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Abstract: A synchronous machine is an electro-mechanical converter consisting of a stator and a rotor.
The stator is the stationary part of a synchronous machine that is made of phase-shifted armature
windings in which voltage is generated and the rotor is the rotating part made using permanent
magnets or electromagnets. The excitation current is a significant parameter of the synchronous
machine, and it is of immense importance to continuously monitor possible value changes to ensure
the smooth and high-quality operation of the synchronous machine itself. The purpose of this paper is
to estimate the excitation current on a publicly available dataset, using the following input parameters:
Iy: load current; PF: power factor; e: power factor error; and d f : changing of excitation current of
synchronous machine, using artificial intelligence algorithms. The algorithms used in this research
were: k-nearest neighbors, linear, random forest, ridge, stochastic gradient descent, support vector
regressor, multi-layer perceptron, and extreme gradient boost regressor, where the worst result was
elasticnet, with R2 = −0.0001, MSE = 0.0297, and MAPE = 0.1442; the best results were provided by
extreme boosting regressor, with R2 = 0.9963, MSE = 0.0001, and MAPE = 0.0057, respectively.

Keywords: artificial intelligence algorithms; excitation current; regression algorithms; synchronous
machine

1. Introduction

Electrical machines are electromechanical devices that can convert electrical energy
into mechanical energy and vice versa [1]. According to the type of input, EMs can be
classified into single-phase and three-phase machines [2], where the most common types
of three-phase electric machines are synchronous (SM) and asynchronous machines (AM).
Electrical machines (EM) are built from a stator, which is the static part of the EM consisting
of phase-shifted coiled poles, and a rotor, which is the rotary part constructed depending
on the tasks for which the machine is intended. AMs are most often used as motor-driven
machines [3–5] in the automotive industry [6,7], construction [8], elevators [9], etc., while
SMs are most often used to produce electricity in fossil fuel power plants [10–12] or in
renewable energy plants, such as hydroelectric power [13,14] and wind power plants [15,16].
For energy to be transmitted from the producer to the final consumer, it must be of an
alternating current (AC) [17]. The reasons for choosing AC over direct current (DC) are as
follows [17,18]:

• Easy maintenance and change of AC voltage for transmission and distribution;
• AC transmission plant costs (switches, transformers, etc.) are much lower than equiv-

alent DC transmission;
• The power plant produces AC power, so it is better to use AC than DC instead of

converting;
• In the case of major faults in the network, it is easier to disconnect an AC system

because the sinusoidal current tends to zero at a certain moment.
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An SM has two characteristic parts, the armature on the stator and the excitation on
the rotor where the armature winding (most often three-phase) is symmetrically distributed
in slots around the circumference of the machine and indicates the part of the machine
in which the changes of the magnetic flux induce a voltage [19]. DC flows through the
exciting winding element, which is located on the rotor of the machine and creates the
exciting flow, i.e., magnetic flux. Without the excitation current on the rotor, it would not
be possible to produce the induced voltage on the armature windings of the synchronous
generator, which means that there would be no electricity [19]. This type of excitation is used
with synchronous generators that either have electromagnets on the rotor of the machine
connected to a slip ring [20] or a rotor made with permanent magnets [21]. Estimation
of the excitation current on the rotor is one of the key factors for the control of the SM.
The excitation current maintains the efficient production of the induced voltage and is one
of the most important factors while regulating the plant’s power factor (maintaining the
capacitive or inductive character of the power grid network) [22].

AC electrical machine loads draw reactive power from the electrical power grid.
Reactive power is a disadvantage, i.e., a problem, because it causes overloading in the
power grid, switches, transformers, and relays and, unfortunately, reactive power cannot be
converted into useful, i.e., mechanical energy. To normalize the amount of reactive power in
the power grid, SMs are used as reactive power compensators [23]. To achieve high-quality
regulation and compensate for reactive power, it is necessary to regulate an SM’s power
factor parameter; this can be accomplished with proper regulation of the excitation current.
The value of the excitation current dictates the operation mode of the synchronous motor
(capacitive or inductive character) and affects the stability of the system [24].

The main problem is that most EM manufacturers do not provide enough information
about their machines, which reduces the possibility of achieving highly efficient control. In
general, manufacturers provide information on rated output power, rated maximum speed,
rated input voltage, rated current, protection level, dimensions, and weight. However, a
minority of manufacturers provide more valuable information, such as the speed-torque
curve (most often at the request of the customer). Often, the nominal parameters of a
synchronous motor are available and sufficient for designing the regulation, but the problem
is the nonlinearity of the parameters, which is noticeable in an unadjusted operating
environment (for example, high or low ambient temperature) or is not adapted for unique
operating conditions (for example, speed or load torque) [25,26].

Apart from the nonlinearity, external and internal conditions affect an EM. The main
problem is that there is no clear relationship between the parameters of the synchronous
motor [27–30]. The parameters of an SM are mostly complex and nonlinear; thus, model-
ing SM parameters, such as excitation current, power factor, and load current, when the
synchronous motor is running in a lagging, leading, or unity condition for reactive power
compensation is a difficult task [24,27]. With the aim of improving the quality of SM model-
ing and a more precise estimation of parameters, many researchers use artificial intelligence
(AI) estimation methods. The estimation of model parameters using techniques for linear
systems has been perfected. However, an increasing number of systems require nonlineari-
ties when increasing the dynamic range of high-performance equipment. Nonlinearities are
usually ignored, but only under the assumption that linear system theories are sufficient
for the retrieval of less accurate approximate solutions. For industrial applications, these
solutions are most often within acceptable limits, but for applications in high-efficiency
machines, linear systems are inadequate. There is therefore a need for further development
of nonlinear systems, such as the synchronous motor. After defining the obstacles that
are typical for highly coupled nonlinear system, such as synchronous motors, the authors
of [27] used particle swarm optimization (PSO) to obtain a high-quality model with a low
error rate that is robust and generally applicable to similar nonlinear systems. Various
optimization algorithms, such as the evolutionary algorithm, ANN, artificial bee colony
(ABC), immune method (IM), whale optimization method (WOM), particle swarm opti-
mization (PSO) method, flower pollination (FP) method, cuttlefish optimization algorithm,
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and genetic algorithm (GA), were used to optimize a permanent magnet SM (PMSM), and
they are analyzed in detail in the state-of-the-art study in [25,31]. The parameters of the
PMSM tend to change; in other words, there is an influence due to the nonlinearity of the
parameters. This can occur due to the change in temperature or aging of SM, and for this
reason, online techniques are used to identify more up-to-date and precise parameters [32].

