampled from a different domain/distribution
is denoted as out-of-domain (OOD) generalization. Normally, the OOD generalization is
basically the same as the robustness against distribution shifts.

Distribution shifts: distribution shifts refer to the phenomenon where the input data
of ML models turn out to be different from the source distribution of the training data.

Adversarial attacks: adversarial attacks are a vulnerability of machine learning where
deliberately crafted, small, imperceptible perturbations are added to input data, causing a
trained model to misclassify or produce unintended outputs.

2.2. The Uniqueness of ML-Based NIDSs

ML has achieved numerous successes in recent years and maintained its influence
across various fields, such as CV, NLP, and medicine. The shared element binding these
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diverse domains is the abundant availability of data. Given the privacy concern, real-world
network traffic data, which carry a wide range of sensitive information and valued business
information, are not as readily available as in other areas. Meanwhile, the network traffic
data’s otherness, which is designed by humans and fully deformable (into tabular, images,
or sequences), leads to a unique property of ML-based NIDSs—varying data formats are
adopted for ML-based NIDSs.

Tabular data: The mainstream data format used for ML-based NIDSs is tabular data.
Similarly, in the field of medical diagnosis, the main data format is also tabular data.
However, we notice that there are still fundamental differences between tabular data in
medical diagnosis and NIDS.

First, the subject of each line/sample of data is different. In medical diagnosis, the sub-
ject is different patients, which are all human beings. Despite differences in age, gender,
and physical fitness, the relevant increase or decrease in one particular column of fea-
tures has a similar meaning for diagnosis. However, the detection subject of NIDSs is
network traffic flow, and different traffic flows may be dramatically different in most fea-
tures. Additionally, the varying network environment will also affect the behaviors of
traffic flows.

The second difference is varying features for the diagnosis of different diseases vs.
a uniform feature set for detecting different attacks. The goal of medical diagnosis is
normally to figure out which disease the patient has. Toward this goal, different test results
are obtained, which directly affect feature column usage. The main benefit is that the
features are strongly correlated with the diseases. However, NIDSs are required to use the
same feature set for detection.

Images: Although network traffic can also be transformed into images in existing
works, those byte images are different from the visual images in two aspects: First, the con-
tents of byte images are not translation invariant. Unlike visual images, the contents in byte
images have fixed locations in images. For example, the header information should always
be at the top of the image. Second, there is no foreground or background in byte images.
All of the contents in byte images are only parts of the raw bytes in the original network
packets. For example, visual images are normally labeled based on the foreground, such as
a picture of dogs. But the bytes images do not have the concept of foreground; all parts are
combined into a whole.

Due to the varying data formats, the potential robustness challenges are different
for NIDSs. On one hand, the ML-based NIDS methods using an image data format are
vulnerable to spurious correlations. Those methods transform the raw network packet bytes
into pixels of images; in this case, the payload of some malicious traffic flows, which are
generated by the same attack tool, share a similar pattern. The pattern that is distinguished
from normal traffic flows can be recognized as spurious correlations and hurts robustness.
On the other hand, the ML-based NIDS methods using a tabular format are more sensitive
to feature distribution shifts. Changing the deployment environment or temporal drift will
cause significant performance degradation.

2.3. Existing Surveys of the Robustness of ML

The robustness of an ML model is critical for security applications such as NIDSs,
as its failure can cause serious consequences on what is under protection. Therefore, unlike
CV [1] or NLP [2] domains, a high-degree robustness is an essential requirement of ML-
based NIDS for real-world deployment. Toward the long-term goal of deployment, this
paper aims to bridge the gap in the systematical robustness study of ML-based NIDSs.
In this section, we collect related existing survey papers based on their covering scopes
among the topics that include robustness, machine learning, and NIDSs. We noticed that
most existing surveys only focus on some aspects of robustness.

Adversarial attacks have received the most attention in the NIDS-related literature
review papers. Apruzzese et al. [16] present a model for evaluating the realistic feasibility of
adversarial attacks against ML-based NIDSs. Mbow et al. [17] provide a concise overview
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and critical analysis of the recent advancements in the application of adversarial ML to
NIDSs. They also discuss open questions that help define the future direction of this
growing field. He et al. [18] investigate the gap between adversarial learning in the
NIDS and CV domains. They achieved this by conducting a survey of the literature
covering DL-based NIDS, adversarial attacks, and defensive techniques. The outcome
is a thorough and encompassing portrayal of adversarial learning’s role in the realm of
DL-based NIDSs. Jmila et al. [19] conducted both a literature review and an empirical study.
In addition to analyzing current challenges, they also evaluated the robustness of seven
shallow ML classifiers and designed a Gaussian data augmentation defense technique.
Beyond NIDSs fields, Sarker [20] presents various facets of AI-based modeling, including
analytical, functional, interactive, textual, and visual AI. The goal is to grasp the essence
of leveraging AI techniques effectively for automating cybersecurity, enabling intelligent
decision-making, and ensuring robustness in security modeling. Adversarial learning is
also examined within this context.

Regarding the distribution shift factor, concept drifts in ML-based streaming data mod-
els have received a thorough examination [21,22]. In many ML-based NIDS surveys [23,24],
concept drift has been considered as a serious challenge; however, it has not been system-
ically reviewed in the context of NIDS. Besides concept drift, other types of distribution
shifts, such as spurious correlations and covariate shifts, have not been comprehensive.

Hence, our objective is to address this void by conducting a comprehensive evaluation
of the progress made thus far in enhancing the resilience of NIDS applications. Specifically,
we undertake an exploration of robustness, focusing on the ability of machine learning-
based NIDSs to withstand adversarial attacks and distribution shift scenarios.

3. Research Methodology

In this section, we illustrate the process of collecting valuable articles for our topic.
This process included 3 steps: keywords for collecting literature, expanding the scope for a
comprehensive coverage, and categorization and workflow mapping.

3.1. Keywords for Collecting Literature

We decided to focus our study on the robustness of machine learning-based network
intrusion detection systems (NIDSs), specifically with a keen interest in adversarial attacks
and distribution shifts, which is both timely and relevant to the field. However, in order to
enhance the transparency and credibility of this research, it is imperative to introduce a
dedicated section outlining the research methodology employed in the literature review
process. First, we chose a group of keywords for searching articles. Three levels of
keywords were chosen in this work: core topic, scope and scenario, and technique. For each
level, the keywords are shown in Table 1.

Table 1. Three levels of keywords for the literature collection.

Levels Keywords

Core Topic Robustness, adversarial, distribution shifts

Scope and Scenario
Machine learning, deep learning,
neural networks, NIDSs

Technique

Poisoning attacks, evasion attacks, data augmentation,
contrastive learning, adversarial training, fine-tuning,
domain adaptation, robustness certification,
cross-dataset evaluation, adversarial example

3.2. Expanding the Scope for a Comprehensive Coverage

After the literature collection, we aptly acknowledged the scarcity of the literature
explicitly addressing distribution shifts in ML-based NIDSs. To address this limitation and
to provide a more holistic understanding of the subject matter, the authors wisely expanded
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their scope to include applications beyond network intrusion detection. This includes areas
such as computer vision (CV), natural language processing (NLP), and malware detection,
which share similarities in terms of machine learning techniques and concepts.

