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Abstract: Traffic accidents are a major concern worldwide, since they have a significant impact on
people’s safety, health, and well-being, and thus, they constitute an important field of research on the
use of state-of-the-art techniques and algorithms to analyze and predict them. The study of traffic
accidents has been conducted using the information published by traffic entities and road police
forces, but thanks to the ubiquity and availability of social media platforms, it is possible to have
detailed and real-time information about road accidents in a given region, which allows for detailed
studies that include unrecorded road accident events. The focus of this paper is to propose a model
to predict traffic accidents using information gathered from social media and open data, applying
an ensemble Deep Learning Model, composed of Gated Recurrent Units and Convolutional Neural
Networks. The results obtained are compared with baseline algorithms and results published by
other researchers. The results show promising outcomes, indicating that in the context of the problem,
the proposed ensemble Deep Learning model outperforms the baseline algorithms and other Deep
Learning models reported by literature. The information provided by the model can be valuable for
traffic control agencies to plan road accident prevention activities.
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1. Introduction

Traffic accidents are a major issue concerning the number of deaths, personal injury,
and property damage. According to the World Health Organization (WHO) [1], 1.35 million
people die each year as a result of road traffic crashes, 93% of the world’s fatalities on
the roads occur in low and middle-income countries, and as the year 2018, road accident
injury is the leading cause of death for children and young adults aged 5 to 29 years. The
call to governments made by the WHO was to improve their legislation on the key issues
that directly affect the improvement of road safety, these being the control of speed on the
road, driving while intoxicated, the use of helmets on motorcycles and mandatory use of
seat belts and special seats for children. Another proposed road safety strategy was the
improvement in the planning, design, and operation of roads, by configuring a star rating
tool for road networks, as recommended by the International Road Assessment Program
(iRAP) [2]. This strategy had an impact not only on the safety and wellbeing of drivers but
also on other road users such as pedestrians and cyclists.

Given the precedents mentioned above, it is valuable to seek the application of machine
learning methods for the prediction of road accidents, since it is useful not only to the public
but to road users, transportation planners and governments. Considering the accessibility
to the data of social media platforms that contain spatio-temporal data related to road
accidents and the availability of Deep Learning algorithms suitable to analyze that kind
of data, it is feasible to propose a road accident prediction model, which allowed us to
integrate several data sources, extract spatio-temporal features and learn from time-series
data and obtain meaningful patterns. On the other hand, we face the following issues when
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designing the model: (i) Data scarcity. The proportion of road accidents is low against the
case of no-accidents in a time series dataset; (ii) Data quality. Social media data may contain
a high proportion of outlier data concerning coordinates and may contain duplicate reports
of the same road accident; (iii) The inherent behavior of road accidents is complex and
non-linear [3]; to tackle that obstacle the proposed model takes into account environmental
conditions that have an impact on road accidents.

This paper presents a deep learning model that fuses different information sources to
predict road accidents in the city of Bogota, using a dataset that contained road accident
reports from May 2018 to June 2019 and climate information for the aforementioned time
period and employing an ensembled deep Recurrent Neural Network (RNN). The road
accident dataset was processed in order to remove outliers and noise and then it was
transformed using a feature engineering process in order to obtain a representation of the
data that can be useful to perform a machine learning process. Additionally, data from
climatological information of the city of Bogota were used in order to enrich the scope of the
study and enhance the prediction of road accidents. Regarding the proposed ensemble deep
learning model, its design comprises a Gated Recurrent Network and Convolutional Neural
Network architecture, devised to analyze road accident spatio-temporal data, road accident
time patterns and climatological data. The results obtained by the model were compared
against baseline models and with deep learning models reported by the literature.

The main contributions of this paper are summarized as follows:

1.  The proposed ensemble deep learning model is designed to perform traffic accident
prediction, using information about road accidents from social media and climate
information from open data.

2. To our knowledge, this is the first research of this nature conducted in Bogota city
using social media data.

3.  The information provided by the model can be valuable for traffic control agencies
to plan road accident prevention activities since it results can be applied to specific
regions in the city.

The rest of the paper was organized as follows: Section 2 discusses the related work to
this paper. Section 3 presents the methodology used, detailing the data analyzed, the data
cleaning process, the feature engineering process designed to enhance the data, the deep
learning methods employed and the design of the proposed model. Section 4 presents the
results obtained and the comparison with baseline algorithms and deep learning models
reported by the literature. Section 5 describes the conclusion and future work.

2. Related Work

Social media had become one of the main channels for public announcements and
interaction, and among all the universe of topics that people discussed, one of the most
relevant is the information about traffic status, road conditions, traffic accidents and other
factors that may have an impact such as weather [4], and currently, the most studied and
available data sources for road accident analysis and prediction are Waze, Inrix, Google
Maps, Twitter and Sina Weibo, as reported by [5-8]. One of the most challenging tasks to
carry out when working with social media information is the process of preparing the data
to transform it into a source of structured information with adequate quality for analysis
using machine learning or another technique as described by [9-12]. After transforming the
raw data and obtaining a suitable data set, several research studies had been carried out,
such as the detect traffic accidents reported on Twitter using deep learning algorithms in
New York [13], a real-time monitoring system for traffic event detection [9], or a real-time
road accident detector using Twitter [14].