In addition to potential optimization, AI is used to obtain improved waveforms at the
output and reduce oscillations (such as output speed, torque, and current variations for
three phases). For example, in [33], the authors used a fuzzy logic controller in combination
with AI with certain conditions (in this case with 25 conditions and 49 conditions), which
resulted in a much smoother rotation of the engine and thus less oscillation, which greatly
contributed to the improvement of the system.

Using AI more precisely, fuzzy logic in combination with ANN represents an advanced
method that is applied for AM control logic. AM is a nonlinear machine, where the influence
of temperature, age, and additional vibration elements related to electromagnetism affect
the operation of the machine. So, with this idea, the authors in [34], after mathematically
modeling AM, defined a control strategy based on rotor flux, which ensures the robustness
of the algorithm.

Regarding synchronous motors with electromagnets, the authors of [35] indicate the
complexity and nonlinearity of the SM parameters. By applying the symbiotic organisms
search (SOS) algorithm, gravitational search algorithm (GSA), ABC, and GA, the authors
investigate the possibility of obtaining a high-quality algorithm with a small error of
approximation, whereby the best results are achieved by SOS with a maximum error of
0.1703 A.

In the last decade, the implementation of AI algorithms has become an increasingly
common strategy to solve parameter prediction, optimization, or control methods for
electrical machines. Various studies are being carried out related to the optimization of
excitation current losses. In the research of Kahraman et al. [24], the authors looked for an
efficient solution to overcome the challenges in excitation current estimation. Implementing
the k-nearest neighbor (kNN) algorithm led to optimal results of the excitation current,
with an estimation error rate of 4.5% and standard deviation (σ) of 1.5%. Inter-turn faults in
field winding can also affect the operation of the synchronous generator, which in this case
is a turbogenerator. According to Guillen et al. [36], the authors used AI to obtain a model
based on machine learning (ML) regression algorithms, where the excitation current was
estimated using AI, and the algorithm estimated the field current, which was compared
with the actual measured current in several lifetime fluctuations. From three different
models (Potier, ASA, and SVR), SVR performed the best with mean average error (MAE)
and root mean square error (RMSE) metrics of 0.448 and 0.009, respectively. With the
use of artificial neural networks (ANN), it is possible to achieve a model for estimating
the parameters of an SM; in [37], the authors use an adaptive artificial neural network
(AANN). The purpose of this research was to estimate the excitation current and help
designers with the modulation of the excitation current while developing sophisticated
software with a low degree of programming and improving the efficiency of the classic
ANN-based approach. The results were evaluated with an average error percentage, σ, and
the arithmetic average of all error rates of 3.507958, 2.305857851, and 2.305858, respectively.
Temperature monitoring of permanent magnets in SM, which is applied to the automotive
industry, is a complex challenge. The heating of the machine can cause deterioration
and impact the performance of SM itself. Monitoring and reacting to high-temperature
variation values inside of an SM is a challenging task. Kirchgässner et al. [38] trained
several ML models that are empirically evaluated based on their accuracy for the given
task of predicting. The ML algorithms used for predicting high-dynamic latent magnet
temperature profiles were as follows: linear ordinary least square regression, support
vector regression, kNN, and neural networks. The best result on the test set for predicting
the permanent magnet temperature was achieved with the convolutional neural network
(CNN) with an R2 of 0.99, MAE of 0.85 and MSE of 1.52; kNN and multi-layer perceptron



Computers 2023, 12, 1 4 of 25

(MLP) achieved R2 = 0.98, MAE = 1.32 and MSE = 3.20. Further proof that AI and ML can
be applied in the modeling and simulation of complex phenomena is provided by surrogate
models [39]. The authors presented a workflow for developing data-driven surrogate
models including data generation with a physics-based simulation, designed experiments
with the training data, and trained and tested the surrogates to compare ANN and the
gradient boosting decision tree (GBDT) algorithm for estimation the torque behavior in SM
with permanent magnets. The accuracy of the proposed model with the ANN algorithm
was better, compared to the competitor GBDT, and was quite close to the finite element
simulation in which the best result for negative root mean square (NMRSE) obtained with
the non-hybrid model was 3.8%, while for the hybrid model it was 1.76%. Mukherjee
et al. [40] estimated the speed and torque of a PMSM using tree-based algorithms. Several
tree-based algorithms were used where the fine tree algorithm achieved a much lower error
rate compared to the other tested algorithms, namely medium tree and coarse tree. The
RMSE for the fine tree algorithm was 0.029224 and 0.052538 for the prediction of speed
and torque, respectively. Traue et al. [41] developed a reinforcement learning environment
toolbox for intelligent electric motor control using the open-source Python package. The
obtained model showed better results in control tasks compared to conventional methods.
Li et al. [42] conducted a detailed analysis for the optimization of electromagnetic devices.
By using various algorithms such as support vector machines, MLP, k-NN, and CNNs,
the authors proved that ML algorithms have greater robustness, high speed, and accuracy
by applying a fitting algorithm in different scenarios. Bayindir et al. [43] showed the
importance of the excitation current in synchronous motors in the case of reactive power
compensation. By using the k-NN classifier and load current, power factor, power factor
error, and change of excitation current as input values, the following results are obtained
for MAE, mean absolute percentage error (MAPE), and NRMSE: 0.059, 13.146, and 8.167,
respectively. The given metrics are referred to as three tuple input values, which were as
follows: load current, power factor, and change of excitation current, which showed the
importance of certain parameters when modeling the AI algorithm and the viability of
using AI for optimizing and predicting the parameters in EM.