3.3. Categorization and Workflow Mapping

We also found a lack of strong correlations between the final collected literature be-
cause most existing studies only focus on one particular technique or method to study,
mitigate, or challenge one of the problems of ML/DL robustness. Considering that ro-
bustness is an inner capability of a trained ML/DL model, we try to split the different
works based on their working stages. To better categorize and organize the extensive body
of literature we found, we decided to map this literature into the workflow of machine
learning. Detailing this process offers readers valuable insights into how the research was
structured and enables them to follow the logical progression of ideas.

4. Taxonomy, Models, and Uniqueness of NIDS Robustness

In this section, we first present our taxonomy of NIDS robustness in Section 4.1. Then,
we introduce more detailed knowledge of adversarial attacks (Section 4.2) and distribution
shifts (Section 4.3). Finally, we give their definition and formulation in Section 4.4.

4.1. Taxonomy of NIDS Robustness Study

In this paper, we focus on investigating research that relates to the robustness of the ML-
based NIDS model. Improving robustness necessitates coordinated efforts across multiple
stages in the ML application life cycle, encompassing data sanitization, robust model
development, anomaly monitoring, and risk auditing. Conversely, the breakdown of trust
in any individual link or aspect can significantly compromise the overall trustworthiness
of the entire system. Thus, a holistic approach to maintaining trust throughout all stages of
the AI system’s life cycle is essential to ensure its reliability and integrity [25].

Considering that ML model robustness is not a one-time achievement but an ongoing
process that requires vigilance, updates, and evaluation, we organized our literature review
sections (Sections 5 and 6) to follow the sequential stages of the ML workflow. As shown
in Figure 2, we laid out the robustness-related research topics, which include both the
challenges and solutions for adversarial attacks and distribution shifts, by the stages
in which those studies mainly work. In the ML workflow, there are six main stages: (1) data
collection and processing; (2) model structure design; (3) training and optimization; (4) fine-
tuning (which is an optional stage); (5) evaluation; (6) application inference. From the point
of view of model robustness, we considered obtaining the weights of models as a split
point because once the training is finished, the robustness of the model is roughly settled
down. Hence, we grouped the first three stages together for the reason that during those
stages, robustness is built into the learning model. Furthermore, we grouped the remaining
three stages together because the model robustness still can be patched up in those stages.

Investigating the ML-based NIDS model robustness, there are two major cases of
models that we took into account in our work. Case A: an ML model that is well trained for
a particular application network environment or scenario. Case B: an ML model that aims
to learn general knowledge on intrusion detection. Due to different training and deploying
purposes, the robustness of those two cases of models should meet different requirements.

4.2. Adversarial Attacks

Adversarial attacks aim to fool the ML model by perturbing the data [26]. Based on
the different stages when the perturbed data are used, adversarial attacks can be classified
into different types as follows.
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Figure 2. Taxonomy of the robustness study topics for ML-based NIDSs with topics grouped by
their machine learning workflow stage. Two main robustness challenges, adversarial attacks and
distribution shifts, encompass both the challenge and solution aspects.

• Poisoning attacks: In the training stage of ML workflow, poisoning attacks aim to
perturb the training dataset by changing the inputs or shifting the labels so that they
influence the trained model’s future capability. If the attacker adds a trigger to the
training data so that they can force the ML model to execute particular behaviors in
the inference stage, those attacks are known as backdoor attacks.

• Evasion attacks: in the inference stage, evasion attacks refer to a type of attack that
attempts to manipulate or exploit a machine learning model by perturbing input data
in such a way that it confuses or misleads the model’s predictions.

Based on the attacker’s knowledge of target ML models, the adversarial attacks can be
divided into three cases as follows:

• White-box attacks: The attackers know everything about the target ML models, such
as the decision boundary. In this case, attackers can modify the inputs with the
minimum perturbation but with a very high success rate [27].
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• Gray-box attacks: the attackers only have part of the knowledge of target ML models
and are able to access target models and observe their behaviors [28].

• Black-box attacks: the attackers do not have any information about the target ML
models and cannot access the target models’ responses.

Regarding ML-based NIDSs, adversarial attacks can be categorized into two types
based on the level of input perturbation applied:

• Feature-based attacks: This type of adversarial attack against ML-based NIDSs fo-
cuses on perturbing the extracted features that represent a network traffic flow.

• Traffic-based attacks: Given the feature extraction component is included in NIDSs,
it is impractical to directly modify the extracted features in real-world scenarios.
Traffic-based attacks refer to those attack methods that focus on modifying the original
network traffic [29].

4.3. Distribution Shifts

Distribution shifts will cause ML models to fail, such as being less accurate. Since the
data are different from the source distribution, another term normally used to represent the
robustness against distribution shifts is out-of-distribution (OOD) generalization. For varying
data types, distribution shifts are normally classified into different subtypes [30] based on
the causes.

Tabular: For many ML applications with tabular data, such as price prediction, there are
three varieties of data distribution shifts [31]. Given inputs X and their labels Y, the training
data can be considered as a set of data samples from the distribution P(X, Y). P(X) denotes
the probability density of the input, and P(Y) denotes the probability density of the label.
The label shift, covariate shift, and concept drift are each characterized as follows:

• A label shift arises when P(Y) changes while P(X|Y) remains constant.
• A covariate shift occurs when P(X) changes while P(Y|X) remains constant.
• A concept drift manifests when P(Y|X) changes while P(X) remains constant.

Images and text: For the real-world ML systems that work on image or text data, such
as object detection, self-driving, and chat robots, even the foundation models pretrained
on comprehensive large datasets are still likely unable to address the distribution shift
issues [32]. Due to images and texts including richer background information than tabular
data, the types of distribution shifts are more complicated. Two extra types are characterized
as follows:

• Spurious correlations refer to statistical associations between features and labels that
exhibit a predictive capability within the training distribution yet fail to constrain such
predictive power within the test distribution [33].

• Temporal (concept) drift and knowledge extrapolation refers to language change and
world knowledge change, which are unseen data far beyond the training distribution.

Network traffic flow: There are many factors that can cause distribution shifts in network
traffic data, such as changing network environments, user behavior changing over time,
and new advanced protocol versions. Additionally, given current ML-based NIDS methods
work on varying types of data, including tabular [4], images [34], and sequences [35],
the distribution shifts in network data have a complex composition. Although varying types
of distribution shifts challenge the robustness of ML-based NIDSs, the studies related to
the distribution shifts in ML-based NIDSs or network traffic analysis have not received
enough attention. Existing works [36] only focus on one type of shifting cause, such as
temporal drift.

