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Abstract: The lymphocyte classification problem is usually solved by deep learning approaches
based on convolutional neural networks with multiple layers. However, these techniques require
specific hardware and long training times. This work proposes a lightweight image classification
system capable of discriminating between healthy and cancerous lymphocytes of leukemia patients
using image processing and feature-based machine learning techniques that require less training time
and can run on a standard CPU. The features are composed of statistical, morphological, textural,
frequency, and contour features extracted from each image and used to train a set of lightweight
algorithms that classify the lymphocytes into malignant or healthy. After the training, these classifiers
were combined into an ensemble classifier to improve the results. The proposed method has a lower
computational cost than most deep learning approaches in learning time and neural network size.
Our results contribute to the leukemia classification system, showing that high performance can be
achieved by classifiers trained with a rich set of features. This study extends a previous work by
combining simple classifiers into a single ensemble solution. With principal component analysis, it is
possible to reduce the number of features used while maintaining a high accuracy.

Keywords: leukemia classification; ensemble learning; machine learning; feature analysis

1. Introduction

Leukocytes are some of the types of cells that compose the human blood. Leukemia is
a disease that affects the function and shape of leukocytes and can occur in a chronic or
acute form. Acute leukemia is more aggressive, has more intense symptoms, and evolves
quickly. Lymphocytes, a type of leukocyte, are called lymphoblasts in their immature form.
Acute lymphoblastic leukemia (ALL) is a type of cancer characterized by the accumulation
of lymphoblasts within the bone marrow. ALL is the most common childhood leukemia,
mainly affecting children between 3 and 7 years old, and 75% of diagnoses occur before
the age of 6 [1]. According to the Brazilian Institute of Cancer (INCA), in the year 2020,
leukemia killed about 6738 people. An early and more accessible diagnosis could save
many of these lives [2].

Usually, leukemia diagnoses are done by microscopic analyses of blood smears. The di-
agnosis depends on the hematologist’s expertise in distinguishing malignant from healthy
lymphocytes. Pattern recognition, combined with image processing techniques, has been
used in blood analyses to produce computer-aided diagnosis (CADx) systems that aim to
improve the lymphocyte classification performance [3,4].

The Acute Lymphoblastic Leukemia Image Database (ALL-IDB) [5,6] for image pro-
cessing provides a set of annotated images that can be used in the evaluation of classifiers of
ALL cells. This initiative provides two different datasets: ALL-IDB1, consisting of 108 blood
smear pictures collected from healthy and leukemic patients containing 510 single lym-
phocytes; ALL-IDB2, a collection of cropped areas of interest of normal; and malignant
lymphocytes that belong to the ALL-IDB1 dataset.

Many studies have assisted hematologists in analyzing blood smear images for ALL
recognition. Some of these attempts have considered aspects of lymphocytes such as
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color, and textural and morphological features. The ALL-IDB dataset was used to train
classification models based on techniques such as support vector machines (SVM), k-nearest
neighbors (KNN), random forests, and ensemble classifiers. More recent approaches use
deep learning algorithms such as convolutional neural networks (CNN) to build models to
solve this problem.

Putzu et al. [7] proposed a leukocyte classification method using image features such
as color, texture, and shape. An SVM, a KNN, and decision tree models were trained using
these features to classify leukocytes and detect malignant cells. The dataset used in his
work was ALL-IDB1. Accuracy of 93.63% was achieved using an SVM with a radial basis
function kernel to analyze 267 leukocytes of the dataset.

Mishra et al. [8] presented a CADx system for detecting leukemia using the features
extracted from a discrete cosine transform (DCT) of grayscale lymphocyte images. This
paper proposed using DCT values with an SVM for the lymphocyte classification. The ALL-
IDB2 dataset was used in the k-fold cross-validation strategy to split the data into training
and testing datasets. His system achieved an accuracy of 89.76%.

MoradiAmin et al. [9] presented a CADx to distinguish between healthy and diseased
cells. The proposed system aggregates first and second-order statistical, morphological
and geometric features extracted from the nucleus images. These feature sets are used to
train an SVM using different kernels. After training, these classifiers are ensembled to build
a single classifier based on majority voting. The research team used a private image dataset
of 958 lymphocyte images (315 healthy and 643 malignant) divided into test and training
datasets. Finally, the author used the k-fold cross-validation strategy to achieve an accuracy
of 96.37%.