Considering the high accuracy rate of AI algorithms in prediction and regression, the
following hypothesis questions are raised regarding SM:

• Is it possible to estimate the excitation current of SM using AI algorithms with a high
precision rate and a small evaluation error?

• Is it possible to optimize the model and confirm the obtained results with 5 k-fold
cross-validation using the randomized hyperparameter search?

• Which algorithm provides the best results with the possibility of implementation in a
real-life situation?

This research was conducted to obtain an optimal AI algorithm that, with its properties
and characteristics, can estimate the excitation current of the SM (in this case, synchronous
motor drive), which contains nonlinear characteristics and phenomena. The best AI al-
gorithm is determined to predict the future values of the excitation current with a high
accuracy, small standard deviation error (σ), and almost non-existent regression metrics
error. By comparing the best algorithm with the related work, i.e., comparing the extreme
gradient boosting regressor with small hyperparameter variations and robustness, a solu-
tion for the given problem can be obtained. In this way, precautions can be taken for plants
with these machines and additional challenges can be prevented in time. The structure of
this paper, along with the introduction, is divided into the following four sections: Materi-
als and Methods, Results and Discussion, and Conclusions. The Materials and Methods
section describes the entire dataset, including the input values along with targeted value, an
analysis of the dataset distribution using histogram bar plots is provided, and the SM used
in the creation of the dataset is described. The analysis of the dataset used for training ML
algorithms is shown, and the algorithms used for the prediction of the excitation current
are stated alongside the hyperparameters used in randomized hyperparameter search. All
models were validated with 5 k-fold cross-validation. The Results and Discussion section
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shows the results obtained from the selected/used AI algorithm, the parameters used
for research, and the training of the best obtained AI model. The achieved results were
described and we elaborate on which algorithm provided the best results, and which one
was the worst according to the obtained metrics. In the Conclusion, the final results of this
research are outlined, including which algorithm had the best regression performance for
the given challenge, and the initial hypotheses questions are answered.

2. Materials and Methods

In the Materials and Methods section, the SM used for data collection is presented.
The dataset is described as well as the input and output variables. The input data and
statistical analysis before the actual use of ML algorithms are presented. Additionally, the
potential challenges are indicated, and the importance of AI implementation is highlighted.

2.1. Potential Challenges When Modeling a Synchronous Motor

In modern EM modeling, the contribution of Štumberger et al. [44], Kron [45] is
important, in which the general theoretical background for EM modeling is outlined. The
generality of Kron’s tensor-based approach diminishes when using matrices. By using
matrices, EMs are mostly treated as magnetic (deterministic) linear systems, while nonlinear
properties are ignored. However, to create positive ratios between measured and calculated
results, nonlinear theory must be included in the model of the SM.

In addition to neglected factors when modeling a synchronous machine, there are
several losses in SM that make the machine complex and nondeterministic and require
additional power (iron losses, winding losses, and ventilation losses) [46]. Of course, these
losses depend on the situation in which the machines are used; this makes it difficult to
estimate parameters with regular measuring methods. Certain calculations can be made to
gather information; however, due to the complexity of thermal effects in EM, numerical
calculation methods such as electromagnetic and thermal finite element modeling (FEM) or
computational fluid dynamics (CFD) are only used for the specific analysis of EM (part of
the stator core, for example). A complete thermal analysis would require full CFD/FEM
coupling. As for the modeling of the SM, the turn insulation in the field winding in the
case of the silent pole synchronous machine (generator) is thin, so it is often neglected in
calculations. However, surface insulation is of similar dimensions, almost equal to the
surface of the conductor, so it would affect the result of the heat calculation. On the other
hand, the calculation of the temperature field of a synchronous machine with silent pole
rotor insulation in terms of the insulating layer is often neglected; even with little insulation
there is a temperature drop, which can affect the modeling of the EM itself [47].

This subsection highlights the limitations of calculations when modeling or estimating
EM. This highlights the importance of using AI algorithms for the optimization or estima-
tion of synchronous machine parameters. AI algorithms are based on the data contained in
the dataset, and the more data the dataset (algorithm) has, the greater the robustness and
readiness, as well as the accuracy of the obtained model. In this work, the the parameters of
the used synchronous motor and the statistical analysis and distribution of data for input
into the AI model are described.

2.2. General Information about SM

As presented in the introduction of this paper, all AC machines consist of a stator and
a rotor. The main difference between AM and SM is the speed of rotation of the rotor, which
in the case of SM, as the name indicates, rotates synchronously. This means that there is no
delay in the rotating magnetic field of the rotor relative to the stator. In terms of the design
of the rotor, SM has two versions. The first one is the salient pole [48] shown in Figure 1,
and the other one is the non-salient pole (round/cylindrical) rotor [49] shown in Figure 2.
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Figure 1. Salient-pole type rotor SM.

Figure 2. Round rotor type SM.
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Figure 3 shows the section of the rotor and stator (armature) inside the SM. The figure
shows the position of the rotor field winding for both configurations and the position of
the polarization for both designs.

Figure 3. Representation of the salient pole and cylindrical pole rotor type SM.

The overall configuration is shown in Figure 4, which shows each component of the
SM operation. In Figure 4, every part of SM is visible. To create a rotating magnetic field
with a phase shift of 120 degrees, a three-phase voltage is required, with each phase marked
as a, b, c and a’, b’, c’. The dotted dashed lines indicate the position of the phased coils,
while the hatched part indicates the location of the conductors located in the armature SM.