The use of deep learning algorithms is a state-of-the-art technique that is useful to
discover patterns and structures in high-dimensional data and generate learning patterns
and discover relationships beyond immediate neighbors in the data [15]. Deep learning has
been used in fields such as computer vision, natural language processing, signal processing
and speech recognition, among other applications [16]. Regarding applications of deep
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learning in the subject of urban road accidents prediction, there are several studies that are
worth highlighting, such as the one carried out by [17], where the authors analyzed spatial
and temporal data of traffic accidents from Beijing, between 2016 and 2017 using a Long
Short-Term Memory model, and the research by [18], where the authors employed a novel
approach by encoding a matrix of accident data into a grey image array that represented
the weights of the traffic accident’s features and used as an input for road accident severity
prediction employing a Convolutional Neural Network model. Other innovative uses of
state-of-the-art Machine Learning techniques related to transport are the prediction and
identification of cargo theft in railway transport [19] and the prediction of pantograph
failures of rail vehicles [20].

Concerning ensembled deep learning architectures applied to road accident analysis
and prediction, Ref. [21] proposed a combination of Convolutional Neural Networks (CNN)
and Long Short-Term Memory network (LSTM), called the CNN + LSTM model, that was
employed to detect traffic events, including accidents, using a labeled dataset build of traffic-
related information extracted from Twitter information. The authors in [22] proposed a
method for real-time crash risk prediction on urban arterials using a combination of LSTM
and CNN networks. Ref. [23] proposed a Stack Denoise Convolutional Auto-Encoder
(SdAE) composed of eight hidden layers paired with a batch normalization method. [24]
proposed a deep learning model called spatiotemporal convolutional long short-term
memory or STCL-Net Model, which consisted of an ensembled model of LSTM layer,
CNN layer and hybrid LSTM-CNN layer. The authors applied their model using several
spatio-temporal configurations, using different time and spatial grid configurations to
predict traffic accidents in New York City. Ref. [25] proposed a deep learning model called
Deep Spatio-Temporal Graph Convolutional Network, DSTGCN, composed by a spatial
layer, a spatio-temporal layer and an embedding layer.

Ensemble model architectures have been employed in other knowledge fields such as
detection of speech patterns [26] and short team load forecasting [27]. The proposed model
is a deep learning ensembled model designed to forecast road accidents risk, containing
a GRU network to extract patterns from road accident time series, a CNN network to
extract relations from road accidents related to holidays and traffic peak hours, and a
CNN network designed to understand the underlying relationships between climatological
conditions and road accidents. The analysis employed data from May 2018 to June 2019.

3. Materials and Methods

The proposed method comprised three main phases, as shown in Figure 1. The first
phase was to perform a data cleaning and quality process, where the main objective was to
deal with missing values, extreme values, and outliers. The second phase was a feature
engineering process, with the objective of transforming the datasets in order to be used
in Machine Learning, involving tasks such as estimating the frequency and probability of
road accidents and generating time series data sets. The third phase was the prediction of
road accidents, using an ensemble deep learning model, which uses as input the processed
data coming from the feature engineering phase.

Road incident
time series

Road incident

Feature time features
Data Cleaning ——> Engineering ——>  Ensemble Model ——>  Prediction

Climate T
dataset Road incident
climate

conditions

Figure 1. Overall architecture of the proposed method. The architectures detail the main phases, such
as data cleaning, feature engineering and the design of the ensemble model.
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The next subsections provide the description of the original data, the data quality and
feature engineering process and the design and architecture of the ensemble deep learning
model proposed.

3.1. Dataset Description and Data Cleaning Preprocessing
3.1.1. Road Accident Dataset

In order to collect the road accident data, a web crawler software was developed to
collect data from the Waze application online live map from Bogota city. A similar approach
developed to extract data from the Waze platform was developed by [28,29] to obtain
information about traffic flow and traffic conditions, in Mexico City and Charlotte city
(US), respectively.

The web crawler software extracted every 15 min all the information related to road
accident reports, which included single-car collisions, collisions with a fixed object, vehicle
fire, vehicle rollover, accidents with multiple vehicles involved and, finally any accident that
involved pedestrians, bicycle, and motorcycle users. The collected data contains reports
from May 2018 to June 2019 and each report consisted of time, latitude, and longitude as
presented in Table 1. No information was captured regarding the vehicles involved, the
severity of the accident, or the persons affected.

Table 1. Dataset extracted from Waze, example of data.