4.4. ML Robustness Model

Robustness comprises both model-level and system-level aspects within the context
of practical ML applications, such as ML-based NIDSs. At the model level, it involves
reinforcing the resilience of the machine learning model itself. On a broader scale, system-
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level robustness pertains to the entire application system, where the machine learning
model assumes a pivotal role in delivering core functionalities. For instance, in systems like
NIDS, the machine ML-based NIDS model forms an integral part of the overall application
ecosystem. In this section, we focus on the robustness of the ML model, which is denoted
as the capability of a trained model to withstand a multitude of dynamic challenges.

As per the definitions given in Section 4.2, in adversarial attacks, small perturbations
(r) are added to the input data. Hence, the robustness of the model is related to the smallest
perturbation that needs to be given to the input data to change the output. Therefore,
with adversarial attacks, the robustness can be defined as

R = E
[

min ‖r‖
subject to f (x+r) 6=y

]
. (1)

For the different types of distribution shifts presented in Section 4.3, we can find a
mapping T. With the distribution shifts, a set of data might yield incorrect outputs while
the remaining data points still yield the correct results. Hence, the robustness is related
to the average shift of the inputs and inversely related to the average loss caused by the
distribution shift. With distribution shifts, for a given (fixed) mapping T, the robustness
can be defined as

R̃(T) = E[‖x− T(x)‖] + λ
1

E[l( f (T(x)), y)]
, (2)

where l(·, ·) is the loss function, and λ is a regularization parameter. Here, the second term is
because if the mapping (T) gives a smaller loss, then the robustness is high, and vice versa.
And the first term is because if the mapping (T) has to move the data point by a long
distance to misclassify, then the robustness is high, and vice versa. Then, for distribution
shifts, the overall robustness of the model can be defined as the minimum robustness of
all mappings.

R = min
T
R̃(T) = min

T

{
E[‖x− T(x)‖] + λ

1
E[l( f (T(x)), y)]

}
. (3)

In summary, both the margin defined in Equation (1) and the mapping defined in
Equation (3) refer to the changes that happened to inputs. The defined formulations
about robustness help to analyze the different robustness challenges and solutions in
Sections 5 and 6.

5. Building in Robustness for Natural and Malicious Exploitation of Data
Distribution Shift

As per Equations (1)–(3), training the model with the aim of maximizing the sep-
aration between data points and the decision boundary holds consistent benefits. This
approach enhances the model’s resilience against adversarial attacks and distribution shifts.
To accomplish this objective, it becomes crucial to dedicate additional efforts toward the
acquisition of well-balanced data, the augmentation of the original dataset, and subsequent
training with these enriched samples.

5.1. Data Collection and Processing

Considering that ML-based NIDSs heavily rely on data, any inaccuracies during data
collection and processing can inherently create vulnerabilities in terms of robustness. Hence,
numerous studies aim to improve robustness during this stage too.

5.1.1. Adversarial Challenges and Response

The decision boundary of an ML model can be altered by attacking the training dataset.
If the decision boundary lies in close proximity to the input data, then small perturbations
to the inputs will lead to adverse outputs. As shown in Equation (1), if the input data can
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be manipulated to provide adverse results by introducing very small perturbations, then
the robustness of the model is very low.

Poisoning attacks: For the robustness against adversarial attacks, the most common
challenge in the data collection and processing stage is the poison attack, which is a type
of adversarial attack [37]. Poisoning attacks entail a form of attack wherein malicious
entities manipulate the training data employed for constructing machine learning models.
Due to NIDSs operating within the security domain, ML-based NIDS implementations
inherently prioritize data privacy. As a result, considerations for data privacy are already
integrated into their design. Consequently, unlike scenarios involving the creation of web-
based open-world datasets or the utilization of online learning methods, the centralized
offline learning approach of ML-based NIDSs remains resistant to the risks associated with
poisoning attacks [38].

However, it is essential to acknowledge that the emergence of distributed technologies,
such as federated learning (FL) and the Internet of things (IoT), introduces novel challenges
related to data security and privacy. In these contexts, the decentralized nature of data
aggregation and model training necessitates a careful consideration of potential data-
related vulnerabilities. Nguyen et al. [39] introduce an innovative data poisoning attack,
enabling adversaries to embed a backdoor within the consolidated detection model. This
backdoor is designed for leading to inaccurately categorize malicious network traffic
as benign. The adversary adeptly poisons the detection model over time, exclusively
leveraging compromised IoT devices for injecting minimal quantities of malicious data into
the training pipeline, while maintaining a covert presence.

To protect FL-based NIDSs from poisoning attacks, Zhang et al. [40] introduce an
innovative and resilient FL-based NIDS named SecFedNIDS. This comprehensive approach
comprises both model-level and data-level defensive mechanisms. At the model level,
the authors present a strategic technique for selecting model parameters based on gradients.
This method generates effective low-dimensional representations of locally uploaded model
parameters. Additionally, they propose an online unsupervised approach for detecting
poisoned models. In terms of data-level defense, poisoned data are detected by utiliz-
ing class path similarity, which is obtained through the layerwise relevance propagation
method. Lai et al. propose DPA-FL [41], a dual-phase approach to defend against poisoning
attacks. DPA-FL harnesses both relative comparison and absolute accuracy to swiftly
mitigate the impact of poisoning attacks. The first phase, referred to as the relative phase
(RP), identifies potential attackers by analyzing relative differences in weight between
attackers and benign participants. The second phase, the absolute phase (AP), employs
an accuracy assessment on a limited dataset. When the model’s accuracy falls below a
threshold, indicating susceptibility to an attack, AP can ascertain whether any attacker
influences the global model.

Discussion: In summary, the research on poisoning attacks against ML-based NIDSs
mostly focuses on FL and IoT scenarios. Compared with evasion attacks, poisoning attacks
receive less attention. Obviously, launching poisoning attacks is more difficult than evasion
attacks due to the absence of data access. We notice that the existing defense mechanisms
have a common characteristic: protecting both data and models. To mitigate the impact of
poisoning attacks, only protecting data may not be sufficient, because only altering a small
portion of the training data will influence the NIDS model’s behavior. Therefore, model
training protection is required to prevent compromising the global ML model.

5.1.2. Distribution Shift Challenges and Response

As per Equations (2) and (3), if mappings can shift the data points by very small
amounts leading to larger losses, then the model is said to have very little robustness.

For the robustness against distribution shifts, recent deep learning advances report
that data augmentation can improve robustness/generalization under distribution shifts.
Given the cost of data collection, data augmentation [1] is the simplest way to improve
generalization using only currently available resources. However, we noticed that existing
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data augmentation methods for NIDSs [42,43] mainly focus on solving the problem of
imbalanced data. Therefore, in this subsection, we introduce some recent data augmentation
studies which aim to help the robustness against distribution shifts in other fields.