Figure 4. The basic operation of SM.
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The working principle of SM is based on the establishment of a magnetic field that
rotates at a synchronous speed, as follows:

n =
120 · f

p
. (1)

As shown in Equation (1), the speed of the rotating magnetic field of the stator depends
on two factors f which are the frequency of the rotating magnetic field and p the number
of poles. If the speed of the rotor (magnetic field caused by the DC component) [50], and
the speed of the rotating magnetic field of the rotor are equal, under the condition that
there is no load torque, both magnetic fields will tend to align against each other. When
the load is applied, the rotor lags a little, i.e., ”slips” by a certain degree, but at the same
time adheres to the revolutions of the rotating magnetic field [49]. The achievement of the
highest torque is due to the relationship between the magnetic field of the rotor and the
stator, which attempt to maintain a value of 90 degrees, as can be seen from Figure 5.
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Figure 5. The effect of load angle on produced torque.

Figure 5 shows the production of torque (T) under the effect of load angle (δ); it is
visible that when SM has an angle of 90 degrees, the maximum T is produced [49].

T = Tmax · sin(δ). (2)

In addition to displaying the maximum torque at a rotor angle of 90 degrees [51], it is
possible to calculate the current torque using Equation (2), where:

• T is the calculated torque;
• Tmax is the maximum torque for SM;
• sin(δ) is the sinus function of load angle.

2.3. Operation Conditions and Dataset Collection

So far, the general view of SM has been described, but it is also important to describe
the working conditions of the synchronous motor in which the measuring of the parameters
is performed. The working conditions of the SM (synchronous motor regime of work) that
were measured are shown and described in Table 1 [52].
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Table 1. Operating properties of experimental synchronous motor used in this research.

Condition

Star connected motor (Υ)
voltage [V]

Star connected motor (Υ)
current [A] Triangle connected motor (∆) Star connected motor (Υ)

current [A]

400 5.8 231 10

Power factor (cos ∅)

0.8

Apparent power (kVA)

4

Revolutions per minute (rpm)

1000

An auxiliary motor is used to drive the synchronous motor in the test rig. In the
star connection (Υ), the motor has a voltage of 400 V with a 5.8 A current. In the delta
connection (∆), the values are different, and the voltage amount is 231 V with a current of
10 A. The values for the power factor (cos ∅), apparent power, and revolutions per minute
(rpm) are the same, at 0.8, 4 kVA, and 1000, respectively [52].

The data collection procedure for the synchronous motor is shown in Figure 6 of this
investigation, and it was conducted in the following four steps: firstly, the motor was used
as an auxiliary motor in a laboratory environment, while a series rheostat was used to
obtain information about the DC supply variable in the field circuit (I f ). Secondly, using
the AC voltage, the stator windings of the synchronous motor are powered to achieve a
synchronous speed. In the third step, DC voltage is applied to the field winding of the
synchronous motor, and the motor enters synchronism. In the last step, synchronous speed
is realized, and the field current is modified to the minimum value (using a serial rheostat
connected in series to the field circuit.) After performing all the steps, the motor takes the
minimum current value from the power supply and obtains the maximum efficiency with
a stable power factor [52].

Figure 6. The scheme of work for the experiment with an SM [52].

2.4. Dataset Statistical Analysis

The previously described data are sufficient for the description of the dataset collection
process and the dataset creation; however, it is also recommended to additionally analyze
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the dataset with the aim of obtaining better insight into the state of the variables and their
interrelationships. In Table 2, there are four specific values that were analyzed for each
individual variable, namely the mean value, minimum value, standard deviation, and
maximum value.

Table 2. Dataset analysis used in research.

Iy PF e d f I f

Mean value 4.499 0.825 0.174 0.350 1.530

Minimum value 3.0 0.650 0.0 0.037 1.217

Standard deviation 0.896 0.103 0.103 0.180 0.180

Maximum value 6.0 1.0 0.350 0.769 1.949

The mean value represents the mean value in each variable, the minimum represents
the lowest measured value, while the maximum represents the highest measured value. It
is especially important to analyze the standard deviation of the data. This is performed to
consider the possibility of implementing the pre-processing methods for the input variables
of the dataset, which were Iy, PF, e, and d f for the estimation of the target variable I f .
Table 2 shows that the deviation of the data is not too high, while the mean value of the data
is mostly above the ideal mean value (concerning the minimum and maximum value of the
individual variable). This leads to the conclusion that it is not necessary to perform data
pre-processing. Further on, the training of the AI model is performed using the original
dataset values for each variable.

Furthermore, in addition to defining operating conditions and statistical analysis of
data, it is necessary to consider the distribution of data in each variable, so starting from Iy
shown in Figure 7, the distribution of data for each variable was analyzed.

Figure 7. Data distribution/histogram for Load current in the dataset, the histogram consists of an
analyzed parameter as the number of inputs with the given value.

Figure 7 shows a histogram plot of the data distribution for the Iy parameter. The blue
bars represent input bins while the orange curve represents the best-fitted distribution for
the given data. In statistics and probability theory, this form of data distribution belongs to
Von Mises lines, also known as a circular normal distribution, and is a continuous probabil-
ity distribution of the circle. It is a close approximation of the wrapped normal distribution,
which is the circular analogy of the normal distribution. The circular analogy can be seen
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by the repeating peaks of individual values (interval maximum values of individual bar
plots). The Von Mises probability density function can be presented as follows:

f (x | µ, κ) =
eκ cos(x−µ)

2π I0(κ)
, (3)

where is:

• x, angle of the density function;
• µ is a representation of measure location (the given cluster distribution around µ);
• κ is a representation of the measure concentration;
• I0(κ) is the modified Bessel function with order zero.

Figure 8 shows the data distribution related to PF and e. Based on the entered data, the
best possible distribution function corresponds to the Three-Parameter Kappa distribution.
In statistics, K-distribution or Kappa 3 distribution is a family of continuous probability
distributions that consists of three parameters and is constructed by combining two gamma
distributions. The probability density function is presented as follows:

f (x, a) = a(a + xa)−(a+1)/a, (4)

for x > 0 and a > 0 and a and x are the shape parameters of the function.