Timestamp Latitude Longitude
20 June 2019 15:41:33 4.682584 —74.04869
20 June 2019 15:41:33 4.681141 —74.0537
20 June 2019 15:41:57 4.71908 —74.07556
20 June 2019 15:42:22 4.651553 —74.07435
20 June 2019 15:43:19 4.694954 —74.08765
20 June 2019 15:43:23 4.676282 —74.08434
20 June 2019 15:43:44 4.629432 —74.08272

The first process that was conducted was a data cleaning and quality process. The
main objective was to obtain an initial version of the dataset that was suitable for use in
deep learning algorithms, considering the impact that missing values, extreme values and
outliers can have on the results obtained.

It was sought to eliminate all the records that were outliers, which may contain noise
and that could contain coordinates not related to Bogota city road infrastructure. With the
intention of removing outlier coordinates, an official source was consulted, in this case, the
Bogota city open data website that contains the information related to city road infrastruc-
ture (https:/ /serviciosgis.catastrobogota.gov.co/arcgis/rest/services/Mapa_Referencia/
Mapa_Referencia/MapServer/10 accessed on 20 February 2022). According to the infor-
mation contained on the website, the values for the relevant maximum and minimum
coordinates were obtained, and therefore, all the coordinates that were outside the specified
range were deleted. The values for maximum and minimum reference coordinates are
presented in Table 2.

Table 2. Bogota road infrastructure coordinates, as specified by Bogota open data website for maps,
layer road infrastructure.

Description Latitude Longitude
Minimum values 3.7892 —74.3948
Maximum values 4.8366 —73.9913

The dataset was examined by searching for records with empty or null dates, null
latitude, and null longitude values, and none were found. Finally, the clean version of the
dataset consisted of 96,949 records, with no empty values, and no data outliers, as detailed
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in Table 3. Finally, Figure 2 shows, (a) the geographical distribution of the data in Bogota city,
remarking that all the reports are located inside Bogota’s urban road infrastructure. Panel
(b) of Figure 2 shows a heatmap of road accident distribution, to show the concentration
of road accidents in areas of an approximate size of 1 km by 1 km. The heatmap uses a
codification of four intervals, to show the number of road accidents, from 0 to 100, 101 to
200, 2001 to 300 and greater than 300 road accidents.

Table 3. Clean version of the road accident dataset, detailing features statistics.

Value Center Value Dispersion Min. Value Max. Value % Missing Values
Timestamp 2 December 2018 13 months 4 May 2018 19 June 2019 0%
Longitude —74.1042 —0.00005 —74.2213 —74.0175 0%

Latitude 4.6557 0.01111 4.49278 4.82472 0%
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Figure 2. Geographical distribution of road accident data, Bogota city, May 2018 to June 2019: (a) Dis-
tribution of road accidents by latitude and longitude; (b) Heatmap of road accidents distribution,
showing the spatial disparity of the distribution of road accidents.

Regarding the time patterns found in the data, they can be described using Figure 3.
Figure 3a shows a clear pattern of traffic accidents that matches the pattern of traffic peak
hours in Bogota, with a peak of accidents from 6 am to 8 am, a second peak between 12
to 3 pm and finally the third peak from 5 pm to 8 pm. The frequency of the peaks can be
explained as matching the beginning and end of workdays and the peak in the middle is
influenced by the end of the school day. Figure 3b shows the distribution of road accidents
by day of the week, indicating that Wednesday and Friday are days with high numbers of
road accidents. The small number of road accidents on weekends was expected since most
people do not commute to work. Additionally, it is worth considering that the mobility of
private vehicles and taxis is restricted by the “Pico y Placa” policy [30], which restricts the
mobility of vehicles according to the date, the last figure of the vehicle plate and according
to predefined time slots.
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Figure 3. Time patterns of road accidents in Bogota city: (a) Distribution of road accidents by hour
of the day, showing a clear influence of peak hours; (b) Distribution of road accidents by day of the
week, showing an increase on Wednesday and Friday, and a clear decrease in weekends.

3.1.2. Climate Information Dataset

In order to enhance the understanding of the underlying patterns behind the road
accidents, climate information for Bogota city was gathered, since the weather conditions
are a known fact related to road accidents [31]. Other climate information such as foggy
days, visibility and lightning were not available from the Bogota City Open Data repository
(https:/ /datosabiertos.bogota.gov.co/ accessed on 20 February 2022) or other official data
sources. The authors reviewed the police road accidents reports database, which could
contain such information, and the result was that all the data related to climate conditions
was not filled out in those reports. The information consists of reports of precipitation in
the city of Bogota, measured in millimeters and with sampling intervals of every 5 min,
discriminated by each of the city’s meteorological stations, specifying the location by its
coordinates, as shown in Table 4. The features of the dataset were the date (including hour
and minute data) of the sampling, meteorological station code and location (including
code of station and its latitude and longitude) and the amount of rain in millimeters. The
information was gathered from the Colombian government’s official open data site (https:
/ /www.datos.gov.co/ Ambiente-y-Desarrollo-Sostenible / Precipitaci-n/s54a-sgyg accessed
on 15 October 2021). The content of the data is maintained and steward by Colombia’s
meteorological agency, “Instituto de Hidrologia, Meteorologia y Estudios Ambientales”
(http:/ /www.ideam.gov.co/ accessed on 15 October 2021) IDEAM.