Data augmentation against distribution shifts: A lot of research in the field of
CV [44–46] and NLP [47,48] report that data augmentation can improve out-of-distribution
robustness. However, due to the huge difference between network traffic and images or
text, those methods may not be able to be directly applied to ML-based NIDS or other
network security tasks. In this part, we introduce the general data augmentation methods
for multiple data types or data augmentation network traffic data for improving robustness
against distribution shifts.

In the field of DL-based encrypted traffic classification, Xie et al. [49] notice the chal-
lenge that although the classification performance achieved by existing deep learning
models on encrypted traffic is impressive, a comprehensive study reveals a notable decline
in their performance within varied and realistic network environments. To overcome this
challenge, Rosetta was proposed to enhance the robustness of existing deep learning mod-
els for classifying TLS encrypted traffic. Rosetta focuses on perturbing the packet length
sequences of flows, which is considered the main factor dramatically affected by varying
TCP mechanisms and network environments. Rosetta consists of a TCP-aware traffic aug-
mentation and a traffic invariant extractor. Three main TCP-aware traffic data augmentation
methods are adopted, which are packet subsequence duplication augmentation, packet
subsequence shift augmentation, and packet size variation augmentation.

Regarding the general data augmentation methods for multiple data types, Gao et al. [50]
present a targeted augmentation method for OOD generalization. By theoretically ana-
lyzing the OOD risk for unaugmented models in a linear regression setting, they define
four feature types for input, which are object feature, noise, robust feature, and spurious
feature, based on whether those types are label-dependent and whether those types are
domain/distribution-dependent. The target augmentation aims to randomize the spurious
feature, which is dependent on the domain and independent of the label but preserves the
robust feature, which is dependent on both the domain and the label. The targeted aug-
mentation is evaluated on three real-world datasets across images of animals, biomedical
images, and audio data.

Discussion: While addressing the issue of imbalanced data is indeed a crucial challenge
within the realm of network security [51], it does not have a direct correlation with the topic
of robustness. Data augmentation for imbalanced data focuses on improving the models’
performance on those rare classes’ data but not on improving OOD generalization, even
though their methods for generating synthetic network data based on the original ones are
essential for both types of network data augmentation.

Based on analyzing the characters of network traffic data, we believe that traffic data
augmentation is challenging for the following reasons:

• Mainstream data format—tabular data: Most ML-based NIDSs use statistical features in
tabular format for detection. But modifying the features’ values is very risky, and it is
hard to verify if the augmented samples are realistic or not.

• Structured raw packets: Network packets are designed for varying types of protocols
and services. But within each individual type of traffic, the packet structure is clearly
defined. That means unlike images, network data augmentation must only happen in
the parts of raw packets that will not break the construction rules.

• Flexible raw packets: For network packets, not only the value of raw bytes can be modi-
fied but also the length of packets. The flexibility of each packet further exponentially
affects the traffic flow they belong to. This flexibility makes it so hard to preserve the
label-dependent features in the original data during augmentation.
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5.2. Optimization
5.2.1. Adversarial Challenges and Response

Contrastive learning with adversarial learning: The performance of contrastive
learning (CL) models depends critically on the design of positive and negative sampling
strategies, and the robustness of the model will be greatly influenced by the difficulty of
the suggested sample pairs. Self-supervised adversarial learning, as opposed to traditional
CL, uses adversarial augmentation to make hard sample mining easier.

The data imbalance issue in network intrusion detection was addressed in [52] via
adversarial data augmentation and self-supervised contrastive representation learning.
In order to improve the representative learning progress in deep ML-based NIDS, the au-
thors particularly presented a self-supervised adversarial learning method. This approach
made use of an instancewise attack to produce a robust model by suppressing its adversar-
ial susceptibility to perturbation samples. However, the performance discrepancy among
different feature sets was obvious in the proposed research.

In [53], the authors suggest a novel method for improving the robustness of feature-
space realizable adversarial examples-based ML-based Android malware detection. By iden-
tifying significant feature dependencies, the authors specifically provide a new understand-
ing of domain constraints in the feature space. The authors utilize the optimum-path
forest technique to identify these dependencies and use them to produce feature-space
realizable adversarial examples during adversarial training in addition to taking statistical
correlations into account. Domain knowledge is a valuable asset that may be used to im-
prove the suggested strategy in the proposed research. However, a fundamental challenge
is how domain experts’ expertise might be used to set problem-space restrictions in the
feature space.

5.2.2. Distribution Shift Challenges and Response

Contrastive learning: In order to glean information from the data themselves, con-
trastive learning creates pairings of positive and negative samples. Building a contrastive
loss function is the fundamental concept behind contrastive learning. The model can com-
pare similar and different data, draw on comparable samples, and draw out distinct samples.

In recent years, supervised CL has shown promising achievements in representation
learning, natural language processing (NLP), and computer vision (CV) [54]. In [55],
the authors put forth a supervised contrastive loss that performs better than cross-entropy
loss and efficiently uses label information to group together point clusters that belong to
the same class in the embedding space while isolating points from different sample classes.

In [56], the authors suggest a technique that contrasts network traffic in order to
improve class-imbalanced learning in network intrusion detection. The dropout layer’s
randomness is used to produce various feature vectors, the model is inputted twice with
the same flow, and supervised CL and cross-entropy are used to train the model. This
method considerably enhances the learning of unbalanced network traffic and does not
require the two phases of pretraining and fine-tuning, allowing for the wider exploration
of harmful attacks concealed behind legitimate traffic. The acquired positive samples,
however, are comparable when employing the dropout for data augmentation, which leads
to feature suppression in the model. Since the model is unable to discriminate between
sample similarity and class similarity, it is biased toward using a large number of typical
traffic samples without taking into account their real variations in class.

In [57], the authors demonstrate how altering the feature space’s characteristics might
have an impact. For example, robust ML using feature-space models is extremely ro-
bust in content-based detection (which utilizes content rather than structural routes as
features). Additionally, the authors demonstrate an improved feature-space model that
uses conserved characteristics (which can be recognized automatically) and demonstrate
that feature-space defense now succeeds where it previously failed. Additionally, they
demonstrate the generalized robustness of feature-space techniques by demonstrating
that the robust ML produced (after proper refinement using conserved features) is robust
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against a variety of realizable attacks. However, one limitation of the proposed research is
that the conserved features are limited only to the binary case.

6. Patching Up Robustness for Natural and Malicious Exploitation of Data
Distribution Shift

As per Equations (1)–(3), the robustness against adversarial attacks and distribution
shifts are all related to the distance between the data points and the decision boundary.
For the fine-tuning, evaluation, and application inference stages, manipulating or measur-
ing the distance can improve or evaluate ML models’ robustness.