Figure 8. Data distribution/histogram for power factor PF and power factor error e in the dataset,
the histogram consists of an analyzed parameter as the number of inputs with the given value.

In the case of an I f and d f of the SM, the distribution of data is slightly different than
in the previous cases. By observing Figure 9, it is evident that the distribution of the data
resembles a standard Gaussian distribution; however, due to the shift of the data for a
certain parameter, the best-fitted distribution is Johnson’s SB distribution. From Figure 9, it
is evident that the highest ratio of data is at smaller values. The probability density function
can be represented mathematically as follows:

f (x, a, b) =
b

x(1− x)
φ

(
a + b log

x
1− x

)
, (5)

where:

• x, a, and b are real scalars;
• b > 0 and x ∈ [0, 1] is the probability density function of the normal distribution;
• φ is the cumulative distribution function of the normal distribution.
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Figure 9. Data distribution/histogram for excitation current I f and changing of excitation current d f
of synchronous machine; the histogram consists of an analyzed parameter as the number of inputs
with the given value.

At the given distribution of data, shown in the histograms in Figures 7–9, the first
logic attempt is to train the ML model without data pre-processing. The given dataset has
favorable conditions for training ML algorithms, and in this paper, the prediction of I f is
performed with the non-preprocessed dataset.

2.5. Research Methodology

This section describes the research methodology of the various AI algorithms that
were used in this investigation and their hyperparameters with the given table values of
the selected hyperparameter. Linear models, ensembles, and even more complex ones such
as artificial neural networks (ANN) and tree-based regression methods of value prediction
were considered. Hyperparameter optimization was performed using randomly selected
hyperparameters and by training the model using the grid-search (GS), and was validated
using 5 k-fold cross-validations. During this research, the Python programming language
and scikit learn library (known as sklearn) version 1.0.2 were used. The aforementioned
Python library holds all of the used machine learning algorithms (the exception was the
extreme gradient boosting regressor), whereby an initial investigation was conducted using
default hyperparameters for individual algorithms. After the initial investigation, the
hyperparameter optimization was conducted using random values that are presented in
each table for every algorithm used, where the used algorithms are as follows:

• Extra trees regressor (ETR);
• Elasticnet regressor (EN);
• K-nearest neighbor regressor (k-NN);
• Linear regressor (LR);
• Random forest regressor (RFR);
• Ridge regressor (RR);
• Stochastic gradient descent regressor (SGD);
• Support vector regressor (SVR);
• MLP regressor;
• Extreme gradient boosting regressor (XGBoost).

Each algorithm will be described in a separate subsection where the hyperparameter
values used for training the model will be shown. During the investigation, the following
two search methods were applied: the initial search with default hyperparameters, and
then the randomized hyperparameter search. After the initial search, all the algorithms
were optimized using GS and cross-validation.
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2.5.1. Extra Trees Regressor

ETR belongs to the group of ML ensemble methods that combines predictions from
multiple decision trees. It belongs to a random forest algorithm although it is based on
a simpler approach where each member is a decision tree. In this case, the mentioned
algorithm often results in a similar or better result than the base algorithm, which is the
random forest algorithm [53]. ETR trees differ from the usual decision trees in terms of
the principle of building the tree itself. The search for the best division for separating
the hub samples into two rough ones is drawn for a random division of the selected
features, i.e., max_features, and the best division among them is selected [54]. The varied
hyperparameters of the algorithm are visible in Table 3 and are varied based on previous
research according to [55–57].

Table 3. An overview of the varied hyperparameters used for the ETR.

Parameter Name Minimum Value Maximum Value

n_estimators 1000 10,000

criterion squared error, friedman_mse

max_depth None

min_samples_split 2 10

max_features auto, sqrt, log2

random state 0 63

The criterion is a quality measurement of split data. For this kind of decision tree
algorithm, supported criterion inputs are squared_error for the mean squared error (MSE)
and friedman_mse for the improved Friedman mean squared error. The main difference
between these two criteria are that the Friedman MSE calculates the impurity of the current
node which leads to a reduction in the leaf impurity. The number of trees that ETR produces
is regulated with n_estimators. Max_depth indicates the maximum depth of the tree. It
was set to none where the main reason was to remove all of the leaf impurities from the
tree. max_features is the number of considered features when looking for the optimal
split. Input values can be sqrt, log2, integer, or float number. Random_state controls the
randomness of the instance of bootstrapping samples while building trees and the feature
sampling for consideration when looking for optimal node split, and draws the splits for
max_features. The lowest value of the sample number for splitting the internal node is
defined with min_samples_split. If the given value is an integer, then min_samples_leaf is
considered as the minimum number; in the case of the float value, the min_samples_split is
considered as a fraction.

2.5.2. Elasticnet Regressor

EN belongs to the group of linear models of the scikit library where the regression
process uses the penalties from both lasso and ridge techniques. This technique provides
a learning spares model, where several weights are not 0 as is the case in lasso, while
still maintaining the regularization characteristic from the ridge. The combined technique
from lasso and ridge regression methods helps to overcome the deficiency and improve
the statistical regulation model [54,58]. During the investigation of this AI algorithm, the
parameters shown in Table 4 were varied according to [59,60].



Computers 2023, 12, 1 14 of 25

Table 4. An overview of the varied hyperparameters used for the EN.

Parameter Name Minimum Value Maximum Value

alpha 0.1 10

l1_ratio 0.1 10

max_iter 1000 10,000

selection random, cyclic

Alpha constantly multiplies the penalty terms if its value is set to 0.0; then, the
mathematical meaning of this parameter is equivalent to a linear ordinary least square
regression. The elasticnet l_1_ratio is the mixing parameter between 0.0 and 1.0. The
maximum number of iterations is max_iter set to 10,000. The selection parameter is the
coefficient updated for every iteration by choosing the right coefficient of selection, and
the results often converge faster.