Table 4. Precipitation information dataset for Bogota city, detailing features statistics.

Value Center Value Dispersion Min. Value Max. Value % Missing Values
Date 12 January 2019 13 months 4 May 2018 19 June 2019 0%
Longitude —74.1034 —0.0006 —74.2050 —74.0190 0%
Latitude 4.6630 0.0175 4.5120 4.8130 0%
Rain (mm) 0.1144 8.1452 0.0000 48.7000 0%

3.2. Feature Engineering

Feature engineering is the process to design the preprocessing pipelines and data
transformations that result in the representation of the data that can be employed in
machine learning algorithms [15]. The application of the feature engineering process used
in this research is described in the following subsections.

3.2.1. Definition of Time Window

In order to manage the multiple instances of the same road accident reported by more
than one person, the first step was to ensure that all the timestamps were converted using a
60-min window, by using the criteria that all the minute part was set to 00, i.e., the date
15 May 2019 07:38:00 was transformed to 15 May 2019 07:00:00. A multiples report can be
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considered as a group of road accidents that had the same latitude, longitude and belong
to the same 60-min window, and therefore only one report was considered using that
grouping criterion. This decision seeks to consider that there may be reports of the same
road accident made by multiple witnesses at the same time window. Other time periods
were considered for the time window, such as 15 and 30 min, but they were not practical
since they resulted in a small sample of data, not useful for calculation of traffic accident
frequency and probability, making them not suitable for use in deep learning algorithms,
as stated by [32].

3.2.2. Timestamp Transformation

The timestamp variable was initially represented as a datetime type, with format
yyyy-mm-dd hh:mm:ss, and it was transformed to Linux Epoch or POSIX time (POSIX time
as defined in https:/ /pubs.opengroup.org/onlinepubs /9699919799 /xrat/V4_xbd_chap04.
html accessed on 15 October 2021). This representation ensures that the temporal resolution
of the data was not lost and that it can be encoded back into the timestamp data type
without risking losing information.

3.2.3. Definition of Spatial Matrix

The traffic accident data set was transformed using a two-dimensional matrix that
represents the space variable. Two spatial resolutions were considered, a squared grid with
elements of 1 km length and 1 km width and a squared grid with elements of 2 km length
and 2 km width. Regarding the case of the 1 km by 1 km grid, the resulting matrix had
a length (east to west) of 24 km and a width (north to south) of 42 km, and as a result,
the proposed structure was a matrix of 24 by 42 elements. The 2 km by 2 km squared
grid covered an area with a length of 26 km and a width of 44 km and comprised 13 by
22 elements.

The spatial matrix with 1 km by 1 km was generated using QGIS Software (version
3.16), using the following parameters:

Geometry: Polygon

SRC: EPSG: 3857-WGS 84 /Pseudo-Mercator-Projected

Extension: —8,262,533.5000, 496,384.8125: —8,238,532.5000,538,384.8750
Unit: meters

Number of objects: 1008

The selected spatial resolution dimension was the grid of 1 km and 1 km elements.
This spatial resolution helps us to avoid the observation that the occurrence of traffic
accidents became near zero and therefore, seeking to avoid the decrease of the performance
of the predictive model, according to the results reported by [24] that iterated employing
different configurations of spatial resolutions to analyze traffic accidents in New York City.
Figure 4 shows the spatial grid with 24 by 42 elements, including the main administrative
sub-division of the city, called localities.

Using the spatial matrix, the traffic accident probability was calculated, employing a
method adapted from the proposals of [33,34], as follows:

The traffic accident probability is represented as s (X, D), with X being the number of
road accidents in the dataset that occurs in a particular latitude and longitude and D the
total amount of accidents on the same coordinates in that particular time.
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Figure 4. Spatial matrix details of Bogota city, resolution of 1 km x 1 km for each grid element.

3.2.4. Data Augmentation Procedure

In order to deal with the absence of negative reports of traffic accidents, defined data
with zero frequency and zero probability in a given time and a specific coordinate, a data
augmentation procedure must be employed, with the goal of reflecting the behavior and
nature of traffic accidents in the real world. The method Synthetic Minority Over-Sampling
Technique for Regression with Gaussian Noise (SMOGN) [35] was evaluated since the
SMOGN method is useful for regression problems when the synthetic data is of interest for
the model. The results using SMOG were not useful, since its results do not ensure that the
generated data belong to real world data, i.e., reports of non-accident data in the regions of
study, that can be correlated to data from rain conditions reported by the official entities.

Our proposed procedure was created using an approach similar to that proposed
by [36,37] and is shown in Algorithm 1. The idea behind the data augmentation procedure
was to generate tuples with zero frequency and zero road accident probability in random
hours and dates for a certain coordinate that was not reported in the original dataset. The
procedure was executed for every one of the elements of the spatial matrix, the initial value
for parameter k was the amount of traffic accidents reported for the current element x, y of
the spatial matrix, meaning that it generated a zero-accident report with a set of k tuples.
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Algorithm 1. Data augmentation procedure.