6.1. Fine-Tuning

Pretrained models are typically refined through a process called fine-tuning. This
involves leveraging the existing model parameters as a foundation and appending a task-
specific layer trained from scratch on new data [58]. Fine-tuning is an optional stage in
the ML workflow, which also will affect the assumption about robustness requirements.
Considering both pretrained model and fine-tuned model, it should be noticed that they
have different robustness requirements. The pretrained models, which are often trained on
extensive and diverse datasets, are required to be robust to both distribution shifts caused
by the environment and tasks and temporal concept drift. But the fine-tuned models should
not be required to be robust to distribution shifts caused by different environments but
should still be robust to adversarial attacks and concept drifts (i.e., an ML-based NIDS
model is fine-tuned with a new dataset collected from the target network environment
where this NIDS will work).

6.1.1. Adversarial Challenges and Response

Adversarial fine-tuning: Wang et al. [59] propose Def-IDS, an ensemble defense mech-
anism against adversarial attacks by combining multiclass GAN-based data enhancement
and multiclass adversarial retraining. Their results on the CSE-CIC-IDS2018 dataset demon-
strate that Def-IDS has the capability to greatly enhance the resilience of deep ML-based
network intrusion detectors against both known and unknown adversarial attacks.

Although retraining models with adversarial samples can improve robustness [59–61],
how to generate the quality adversarial samples that can bring benefits is absent in those
works. Fortunately, another research topic named robustness certification [62,63], which
focuses on evaluating the robustness against adversarial perturbations, proposes methods
to solve the problem. We introduce the details of robustness certification in Section 6.2.1.

6.1.2. Distribution Shift Challenges and Response

Domain adaptation: Layeghy et al. [64] propose a cross-domain anomaly detection
approach, DI-NIDS, which leverages domain adaptation techniques. Initially, a domain-
adversarial neural network (DANN) is employed to extract domain-invariant representa-
tions of the data. This is achieved by incorporating a gradient reversal layer into the feature
extraction network, which minimizes the dissimilarity between the representations of the
source and target domains. During training, DI-NIDS uses both labeled source data and
unlabeled target data to effectively train the DANN. Once the DANN is trained, DI-NIDS
exploits its feature extraction branch to obtain domain-invariant features. These features
possess the desired property of being insensitive to domain variations while retaining
significant information. To accomplish the final objective of cross-domain anomaly detec-
tion, DI-NIDS applies a one-class support vector machine or one-class SVM (OSVM) [8]
to the extracted features. This enables DI-NIDS to detect anomalies in a cross-domain
setting effectively.

Qu et al. [65] introduce a novel network intrusion detection method utilizing domain
confusion. The approach involves training a domain confusion network using generative
adversarial networks (GANs). To address the issue of information loss during feature
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transformation, a regularizer is incorporated. This helps achieve a domain-invariant
feature representation of network traffic data that retains substantial information.

Discussion: Although many studies [66,67] report that fine-tuning can degrade a
model’s robustness, other NLP studies [68,69] show the opposite conclusion. In [68], the
authors developed a novel fine-tuning method for NLP. In the fine-tuning step of the BERT
model, supervised contrastive loss and cross-entropy loss were combined with weighting.
A contrastive framework for self-supervised sentence representation transfer (ConSERT)
was presented in [69], which used CL to fine-tune BERT unsupervised.

6.2. Evaluation
6.2.1. Adversarial Challenges and Response

Randomized smoothing-based robustness certification: Robustness certification
studies aim to certify the robustness of an ML-based classifier against adversarial at-
tacks/perturbations. One line of those works focuses on using the randomized smoothing
technique to solve the problem [62]. The robustness certification has been successfully
applied in CV [63,70] and NLP [60,61].

Recently, Wang et al. [71] proposed a robustness certification framework, named
BARS, for DL-based traffic analysis, which can be considered as an upstream task of NIDSs.
The design of BARS takes the unique attributes of the traffic analysis task into account,
which are (1) the heterogeneous traffic data in the tabular format; (2) varied existing traffic
analyzers; (3) serious adversarial application environments. BARS creates anisotropic
optimized smoothing noise for input data, thereby achieving more stringent robustness
guarantees through evaluating the traffic analyzers.

In detail, Wang et al. first extend the theory of robustness guarantee for CV tasks [62]
to adapt it to network traffic analysis. Further, they design a distribution transformer
to generate anisotropic smoothing noises for heterogeneous traffic feature inputs. Two
optimization methods, noise shape optimizing and noise scale optimizing, are proposed
to optimize the distribution transformer to achieve a better tightness of the robustness
guarantee [63]. Finally, BARS uses the distribution transformer, which can automatically
generate evaluating data to certify the robustness of the model in terms of robust region,
dimensionwise radius vector, and the average dimension-heterogenous radius for the
input data space. BARS can be applied for many different purposes, such as class-specific
distribution transformer, noise data augmentation retraining, and robustness radius for the
certification dataset.

Discussion: Randomized smoothing-based robustness certification methods utilize a
large quantity of noised data samples to estimate the model’s robustness against adversarial
attacks. Therefore, it is similar to data augmentation for the reason both of them modify
the original data samples. However, their differences are also significant. First, most data
augmentation methods use a transform, which is fundamentally different from adding
noise. Second, many data augmentation methods are experimentally proven widely effec-
tive, but how the randomized smoothing-based noise augmentation retraining precisely
affects the risk of the robust smoothed classifier has not been comprehensively addressed.
Recent work [72] reports that noise augmentation retraining’s benefit can only be obtained
by some distributions that have particular characters.

6.2.2. Distribution Shift Challenges and Response

Cross-dataset evaluation: Verkerken et al. [73] argue that anomaly-based NIDSs using
ML see limited use in practical applications, even after years of research and development.
They attributed this phenomenon to the inadequate generalization capabilities of the
proposed models. Therefore, their article [73] uses a novel interdataset evaluation strategy
to estimate the generalization of unsupervised ML-based NIDS models, such as principal
component analysis (PCA), isolation forest (IF), autoencoder (AE), and one-class SVM.
The interdataset evaluation strategy trains a model on the first dataset and evaluates it on
the second dataset. The evaluation results show an average AUROC performance decrease
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of 30.45% across CIC-IDS-2017 and CSE-CIC-IDS-2018 datasets. Their work remarks on the
importance of improving the OOD generalization and claims their interdataset evaluation
is a strong candidate for adoption in future research to estimate the generalization strength
of newly developed models.

In [74], AI-Riyami et al. demonstrate that achieving high accuracy by using the recent
performance evaluation strategy is easy for traditional machine learning and deep learning
models but not practical for real-world applications. This observation motivated them to
design a cross-dataset evaluation. Their subsequent work [75] proposed the correction and
further empirically investigated cross-datasets evaluation for various machine learning
methods in multiclass classification.