2.5.3. K-nearest Neighbour Regressor

The k-NN algorithm is one of the decision tree supervised ML algorithms based on
determining the local minimum of the target function that is used to learn the unknown
function with precision and accuracy. The decision system essentially calculates the distance
between data points in space. It relies on observable data similarity and near-distance
metrics for accurate prediction generation [38,54]. When modelling k-NN based on research
in [35,54,61], the parameters shown in Table 5 were varied.

N_neighbours is the number of neighbor data in the decision tree. There are three
ways in which the weights of the prediction function are distributed, which are uniform,
inverse, and callable. The computation of the closest neighbor is achieved with an algorithm.
The eaf_size can be used in BallTree or KDTree. It can be used to determine the memory of
a given leaf of the tree as well as speed up the construction of the building process.

Table 5. An overview of the varied hyperparameters used for the k-NN.

Parameter Name Minimum Value Maximum Value

n_neighbours 1 1000

weights uniform, distance

leaf_size 1 1000

algorithm auto, ball_tree, kd_tree, brute

p 2 50

2.5.4. Linear Regressor

LR is better known as the ordinary least squares method. The method consists of
establishing a correlation between the dependent variable and the independent variable,
where the best approximation fits a straight linear line [62]. The variation of parameters is
presented in Table 6.

Table 6. An overview of the varied hyperparameters used for the LR.

Parameter Name Minimum Value Maximum Value

fit_intercept True, False

normalize True, False

positive True, False
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Fit_intercept calculates the intercept for the given model. Normalize is used for
normalization of the input parameter, and positive is used if the True forces modulation
coefficients are positive.

2.5.5. Random Forest Regressor

The RFR algorithm belongs to the class of machine learning algorithms that, in combi-
nation with random decision trees, trains a model on sub-datasets [63]. The use of multiple
trees contributes to the stability of the algorithm and reduces the variance of the result
itself. Each tree created by this algorithm uses a different sample of input data; furthermore,
different features are taken into account at each node where, after training each tree, the
mean value of the unique result is calculated [63,64]. The varied hyperparameters are
shown in Table 7 and are based on [55,65,66].

Table 7. An overview of the varied hyperparameters used for the RFR.

Parameter Name Minimum Value Maximum Value

n_estimators 100 5000

criterion squared_error, absolute_error, Poisson

max_features sqrt, log2

Given that the ETR in section 2.5.1 originated from the basic RFR, the parameters that
were varied in this investigation will not be described in detail. When investigating this
algorithm, the guiding principle was that differences between the two algorithms exist in
terms of ETR [67]. In this case, RFR uses bootstrap replicas, i.e., it uses subsamples of the
input data and replaces it, whereas ETR uses the original complete samples. In addition,
RFR uses an optimal node split point, while ETR takes a random one.

2.5.6. Ridge Regressor

RR belongs to the linear model method of the scikit-learn python library. The special-
ization of RR lies in the fact that it analyzes multiple regressions that are multicollinear.
Because of the complex science behind this ML algorithm, it is not the most used algorithm;
however, because of its regularization methods, it is sometimes the best fit. RR is a linear
least squares method with an additional regularization parameter. The selection of the
varied parameters presented in Table 8 was carried out according to previous [68–70]
articles on related issues.

Table 8. An overview of the varied hyperparameters used for the RR.

Parameter Name Minimum Value Maximum Value

alpha 1.0 100.0

max_iter 1000 50,000

tol 1 × 10−5 1 × 10−1

fit_intercept True, False

solver svd, cholesky, lsqr, sparse_cg, sag, saga

The parametersalpha and max_iter are explained in the previous subsections, tol
indicates the precision of the solution, while the novelty is the solver where the solver is
the principle of model optimization.

2.5.7. Stochastic Gradient Descent Regressor

The SGD regressor belongs to the group of linear models of the scikit-learn python
library. It is a generic optimized algorithm that can find a high-quality and optimal solution
for a wide range of situations. The idea for altering the parameters is an iterative process
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of selecting hyperparameters to reduce the cost function. The proportions of the step are
one of the most crucial parameters determined by varying the learning rate, which in the
case of setting too small a value can lead to slow convergence and the opposite of that can
exceed the optimal value [71,72]. In line with to [73,74], the hyperparameters in Table 9 are
as follows.

Table 9. An overview of the varied hyperparameters used for the SGD.

Parameter Name Minimum Value Maximum Value

alpha 0.0001 10.0

max_iter 1000 10,000

validation_fraction 0.15

power_t 0.1 0.5

learning_rate invscaling, optimal, constant

shuffle True, False

l1_ratio 0.0001 0.5

The validation set is a proportion of training data used for early stopping defined with
validation_fraction. The power_t parameter is an exponent for the invscaling learning_rate
module which defines the result of the value of the learning rate parameter. The role of the
shuffle parameter is to shuffle data points for each training epoch. The elasticnet mixing
parameter is varied with the l1_ratio, and its value is in the range from 0 to 1.

2.5.8. Support Vector Regressor

SVR is an ML regression algorithm that is compatible with both linear and polynomial
regression. This algorithm works on the principle support vector machine (SVM), but
in the case of SVR, it differs in the way that SVM is a classifier for the prediction of
discrete categorical values, while SVR is a regressor used for continuous order predicting
variables [75,76]. In this investigation, several hyperparameters are varied, as shown in
Table 10.

Table 10. An overview of the varied hyperparameters used for the SVR.