Input: Original Dataset
Output: Augmented dataset
Begin
Fori=1—k
select randomly an Epoch value from the dataset
select randomly a X position from the grid
select randomly a Y position from grid
generate a tuple t; (time;, x position, y position)
assign to the tuple t; 0 probability and 0 frequency values
save tuple t; in the dataset Augmented dataset
End For
Return Augmented dataset
Delete from Augmented dataset duplicates tuples
Delete from Augmented dataset tuples that match a tuple from the original dataset
End

As a result, by using the union of the accident reports in every grid element and
the non-accident report data generated for that grid element, a dataset with a proportion
of 1:1 of positive reports (frequency and probability greater than zero) and negative re-
ports (frequency and probability equal to zero) of road accidents was obtained for every
grid element.

3.2.5. Resulting Set of Features

The resulting set of features obtained as output from the data engineering process
is shown in Table 5. The specific features fed into every neural network of the ensemble
model are explained in Sections 3.3.1-3.3.3.

Table 5. Resulting set of features obtained from data engineering process.

Feature Description
Epoch Date encoded as epoch
Latitude Latitude of traffic accident report
Longitude Latitude of traffic accident report
Hour of day Hour of traffic accident
Weekday Weekday of traffic accident
Rain mm Quantity of rain fall in millimeters
Position X Position relative to the spatial matrix in the X axis
Position Y Position relative to the spatial matrix in the Y axis
Traffic accident probability Traffic accident probability

3.3. Deep Learning Model

Deep learning models are Artificial Neural Networks with more than two hidden
layers, that are designed to learn feature representations from data in an automatic way,
rather than depend on human experience and prior knowledge [15]. Among the deep
learning models, there are architectures that use models such as long-short memory net-
works (LSTM), gated recurrent units (GRU), convolutional neural networks (CNN) and
a combination of them that are used to discover hidden relationships and structures in
high dimensional data. The combination of models is called ensemble learning, and it is
designed to make use of two or more machine learning models and combine their results
to improve the results obtained. In the case of this research, the objective was to design a
model that had the appropriate combination of Recurrent Neural Networks and Convolu-
tional Neural Networks that were able to make predictions using data from road accidents
and climatological information.
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3.3.1. GRU Network for Road Accident Time Series

Gated Recurrent Unit (GRU) is a Recurrent Neural Network designed containing
gating units that modulate the flow of information inside the unit, without having separate
memory cells. The main difference with an LSTM network is that GRU does not have any
mechanism to control the degree to which its state is exposed but exposes the whole state
at each iteration without any control mechanism [38]. GRUs are suitable for learning from
time-series data and sequence modeling.

The GRU network was designed to manage the information from the road accidents
as a time series, where there is a time series defined for every member (x,y) of the spatio-
temporal matrix defined in Section 3.2. The input of the GRU network is prepared with
the shape (Sample, Time Slice, Features), meaning that the input to the network is a 3d
array. The sample size was defined as 60% of the dataset for the training set and 40%
for the testing set. The time window defined to group the series of data was defined as
6 h, since in a previous work regarding the characterization of road accidents in Bogota
city [39], 6 h was the temporal pattern most relevant between traffic peak hours. The
parameter Features was specified as 3, since the GRU network receives the grid position
(x,y) and the calculated probability of road accident, as specified in Section 3.2. The output
of the GRU network is the estimated probability of road accidents in the (x,y) position.
The optimal parameters GRU were found by iterating all the possible combinations of
parameters shown in Table 6 and selecting the best results obtained, using Mean Squared
Error (MSE), Root Mean Squared Error RMSE and Mean Absolute Error (MAE) metrics.

Table 6. GRU neural network for road accident time series.

Hyperparameter Values Evaluated Optimal Value
GRU unit size 16, 32, 64, 128, 512 512,128
GRU layers 1,2,3,4 2

3.3.2. CNN Network for Road Accident Time Features

CNN have a similar architecture to a feed-forward artificial neural network, but they
diverge in terms of (i) connectivity patterns between neurons in adjacent layers; (ii) the
CNN reduce the parameter scale in the model by using a specialized layer called pool layer;
(iii) CNN have a special layer called convolution, that consist in a series of filters that are
convolved across the axis or dimensions of the input data or image; and (iv) the final layer
is the only one that is fully connected [40]. CNN have been extensively used to extract
spatial features from data and for perform object detection and semantic segmentation of
high-resolution images. Regarding the architecture of CNN, there are different use cases,
according to their dimensionality. One-dimensional CNN are best used for extracting
features in one-dimensional data or signals such as sounds, 2-dimensional CNN are used
for extracting patterns and analyzing images, grayscale or RGB images and both cases are
considered to be 2-dimensional signals, and 3-dimensional CNN are used for 3-dimensional
signals such as video frames, considering images as two-dimensional signals that vary
during the time.