Apruzzese et al. [76] extend the cross-dataset evaluation from evaluating the ro-
bustness of trained ML-based NIDS models to evaluating the potential robustness of
ML-based NIDS models. In short, mixing different datasets together not only happens at
the testing stage but also at the training stage. First, a data-agnostic model is proposed
for explaining the problem of cross-evaluation. Then, in order to overcome the chal-
lenges in cross-evaluation, a framework for cross-evaluating ML-NIDS, named XeNIDS,
is designed. XeNIDS consists of four stages, which are standardize, isolate, contextualize,
and cross-evaluate, so that it can achieve several benefits, such as removing network artifacts,
mixing individual attack types labelwise, and enabling the development of collaborative
ensembles of classifiers.

Layeghy et al. [77] claim that assessing the cross-domain performance of ML-based
NIDSs represents a crucial yet inadequately explored gap in connecting the remarkable
results achieved by the academic research community and the real-world implications
of such research. Hence, they conduct a thorough investigation into the cross-domain
performance of ML-based NIDSs. Their investigation involves comprehensive evaluations
of eight supervised and unsupervised learning models using four recently published
benchmark NIDS datasets. Meanwhile, they use the Shapley additive explanations (SHAP)
values to show that feature importance order and the mean SHAP values are significantly
different across datasets, which indicates different model behaviors.

Discussion: Training customized ML-based NIDSs is acceptable for certain crucial
important network environments, even though sufficient data collection and annotation
are highly costly. However, portability is also important for network protocols and services,
as well as for ML-based NIDSs. From the point of view of ML research, training ML models
to learn general knowledge, which can be reused in different scenarios is a long-term goal
in every field. In this case, developing corresponding evaluation methods is essential to
provide feedback information.

6.3. Application Inferences

Application inferences refer to the stage in which trained ML-based NIDS models
are deployed in real-world application scenarios. During the application inference stage,
the robustness of the deployed NIDS poses a severe threat from both malicious adversarial
attacks and inevitable distribution shifts. For the adversarial attack aspect, numerous stud-
ies focus on adopting varying ML-based methods to generate attacks against NIDSs. On the
other hand, many works propose solutions by introducing extra adversarial detectors to
defend against adversarial attacks.

For the distribution-shift aspect, challenges that are raised by different causation are
normally named separately; for example, the data shifting over time is named concept drift.
Because the network is a dynamic environment and the network traffic is streaming data,
concept drift received the most attention in NIDS distribution shift studies. Furthermore,
the distribution shift also happens because of the major changes in the way NIDSs are used,
such as different flow duration threshold settings in preprocessing. Meanwhile, studies
on detecting and adapting the shifted inputs have been proposed to combat distribution
shift issues.
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6.3.1. Adversarial Challenges and Response

During the application inference stage, the robustness of ML-based NIDSs encounters
a critical challenge known as evasion adversarial attacks. These attacks pose a severe threat
to the security of the system, as they involve the deliberate manipulation of malicious
traffic to evade detection and undermine the integrity of the target network. Recently,
designing more realistic evasion attacks against NIDSs in the application inference stage
received increasing attention. Realistic adversarial attacks are normally designed to work in
traffic space based on practical assumptions about the real-world NIDSs’ workflow settings.
However, the study on how to protect NIDSs from adversarial attacks in the application
inference stage has received limited attention.

Evasion attack: While finding inspiration from the field of computer vision (CV) [18],
adversarial attacks targeted at NIDSs have been observed to exhibit differences in prepro-
cessing and input space. Unlike adversarial attacks in CV, which directly perturbs the pixel
values of images, adversarial attacks against NIDSs require perturbing data samples in
feature space or traffic space.

However, feature-space adversarial attacks against NIDSs are impractical in realistic
NIDS scenarios for several reasons. First, feature-space attacks require knowledge about
the feature set employed by the target NIDS model. Second, the dependencies among
adversarial features must be validated [78]; otherwise, the resulting adversarial features
may be deemed invalid, as they might violate certain network domain facts, such as corre-
spondence between ports and applications. Third, even the feature-space attacks still need
to perform their effects by manipulating the raw traffic data in real-world environments.

For the traffic-space adversarial attacks, Sadeghzadeh et al. [79] proposed adversarial
network traffic (ANT) that generated adversarial perturbation in three aspects of traffic
space, packet payload length, packet number, and flow bursts. However, ANT required full
knowledge of the target detection model and the feature set, and different perturbation op-
erations were learned separately. Han et al. [80] proposed a two-step solution to practically
generate traffic-space adversarial attacks against realistic scenarios. They first generated
adversarial features with a GAN to let the malicious traffic mimic benign traffic in the
feature space. Then, a particle swarm optimization (PSO) was adopted to project the feature
perturbation back to the traffic space. Clearly, the two-step method incurred additional
costs compared to the one-step approach, and it also required domain knowledge to guess
the feature set for training the feature-space GAN.

Both Wu et al. [28] and Tan et al. [81] proposed reinforcement learning (RL)-based
evasion attacks against NIDS models. However, RL-based methods require inspecting the
feedback of target NIDS to train the RL models. Once their queries are blocked, they cannot
finish training the adversarial RL models. An advantage of the attack in [81] is that their
framework can perturb live network traffic, which makes their attack more practical in
the real world. Similarly, Sharon et al. [29] proposed the TANTRA, which can end-to-end
execute adversarial attacks by reshaping the original malicious traffic in the time domain.
TANTRA trains an LSTM model to learn the temporal behavior of benign traffic within
the interarrival time prediction task. The trained model is then used to generate new
interarrival times for malicious traffic. TANTRA does not require any target model or
feature set information, but it only perturbs the interarrival time. Another shortcoming
is that the LSTM model has fixed outputs for specific inputs, which may result in the
adversarial attacks having some pattern, which triggers other defense alarms.

Adversarial example detection: To defend against adversarial attacks in the NIDS
models’ application inference stage, adversarial example detection methods are proposed.
Adversarial example detection aims to filter the adversarial examples before they are fed
into the NIDS models.

Peng et al. design an adversarial sample detector in [82], which is based on a bidirec-
tional generative adversarial network (BiGAN) [83]. First, the BiGAN is trained to learn
the original clean data distribution (without adversarial perturbations) for reducing the
adversarial noise and reconstructing the adversarial examples. Then, adversarial examples
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are compared with the reconstructed samples to calculate the reconstruction error. Finally,
the reconstruction error is combined with the error of the discriminator as the abnormal
score, and when the score is larger, the input is more likely to be an adversarial example.
Wang et al. proposed MANDA [84], a novel manifold and decision boundary-based adver-
sarial example detection for ML-based NIDS. As the method name mentioned, two typical
adversarial attack cases, the manifold case and decision boundary case, were targeted by
MANDA. MANDA’s detection philosophy is that an input is likely to be an adversarial
example if it has an inconsistency between the manifold evaluation and the IDS detection
or is very close to the decision boundary. Adversarial example detection is also included in
Tiki-Taka [85], which is a comprehensive adversarial attack defense mechanism for NIDSs.
Tiki-Taka assumes that the queries have inherent similarity; therefore, a deep similarity
encoder (DSE) [86] is used to detect the received continuous queries, based on which the
attackers learn to adjust the perturbations.