Parameter Name Minimum Value Maximum Value

kernel linear, poly, rbf, sigmoid

degree 1 10,000

gamma scale, auto

coef0 0.0 10.0

tol 1 × 10−5 1 × 10−10

C 0.5 20.0

epsilon 0.05 20.0

max_iter 100 10,000

According to previous research, [77–79], the varied hyperparameters are as follows.
The kernel hyperparameter specifies a data-mapping function. The degree is the degree
of the polynomial kernel function, and gamma is the kernel coefficient but only in the
case of rbf, poly, and sigmoid functions. Coef0 is an independent term in kernel function
and can only be significant in the poly or sigmoid kernel function, C is a regularization
parameter where the amplitude of regularization is inversely proportional and must be
strictly positive. The last hyperparameter is epsilon, which defines the margin of tolerance.
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2.5.9. Multi-Layer Perceptron Regressor

An MLP is a feed-forward ANN that generates a set of defined outputs from an input
value. Specifically, it is characterized by a node that is connected to several layers as a
direct link between input, hidden, and output layers where a backpropagation logic is
used for training the neural network itself. Its design allows it to predict any continuous
function and it can solve nonlinearly separable problems. In this investigation, several
hyperparameters are modified according to research shown in [54,80–82].

Table 11 shows the varied hyperparameters used in this investigation. In addition to
the previously described hyperparameters, such as olver, alpha, power_t, max_iter, and
tol, new parameters unique to the MLP ML algorithm have been changed. Activation
stands for the activation function which decides whether a neuron contained in MLP
should be activated or left in stasis. Using simple mathematical operations, it determines
the importance of the selected neuron in the ANN network for the prediction process.
Hidden_layer is a number of hidden layers inside the MLP ANN, and the solver is the
algorithm specified for weight optimization along all of the nodes contained in MLP.

Table 11. An overview of the varied hyperparameters used for the MLP.

Parameter Name Minimum Value Maximum Value

hidden_layer_sizes
(2,3 and 4 hidden layers)

5 600

activation tahn, relu, identity, logistic

solver adam, lbfgs

alpha 0.02 0.5

power_t 0.5 2.0

max_iter 1000 10,000

tol 1 × 10−5 1 × 10−1

max_iter 1000 10,000

2.5.10. Extreme Gradient Boosting Regressor

XGBoost is an AI algorithm that is efficient and scalable for implementation based
on the gradient boosting framework. The algorithm includes a linear model solver and
a tree-based algorithm that supports several objective functions, including regression,
classification, and ranking. Its special features are the possibility to regularize learning, the
gradient tree boosting functionality, and the ability to shrink subsample columns [83,84].
Due to its performance and previous research, it was taken into account during this
investigation. So, the varied hyperparameters used in this research are shown in Table 12.

Table 12. An overview of the varied hyperparameters used for the XGBoost.

Parameter Name Minimum Value Maximum Value

learning_rate 0.2 0.02

max_depth 6 64

min_child_weight 1 10

gamma 0.0 1.5

colsample_bytree 0.1 1.0

max_delta_step 0.0 1.5

Learning_rate in XGBoost is slightly different than in the previously mentioned algo-
rithms. In this case, the mentioned hyperparameter represents a reduction for each step
that the algorithm performs. Min_child_weight is a parameter that defines the minimum
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sum of instance weights needed for generating a child. The pseudo-regularization hyper-
parameter specific to gradient boosting and XGBoost is gamma. It is vital because the
higher the gamma is, the better the regularization process. Subsampling is performed using
colsample_bytree, which takes a portion of the defined dimensions. Max_delta_step is the
maximum step allowed in the algorithm for each tree’s weight estimation.

3. Results and Discussion

In the results section, the results of this research are presented. The following eval-
uation metrics are presented for each algorithm: The coefficient of determination (R2),
MSE, and MAPE. When defining the results, the best-performing algorithms were selected,
which were additionally evaluated using the σ for all three individual metrics.

The first part of the research refers to the defined algorithms in Section 2.5 from
Sections 2.5.1–2.5.10. Algorithms were trained on default parameters from the scikit-learn
Python library. Each algorithm model was evaluated with three previously defined metrics,
and the results can be found in Table 13.

Table 13. Table of the results and evaluation metrics of all algorithms used in this research for
default hyperparameters.

Regressor Name R2 MSE MAPE

Extra Trees 0.9795 0.0006 0.0166

ElasticNet 0 0.0297 0.1442

k-Nearest Neighbour 0.9517 0.0015 0.0294

Linear 0.8875 0.0035 0.0465

Random Forest 0.9909 0.0003 0.0121

Ridge 0.9012 0.0028 0.0423

Stochastic Gradient Descent 0 0.0402 0.1611

Support Vector Machines 0.8662 0.0041 0.0506

Multi-layer Perceptron 0.8534 0.0052 0.0585

Extreme Gradient Boosting 0.99433 0.0001 0.0074

Table 13 shows the results of the AI algorithm used in this research with default
hyperparameters for each algorithm. The goal of the initial research was to determine
algorithms suitable for estimating the excitation current of SM. This part of the research
indicates the oscillations of the results for each algorithm, which can be seen from Table 13.
Several acceptable algorithms satisfy the given tasks including the tree-based algorithms,
which had the best results in the initial research. Regarding R2, the best result is achieved
with XGBoost, of 0.9943, followed by 0.99 with RFR. Furthermore, results above 0.9 are
given by RFR, ETR, and RR, as shown in Figure 10.



Computers 2023, 12, 1 19 of 25

Figure 10. The R2 results from the initial investigation.

Regarding other evaluation metrics, XGBoost again has the best result; in this case, the
smallest MSE and MAPE are 0.0001 and 0.0074, respectively. The second-best algorithm
with the best performance is RF with 0.003 and 0.0121 MSE and MAPE. The third best
algorithm is ETR with 0.006 and 0.016. Other algorithms also have a low error rate in both
metrics, although with at least one potential higher than the mentioned algorithms, as
shown in Figure 11.

Figure 11. The MSE and MAE results from the initial investigation.

The most frequent problem faced while training ML algorithms is overfitting of the
training data. Overfitting can be avoided by using the cross-validation method, as is
shown in the second part of this investigation. Parameters presented in individual tables in
the subsections from Sections 2.5.1–2.5.10 were used, and the optimization was achieved
using a randomized hyperparameter search method with 5 k-fold cross-validation for each
algorithm. The results of optimized and cross-validated algorithms can be seen in Table 14.
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Table 14. Table of results and evaluation metrics of all algorithms used in this research for varied
hyperparameters and cross-validated models.