The CNN network chosen for analyzing the road accident time features is a 1-dimensional
CNN or CONV1D, it was prepared to estimate the probability of road accidents in a given
(x,y) position in the spatial matrix considering other time characteristics do not present in
the GRU network time series, such as holidays and work hours. The input for this network
was developed with the shape (Sample, Features). The sample used is 60% of the dataset
for the training set and 40% for the testing set, and the features considered are X position,
Y position, day of the week, hour of the day and road accident probability. The output of
the CNN network is the estimated probability of a road accident in the (x,y) position. The
optimal CNN network parameters were found by iterating all the possible combinations of
parameters shown in Table 7 and selecting the best results obtained, using Mean Squared
Error (MSE), Root Mean Squared Error RMSE and Mean Absolute Error (MAE) metrics.
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Table 7. CNN network for additional time features.

Hyperparameter Values Evaluated Optimal Value

CNN unit size 32, 64,128, 256, 512 512,128, 64, 32
CNN layers 2,3,4,5 4
Kernel size 1,2,3 1

3.3.3. CNN Network for Climate Data

The CNN network for climate data analysis is designed as a 1-dimensional CNN or
CONV1D, that processes historical information on the amount of rain (in millimeters) in
a given (x,y) position of the spatio-temporal matrix and correlates that information with
the probability of road accidents. The input of the climate CNN network is a time series
prepared with the shape (Sample, Time Slice, Features). The sample used is 60% of the
dataset for the training set and 40% for the testing set, as stated previously, the time window
for the data series was defined as 24 h, considering the nature of the climatological data.
the features selected were X position, Y position, rain in millimeters, and road accident
probability. The output of the CNN network is the estimated probability of a road accident
in the (x,y) position. The optimal CNN network parameters were found by iterating all
the possible combinations of parameters shown in Table 8 and selecting the best results
obtained, using Mean Squared Error (MSE), Root Mean Squared Error RMSE and Mean
Absolute Error (MAE) metrics.

Table 8. CNN network for climate data.

Hyperparameter Values Evaluated Optimal Value
CNN unit size 16, 32, 64, 128, 256 128,128,128
CNN layers 1,2,3,4 3
Kernel size 1,2,3 1

3.4. Ensemble Model Network

The proposed ensemble model architecture contains one GRU network for analyzing
time-series road accident data, one CNN to analyze road accident additional time features
and one CNN to analyze climate data related to road accidents, their output is combined
by a concatenate layer and contains a dropout layer to avoid over-fitting as shown in
Figure 5. The networks are processing data in parallel, and every network is working
with separate input layers since each one of the networks works with its own input shape
and subset of data, configured according to what was previously specified in previous
Sections 3.3.1-3.3.3. The optimal hyperparameters for the additional layers required by the
ensembled model are shown in Table 9. The final output of the model is the predicted road
accident probability in the (x,y) selected zone of the spatio-temporal matrix.
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Figure 5. Ensemble network architecture.

Table 9. Ensemble model hyperparameters.

Hyperparameter Values Evaluated Optimal Value
Number of neurons 128, 256, 512, 1024 1024
Number of layers 1,2,3,4 1
Epoch number 10, 50, 100, 200, 500 100
Batch size 10, 20, 200, 500, 1000 10
Optimizer Adam, RMSProp Adam
4. Results

The data sets are divided into a training set (60%) and a test set (40%). The results
obtained were evaluated using Mean Squared Error (MSE), Root Mean Squared Error
RMSE and Mean Absolute Error (MAE) metrics [41]. MSE was calculated as the average of
the squared differences between each computed value and its corresponding correct value
and RMSE was calculated as the square root of the MSE and was used as a measure of
differences between the value predicted and the real values. A low mean absolute error
(MAE) indicates good predictive accuracy. A lower value of RMSE is indicative of a higher
prediction precision. Both MSE and RMSE are widely used to evaluate deep learning
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models applied in the field for road accident forecasting and prediction. Mean absolute
error is also known as average prediction error and is calculated as the average of the
difference between the predicted and actual value in all the test cases; a low MAE value
indicates good predictive accuracy. The objective of using MSE, RMSE and MAE indexes to
evaluate the model was to facilitate comparison with the results presented by other authors
in similar or related investigations, as reported by [23-25,32,42,43].

The models were implemented in Python running on a system using an NVIDIA
GeForce RTX 2060 GPU and an Intel Core i7-8750H processor.

In order to validate that the model can generate predictions of traffic accident proba-
bility with data from every region of the city we employed randomly generated test data.
The results of the testing process using 20 randomly selected training data are shown in
Table 10.

Table 10. Ensemble model performance using randomly selected test data.