Discussion: Adversarial example detection is often considered the “last line of defense”
because it operates after the model has been trained and deployed. Even if an ML model
has undergone robust training, it can still be vulnerable to adversarial attacks. Adversarial
example detection tries to catch such attacks at inference time. However, adversarial
example detection for ML-based NIDS has not received enough attention.

Although adversarial example detection is important, it also has some shortcomings:
(1) it requires extra adversarial example classifier, but NIDSs need to be efficient in moni-
toring network traffic; (2) existing works only evaluate feature-space adversarial attacks,
which are based on some assumptions, and perturbed samples are distinguished from
clean data [18], unlike the practical traffic-space attacks which have emerged recently.

6.3.2. Distribution Shift Challenges and Response

The possible reasons for distribution shifts (of different types) are: 1. Data represen-
tation (such as feature selection, processing configuration (artificial threshold)); 2. Data
collection (human bias, incomplete collection); 3. Application scenario change; 4. Concept
drift, p(x|y) changes.

Concept drift: Concept drift refers to the phenomenon where the statistical proper-
ties of a target domain change over time in an unpredictable or arbitrary manner [87].
As real-time detection systems, ML-based NIDSs face the challenge of concept drift when
monitoring network traffic streams. Different from adversarial attacks, concept drift nor-
mally is caused by some natural underlying changes in the higher-level environment.
Therefore, to combat concept drift, ML-based NIDSs not only need concept drift detection
but also concept drift adaptation. As a well-studied topic, many concept drift detection
(window-based and performance-based methods) and adaptation (adaptive algorithms,
incremental learning, and ensemble learning) methods have been proposed in other ML
fields [22].

Recent NIDS studies on concept drift focus on designing comprehensive frameworks to
improve the robustness against concept drift instead of working on detection or adaptation only.

Andresini et al. [88] propose a comprehensive ML-based NIDS to integrate both
intrusion detection and concept drift detection together. They argue that both intrusion
and concept drift detection should learn from the changes over time, but current ML-based
NIDSs are built on the assumption of a stationary traffic data distribution. Their framework
detects concept drift by the Page–Hinkley test (PHT) [89] and adopts incremental learning
to update the training data and detection model.

Further, Andresini et al. propose INSOMNIA [90], which follows the underlying
idea in [88], to combat concept drift and improve the model robustness at the same time.
INSOMNIA leverages a DNN as its core classifier, and to mitigate the latency caused
by model updates, it adopts an active learning approach, updating the model only with
new points that yield maximum information gain. INSOMNIA also extends the goal of
combating concept drift to also reduce the cost of labeling. INSOMNIA is designed as a
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semi-supervised system, employing a nearest centroid neighbor classifier (NC) to estimate
labels for the selected points.

Yang et al. [91] claim the retraining-based concept-drift defense methods are limited in
practice for reasons such as “it is difficult to determine when the model should be retrained”
and “Delayed retraining can leave the outdated model vulnerable to new attacks”. They
present CADE, which focuses on detecting and explaining each individual drifting sample.
CADE adopts contrastive learning on the training dataset to learn a novel contrastive
autoencoder-based concept drift detector. Furthermore, to explain the drifting samples in
terms of feature importance, they design a new distance-based explanation method.

Application scenario change (data distribution shifts): In addition to concept drift,
which mainly refers to temporal changes caused by dynamic environments, we believe that
the more urgent area of study for ML-based NIDSs is the distribution shifts in the spatial
view. Consider that most NIDS datasets are collected in particular environments but are
expected to be used for training ML models that will be deployed in different environments.

Al-Riyami et al. [74] report cross-dataset evaluation results on the NSL-KDD [92]
and gureKDD [93] datasets. Their results report a serious performance degradation of
ML-based NIDSs when the testing data have a different distribution from the training data.
They argue that NIDS research is conducted in such a way that training and testing the
NIDS model in the same dataset is not practical for real-world application, because this type
of evaluation performance cannot represent the quality of the models in the actual world.

Actually, the data distribution shifts caused by switching datasets are the same as the
shift caused by an application scenario change. However, the application scenario change
happens at different levels, for example, the high-level change from the NID in general
Internet to the Internet of things (IoT), or the low-level change from a network environment
belonging to universities to a network environment belonging to companies. Ideally,
the long-term goal of ML-based NIDS studies is to build the capability of ML models to
learn general and universal knowledge that can be easily reused for different scenarios.

Discussion: For ML-based NIDSs, improving robustness should consider both one-time
learning (cross-domains) and lifelong learning (concept drift). One-time learning involves
training a model on a varied dataset obtained from different domains or network environ-
ments. This is vital because real-world network traffic originates from diverse sources, each
possessing distinct characteristics. If your NIDS is solely trained on a narrow dataset or
domain, its performance could suffer when encountering unfamiliar and unanticipated
data. Lifelong learning pertains to a model’s capacity to consistently adapt and learn
as the distribution of data evolves over time. Within the realm of NIDSs, alterations in
network traffic patterns and attack methods (concept drift) can occur. A resilient NIDS
must possess the ability to identify novel attack patterns that surface subsequent to the
initial training period.

7. Research Summary and Future Directions

In this section, we expound upon the primary insights distilled from our compre-
hensive analysis and outline prospective avenues for advancing the resilience of machine
learning-based NIDSs.

7.1. Main Takeaways

Based on our literature review and analysis in Sections 5 and 6, we summarize the
main takeaways of this literature review in this section. The main challenges against the
robustness of ML-based NIDS are summarized as follows:

• Poisoning attacks are not easy to launch against ML-based NIDSs. However, online
learning and distributed learning systems (such as federal learning and IoT scenarios)
are more vulnerable (Section 5.1.1).

• Evasion attacks, not only feature-based but also traffic-based, against ML-based NIDS
have already received a lot of attention. However, how to use those attack methods to
practically benefit robustness against adversarial is still unclear (Section 6.3.1).
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• Concept drift caused by temporal change has been comprehensively studied for ML-
based NIDSs. The main solution is the life-cycle adaptation method, specifically
retraining the ML model after the drift happens (Section 6.3.2).

• Distribution shifts caused by a network environment change have received less attention
than concept drift for ML-based NIDSs. However, a pretrained NIDS model that is
generalized across different network environments will greatly benefit from being
deployed in a particular environment (Section 6.3.2).

We summarize the main takeaways on the techniques related to ML robustness in
Table 2. In this table, we compare different techniques in terms of impact on robustness,
stages in the life cycle, degree of study in NIDSs, and degree of study in other fields, such
as CV and NLP. We remark that those techniques impact robustness at both the ML model
level and the system level. The system refers to a whole application system, in which the
ML model plays the role of providing core functions (for instance, the NIDS system and
the ML-based NIDS model).