Regressor Name R2 MSE MAPE

Extra Trees 0.9784 0.0006 0.0164

ElasticNet 0 0.0297 0.1442

k-Nearest Neighbour 0.4484 0.0173 0.1127

Linear 0.8881 0.0035 0.0462

Random Forest 0.9746 0.0008 0.0223

Ridge 0.4833 0.01487 0.1054

Stochastic Gradient Descent 0.8731 0.0046 0.0535

Support Vector Machines 0.8844 0.0045 0.0523

Multi-layer Perceptron 0.9303 0.0025 0.0392

Extreme Gradient Boosting 0.9963 0.0001 0.0057

Table 14 shows optimized and cross-validated results for each algorithm. Several
similarities and differences are visible and will be explained in the following part of this
research. In this part of the research, Tree-based algorithms still dominate in all evaluation
values. XGboost still has the most ideal R2 metrics of 0.9963, MSE of 0.0001, and MAPE
of 0.0057. Furthermore, ETR, RFR, and MLP have R2 values above 0.9 and the smallest
evaluation errors of MSE and MAPE. Other algorithms have minimal improvement or
have a deterioration of metrics, and the SGD demonstrated the largest increase in R2, with
an increase 0.96 compared to the default hyperparameters, while LR had the smallest shift
in results. The largest decreases in MSE and MAPE errors for the MLP algorithm were
stark, while k-NN’s performance was worst. Furthermore, as mentioned in the previous
section based on the given results from Tables 13 and 14, three AI algorithms were selected
for the final estimation of the excitation current in SM, namely: ETR, RFR, and XGBoost.
The obtained ratios of σ for R2, MSE and MAPE are shown in the figures below.

Figure 12 shows the R2 and σ for ETR, RFR, and XGBoost algorithms. As shown in
Table 14, XGboost has the highest R2, followed by ETR and finally RFR; however, in this
case, the main focus is on the σ of all three algorithms, so the best result is achieved by
XGBoost, which has the smallest σ value out of all three algorithms of 0.0011, which is up
to eight times lower than for ETR and RFR.

Figure 12. The σ of R2 results for ETR, RFR and XGBoost algorithms.

Figure 13 represents MSE and σ for the ETR, RFR, and XGboost algorithms. It can
be seen from the figure that the XGBoost again has the smallest MSE of 0.0001, while the
largest in this part of the research is ETR, valued at 0.000035. The σ for XGBoost again
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achieves the best results, with a σ result of 0.0000033, while the ETR again had the worst
performance.

Figure 13. The σ of MSE results for ETR, RFR, and XGBoost cross-validated algorithms.

In the last part of the performance evaluation of the selected algorithms, the value of
MAPE and σ of individual algorithms is shown in Figure 14. The value of the MAPE result
favors (as in the previous two cases) of the XGBoost algorithm with a value of 0.0057, while
the worst performance was achieved by RFR with a value of 0.0223. σ for MAPE, in this
case, was 0.0003, while for RFR it was 0.0012 and for ETR it was 0.001869.

Figure 14. The σ of MAPE results for ETR, RFR, and XGBoost cross-validated algorithms.

4. Conclusions

In this paper, different AI algorithms were used to estimate the excitation current of
SM. During the investigation, three different approaches were taken to obtain a solution.
The first approach was to use linear, ensemble, tree-based, and neural network algorithms
to obtain favorable results for further consideration. At the same time, the hyperparameters
that were taken for training the defined algorithms were set to default values. It can be
seen from the results that a larger number of algorithms were considered, which shows
the possibility of optimal selection for the estimation of the excitation current, but the
question arose of whether the obtained model led to overfitting, i.e., whether this was the
case for the affected samples in the train/test ratio. After that, 5 k-fold cross-validation
of the data with randomized hyperparameters was performed. The results varied from
algorithm to algorithm, with the XGBoost algorithm excelling with the best result in all
three metrics. As the last part of this research, an investigation of the σ was carried out for
all three metrics; however, in this case, only the tree-based AI algorithms were considered
(ETR, RFR, and XGBoost). When looking at the results for all three metrics, XGBoost again
demonstrated the best results for all validation metric areas assessed. Compared to other
control techniques in the literature, this model provides the following benefits: simpler and
more precise results because it takes into account only the highlighted weight parameters
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of the synchronous motor, and the possibility to determine the relationship between the
synchronous motor parameters and the excitation current. Finally, it provides a novel
approach to excitation current estimation using a different type of algorithm compared to
the related research for categories of smaller motors (characteristics shown in Table 1).

Based on the conducted research, the answers to the hypothetical questions in the
Introduction are as follows:

• It is possible to estimate the excitation current of a synchronous motor using an AI
algorithm with high precision and accuracy. Based on the given research it was shown
that the most optimal algorithm was XGBoost.

• Using GS and cross-validation, the values were validated, and the parameters of the AI
model were optimized, which provides suitable evaluation metrics for the estimation
of the excitation current.

• From the larger number of presented algorithms in this paper, the best possible
algorithm that provides optimal results and the smallest σ is XGboost with a high
value of R2 and small values of MSE and MAPE.

To conclude, and in terms of future research plans, the following points should be
made. First, the given dataset should be further expanded with more up-to-date points, for
example for millisecond or microsecond ratios, i.e., changes in these ratios. As a second
step, the influence of heat on SM should be incorporated, as it is well known that every
electrical machine, device, etc., under the influence of heat experiences changes in the
given parameters. For example, a synchronous motor in low temperatures has a different
resistance in relation to electrical conductors on the stator or the rotor (depending on the
version). The endpoint of additional research would be to implement a given model to
control logic so as to evaluate the obtained results in a real experiment. When all the
mentioned points are implemented, a dataset will be created and the optimal AI model
that approximates the excitation current will be obtained again; a more precise and realistic
solution will be obtained concerning the research carried out in this article.
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