Description MSE RMSE MAE
Mean value 0.0049 0.225 0.160
Standard deviation 0.001 0.009 0.002
Minimum value 0.0047 0.217 0.156
Maximum value 0.0053 0.255 0.164

The next step in validating the model was selected to evaluate its performance, there-
fore, 20 regions were selected from the spatio-temporal matrix, as shown in Table 11. The
selection criteria for the studied regions were based on quartiles, according to the number
the values of the number of accidents reported, and the most representative regions of
each quartile were taken. The geographical location of the regions is shown in Figure 6.
As a relevant fact, the top five regions can be defined as areas with high traffic, all include
intersections between main avenues and Bus Rapid Transit (TransMilenio) corridors. It is
worth noting that according to [44] the BRT has an impact on the increase of road accidents,
particularly those involving pedestrians around the busiest BRT stations at peak times.

The ensemble model reported reliable and stable results forecasting the probability
of road accidents in the selected zone of Bogota city. It must be considered that the same
level of results must not be attainable in other regions of the city, since they have an
exceptionally low level of road accidents reported, and therefore, making it unfeasible to
model their behavior using a time-series or other model that can lead to uncovering an
underlying pattern. The results of the model are shown in Table 11. The first entry in the
table corresponds to results obtained by the model using the union of all accidents, called
the “Generalized Model”. The Generalized model was employed as a basis to predict the
probability of the other regions selected to be studied.

4.1. Model Comparison and Validation

In the next subsections, the results obtained are compared with baseline models and
with results reported by other researchers that had employed deep learning models for the
prediction of road accidents.

4.1.1. Results Comparison with Baseline Models

Regarding the algorithms employed to benchmark the results obtained by the ensem-
ble model, the algorithms Ada Boost, Linear Regression, Random Forest Regression, and
Support Vector Regression (SVR) were considered. The parameters and configuration of
each algorithm are shown in Table 12.



Computers 2022, 11,126 14 of 18

o I NS o g I’l
. ¥ 1
sy MTQ 3
/
b
U seels g
V2 AR ABELY 1)
. :;-"","“ WEIES e
LIHHHA( ¥ } -“\
3 5 A A =0
- P > 'r;—r L
B A NIT TR,
- \l"d L e )i: o] I ‘:'
[ 417 3 ; SR i .
ATt SF
Roc|) foon 2
P A S d Wb e
R, (R0 W ¥ g
10 AR o &1 % T 104
o5 W\ y:{-. ¥ 2, 3 Y
a3 L p Shee § %
N N O Ardne & &
74 P A X ft[ s -
s X Ry S * 4
B oA ) SEL AL g
™ Zi B w by 9
Clodad (871 Tekaidpd Ratart | | ©
£ CRaded
49 R SES
< : ,‘.- 1y —
\ w AR ‘
)| R 2% y \
P ~" X
. s V2 X
5o \
ST AN
- 3 -
ol 1 siupe rha IR iSRS

0 1534 5/6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

:
Figure 6. Geographical location of the selected regions used to evaluate the ensemble model.

Table 11. Results obtained by the ensemble model. The first entry in the table corresponds to the
results obtained by the model using the union of all accidents, called the “Generalized Model”.

Region Number of Accidents MSE RMSE MAE
Generalized model 3071 0.049 0.22 0.159
X=6Y=15) 321 0.07 0.264 0.183
X=9Y=19) 286 0.045 0.213 0.158
X=10Y=21) 277 0.05 0.223 0.163
(X=18Y =25) 269 0.046 0.214 0.154
X=12Y=23) 248 0.038 0.196 0.153
X=19Y =25) 238 0.073 0.271 0.181
X=14Y=32) 155 0.057 0.239 0.167
(X=12Y =28) 153 0.062 0.25 0.176
(X=15Y=22) 152 0.048 0.218 0.153
(X=16Y=29) 152 0.056 0.237 0.168
X=13Y =16) 150 0.053 0.23 0.171
X=16Y=19) 96 0.07 0.265 0.178
X=8Y=21) 96 0.038 0.194 0.149
X=11Y=15) 96 0.05 0.223 0.167
X=16Y=26) 96 0.053 0.229 0.154
X=11Y=17) 45 0.022 0.148 0.106
X=13Y=13) 44 0.032 0.179 0.144
X=5Y=18) 44 0.01 0.098 0.087
X=9Y=24) 44 0.014 0.12 0.103
(X=8Y=14) 44 0.03 0.172 0.156
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Table 12. Baseline algorithms parameters and configuration.

Algorithm Parameters
Base estimator: tree
AdaBoost Number of estimators: 100

Algorithm (classification): Samme.r
Loss (regression): Square

Linear Regression Regularization: Lasso Regression (L1) with & = 0.0001

Number of trees: 100
Maximal number of considered features: 2.
Replicable training: Yes
Maximal tree depth: unlimited
Stop splitting nodes with maximum instances: 5.

SVR type: SVR,C=1.0,e=0.1
Kernel: Linear
Numerical tolerance: 0.001
Iteration limit: 100

Random Forest Regression

Support Vector Regression

The results obtained by the model were a benchmark against the model detailed in
Tables 12 and 13. It must be considered that the benchmark algorithms were evaluated
using a consolidated dataset, shaped as (Sample, Features), being the Sample size the
60% of the dataset for the training set and 40% for the testing set; the Features contains
X position, Y position, day of the week, the hour of the day, rain in millimeters and road
accident probability.