Table 2. Summarized takeaways on the investigated techniques related to ML robustness.

Techniques Impacts on ML Model/System’s
Robustness

Stages in
the Life Cycle

Degree of Study
in NIDSs

Degree of Study
in Other Fields

Poisoning attacks Reduces model robustness Data preparation Moderate Moderate

Evasion attacks Unclear Inference Comprehensive Comprehensive

Data augmentation Improves model robustness Data preparation Limited Comprehensive

Contrastive learning Improves model robustness Pretraining Limited Comprehensive

Adversarial training Improves model robustness
Training/
retraining Moderate Comprehensive

Fine-tuning Based on the used data,
could be beneficial or harmful

Retraining Moderate Comprehensive

Domain adaptation Improves system robustness
(against concept drifts)

Retraining Moderate Comprehensive

Robustness certification Evaluates robustness
(against adversarial attacks)

Evaluation Limited Moderate

Cross-dataset evaluation Evaluates robustness
(against distribution shifts)

Evaluation Moderate Moderate

Adversarial example
detection

Improves system robustness
(against adversarial attacks)

Inference Limited Comprehensive

In addition, we noticed that contrastive learning and adversarial training were two methods
that could be combined to train the ML model. Several research studies have been carried
out on improving the robustness of NIDSs by training the model using both adverse
and clean data via adversarial training. However, the current research on utilizing CL to
improve the robustness of NIDSs is limited and needs further sophisticated investigations
(Section 5.2).

7.2. Discussion on Future Directions

Based on Table 2, we further discuss the techniques that are limited in the current
ML-based NIDS field but could bring potential opportunities for improving robustness.
In this section, we focus on four techniques: contrastive learning, robustness certification,
adversarial example detection, and data augmentation.

7.2.1. Contrastive Learning for NIDSs

In order to extend the typical supervised CL objective to self-supervised learning,
which can learn with few labels, in the presence of class imbalance, and with better label-
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independent initial feature information, novel research should be carried out focusing
on automated feature extraction and data augmentation techniques for network traffic.
The model can benefit from the pretraining and eventually learn a more generic repre-
sentation of the network flow when the self-supervised learning conducts an effective
initialization. Identifying meaningful conserved features in continuous feature spaces may
be more challenging fundamentally. The extent to which modest differences in the list of
recognized conserved characteristics matter is also an unresolved issue.

A better data-driven NIDS solution can be achieved by improving the representational
ability of network flow data with a consistent and comprehensive behavior feature set.
In addition, investigating a universal end-to-end method for more generic NIDS, which
might significantly minimize the challenges of system implementation is also another
future research direction. It might be anticipated that domain information can improve the
precision of the search for feature dependencies. Hence, including domain knowledge to
supplement data-driven methodologies in uncovering relevant feature dependencies is
another intriguing path for future research.

7.2.2. Robustness Certification for NIDSs

Robustness certification presents substantial opportunities for the deployment of ML-
based NIDS. This certification process theoretically establishes whether an ML-based NIDS
model meets specific robustness criteria. Current robustness certification methods focus on
quantifying DL models’ robustness against adversarial attacks. Particularly, the robustness
certification can estimate the robustness radius on testing data samples, which are generated
by adding adjustable noise to original inputs. In addition to the mentioned randomized
smoothing (Section 6.2.1), other methods, such as α-CROWN, β-CROWN, have not been
explored for the ML-based NIDS field. Beyond quantifying and guaranteeing intramodel
robustness, robustness certification can also serve as a continuous monitor to assist the
extra adversarial example detector in filtering adversarial inputs before feeding them into
ML models.

7.2.3. Adversarial Example Detection for NIDSs

Considering the trade-off between accuracy and robustness for a specific ML applica-
tion scenario is well known [5], either accuracy or robustness decreasing is unbearable for
a practical ML-based NIDS. Hence, an extra adversarial filter is essential, but some unique
requirements must be taken into consideration.

A further research direction is how to design a real-time adversarial example detection.
Otherwise, the extra component will become a new bottleneck hindering the efficiency
of NIDSs. Another one is that adversarial example detection for NIDSs must be able to
analyze both feature-based adversarial attacks and traffic-based adversarial attacks. Given
the uniqueness of network traffic data (Section 2.2), the differences among varying data
formats’ adversarial attacks and attack detection methods should be considered when
designing an adversarial example detection system.

7.2.4. Data Augmentation for NIDSs

The above-mentioned contrastive learning with adversarial examples, robustness
certification, and adversarial example detection are all related to generating synthetic
network data or adversarial network examples which can be denoted as data augmentation.
Data augmentation is a widely employed technique across diverse ML tasks; however,
network data augmentation is fundamentally hard because of the uniqueness of existing
varying possible data formats for NIDSs. Therefore, we believe the future network data
augmentation direction is to design comprehensive augmentation methods at the feature
level, payload level, packet level, and traffic level.
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8. Summary and Conclusions

In this survey, we collected, structured, and discussed literature related to the ro-
bustness of ML-based NIDSs from two perspectives: adversarial attack and distribution
shifts. Based on the collected literature, we first systematically introduced the concept
of ML robustness and its related concepts. Additionally, we discussed the uniqueness of
ML-based NIDSs. Further, we designed a taxonomy to structure the adversarial attack- or
distribution shift-related studies from both challenges and solutions viewpoints. In our
taxonomy, we organized the reviewed papers according to which stage of the ML workflow
the proposed method worked. For the related topics which have not received enough atten-
tion in the field of NIDS, we also supplemented the review with advanced works in other
ML application fields such as CV and NLP. Finally, we presented the key insights derived
from our analysis and outlined future research directions for investigating, measuring,
and improving the robustness of ML-based NIDSs.

In conclusion, we argue that robustness should be considered at least as equally
important as functional performance, such as accuracy. Given the essential aspect of ML
robustness, building in and patching up robustness for ML-based NIDSs in their whole life
cycle is necessary to guarantee their reliability in real-world deployment. We also would
like to emphasize that robust pretrained NIDS models could be good starting points for
building robust ML-based NIDSs. In the case of a pretrained NIDS model, the robustness
should be more important than the accuracy for the reason that the NIDS task is vulnerable
to concept drifts, such as zero-data attacks. We hold the perspective that the exploration
of robustness is an ongoing endeavor. In the context of ML-based NIDSs, substantial
endeavors remain essential to attain the threshold for practical real-world deployment.
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Nomenclature

Acronyms Meanings
AE Autoencoder
ANT Adversarial network traffic
CL Contrastive learning
CNN Convolutional neural network
CV Computer vision
DANN Domain-adversarial neural network
DDoS Distributed denial of service
DL Deep learning
IF Isolation Forest
LSTM Long short-term memory
MAC Media access control
ML Machine learning
NLP Natural language processing
NIDSs Network intrusion detection systems
OOD Out-of-domain generalization
PCA Principal component analysis
RNN Recurrent neural network
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