Based on the information in Tables 13 and 14, it can be ensured that the proposed
model presents a better performance to predict road accidents in areas where there is a
greater number of reports and its performance declines in areas with fewer reports, as can
be seen in the results. This behavior is expected since Deep Learning methods require a
significant amount of data in order to obtain better results [16].

Table 13. Ensemble model results comparison with baseline algorithms using RMSE.

Generalized Model (x=6,y=15) x=9,y=19 (x=10,y=21) (x=12,y=23) (x=18,y=25)
Ensemble model 0.215 0.264 0.213 0.223 0.196 0.214
AdaBoost 0.365 0.337 0.264 0.292 0.273 0.262
Linear Regression 0.229 0.271 0.206 0.230 0.220 0.244
Random Forest 0.228 0.280 0.214 0.244 0.245 0.239
Regression
SVR 8.209 0.305 0.259 0.315 0.326 0.250
Table 14. Ensemble model results comparison with baseline algorithms using MSE.
Generalized Model (x=6,y=15) x=9,y=19 (x=10,y=21) (x=12,y=23) (x=18,y=25)
Ensemble model 0.046 0.070 0.045 0.050 0.038 0.046
AdaBoost 0.133 0.113 0.070 0.085 0.075 0.069
Linear Regression 0.052 0.074 0.042 0.053 0.048 0.060
Random Forest 0.052 0.078 0.046 0.060 0.060 0.057
Regression
SVR 67.400 0.093 0.067 0.099 0.106 0.062

4.1.2. Results Comparison with Deep Learning Methods Reported by Literature

In order to make a comparison with other methods reported in the literature, papers

were selected that had used or designed deep learning models for the prediction of road
accidents, with a spatio-temporal resolution that was equivalent to that one described
in this document. The description of the investigations selected for the comparison of
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results is illustrated in Section 2, Related Work. Regarding the obtained results used for
comparison, the results obtained by the generalized model, as shown in Table 10 were used,
and therefore, the reference numbers calculated were an RMSE value of 0.220 and an MSE
value of 0.049 and an MAE value of 0.159.

The comparison with other deep learning models was better or concurrent with those
reported in the literature as shown in Table 15. It should be considered that each model
was designed using different input data and that each model reflects the situation of road
traffic in cities with unique characteristics of development, population, and infrastructure.

Table 15. Model comparison results with Deep Learning methods using RMSE and MSE. Empty cells
indicate that the authors did not report the result.

Method RMSE MSE
Ensemble model 0.215 0.046
[23] SAAE 1.00 -
[24] STCL-Net Model grid 8x3 hourly prediction - 0.378
[24] STCL-Net Model grid 15x3 hourly prediction - 0.119
[24] STCL-Net Model grid 30x10 hourly prediction - 0.003
[25] DSTGCN 0.343 -

5. Conclusions

This study applied an ensembled deep learning model GRU-CONV1D to predict
road accident probability using spatio-temporal information, employing social media and
meteorological information as sources. In order to make the raw data suitable for working
with Machine Learning techniques, we described a data quality process by which the
data was cleaned of outlier values and noise, followed by a feature engineering process,
which allowed us to enhance the original information, create the means to model the data
as a spatio-temporal matrix, calculate road accident probabilities and model the features
as a time series. Next, we design the deep learning ensemble model, that allowed us to
integrate the deep learning models more suitable to extract the features available in every
data source, such as a GRU network to extract patterns from a road accident time series, a
CNN network to extract relations from road accidents and holidays and traffic peak hours,
and finally, a CNN network designed to understand the underlying relationship between
climatological conditions and road accidents.

The results imply that the proposed ensemble deep learning model performed better
than the benchmark models, with the aforementioned advantage of integrating several
data sources that allowed us to consolidate various viewpoints of road accident analysis.
The comparison with other deep learning models yields interesting results and the results
obtained are better or concurrent with those reported in the literature. However, it must
be considered that the predictions obtained by the models are highly dependent on the
input data and it must be considered the influence of the particularities of the situation of
traffic accidents of each city, which were influenced by elements such as development, the
conditions of the road infrastructure and the culture of drivers and pedestrians, which at
the present time cannot be incorporated into the models very precisely.

The information provided by the model can be valuable for traffic control agencies
to plan road accident prevention activities since the results obtained showed problematic
regions regarding road accidents, which can be characterized as areas with high traffic,
which include private vehicles, buses and trucks, and the regions included intersections
between main avenues and Bogota city Bus Rapid Transit (TransMilenio) corridors and
stations. A limitation of the present study is that there were zones in the city that have
a scarce level of road accidents reported, and therefore, it is not realistic to model their
behavior using a time-series model and using a deep learning model to analyze them. In
future work, it is planned to integrate other relevant data such as traffic flow, land use,
average traffic speed and additional road accident features, such as accident severity, to
improve the predictions obtained.
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