Shafique and Teshin [10] deployed an AlexNet, a pre-trained classifier, to achieve an
accuracy of 99.5%. The authors used the ALL-IDB2 dataset and increased the number
of images from 260 to 760 (500 malignant and 260 healthy) using mirroring and rotation
operations. The augmented dataset was split into training and test sets, with 60% and 40%
of the images respectively.

Moshvash et al. [4] developed a system that used a set of features composed of
32 textural, 15 shape, and six color descriptors. The texture data such as energy, correlation,
homogeneity and contrast were extracted from a gray level co-occurrence matrix (GLCM).
Each matrix component indicates the probability of two pixels having particular gray
levels at a particular spatial relationship. These features were used to train naive Bayes
(NB), KNN, decision tree and SVM models. Then these classifiers were combined into an
ensemble classifier. The ALL-IDB1 dataset was used to achieve an accuracy of 98.10%.

Mourya et al. [11] used DCT features and a CNN to distinguish malignant and healthy
cells in a hybrid classifier called Leukonet. To train this architecture, they developed a
dataset with 9211 cancer cells from 65 subjects and 4528 healthy cells from 52 subjects; these
images are separated into different folders. Different subjects were divided into training
and validation sets. They achieved an accuracy of 89.70% and an F1-score of 91.95% for the
cancer cell class.

Many works were developed using small datasets. The use of the ALL-IDB dataset,
with only 510 lymphocyte samples, has been commonplace. There are many feature
extraction-based approaches. However, none of these studies have combined these features
in a single feature vector, and no methodology has ensembled a feature-based neural net-
work with other classifier algorithms. CNNs or deep convolutional architectures are widely
used and achieve high accuracy but require considerable amount of training time and more
specific, restricted, and expensive hardware. According to Dongyu [12], a convolutional
neural network training trial may take a couple of weeks. This time can amount to months
of searching for different parameters.

Garcia et al. [13] showed the benefits of combining various classification models to
improve the results in complex and imbalanced datasets. This combination of models im-
proves the results as long as the results of individual models are not too close to perfection.
Many works combine different algorithms to achieve a single ensemble solution. For breast
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cancer detection, Abdar [14] proposed a CWV-BANN-SVM that combined two SVM and a
boosting ANN to achieve an accuracy of 100%. Hsieh [15] developed, for the same problem,
an algorithm that combines a neuro-fuzzy, KNN, and a quadratic classifier to obtain a
97.17% accuracy. Neuro-fuzzy refers to a combination of an artificial neural network and
fuzzy logic. These studies presented ensemble classifiers with high-performance using
lightweight classifiers. On the other hand, Moon et al. [16] presented a CADx system to
classify breast ultrasound images using an ensemble of different deep CNN architectures,
including VGGNet, ResNet and DenseNet, obtaining excellent results on different datasets.

Several studies use ensemble classifiers to solve the leukocyte classification problem
and similar problems. However, many of these studies combined heavyweight classi-
fiers [11,17,18], increasing the training time even more, and increasing the need for high-
performance hardware. Approaches that combine lightweight algorithms on an ensemble
classifier generally use the same algorithm with different configurations [4] or only classi-
cal classifiers [9] without exploring a lightweight artificial neural network (ANN) on the
ensemble solution.

In a previous study [19], we proposed a lightweight neural network classifier to
classify images of lymphocytes into malignant or healthy. The classifier used as input
a feature vector with 108 low-order statistical, 20 morphological, 75 textural, 1024 DCT,
and 160 contour features extracted from the lymphocyte images.

This study extended that previous work [19] by combining the neural network with
three traditional lightweight classifiers—KNN, SVM, and NB—into an ensemble classifier to
improve the classification results. The methodology achieved state-of-the-art performance
using a fraction of the computational time cost necessary to train a convolutional neural
network. Finally, a principal component analysis (PCA) was used to select the most
important features, and to test the possibility of reducing the number of features required
in order to reduce the classifier’s complexity.

2. Materials and Methods

The proposed methodology comprises two steps: feature extraction and ensemble
classifier.

In the feature extraction step, we extracted low-order statistical, morphological, DCT,
and contour data from images of lymphocytes. These features were combined into a single
feature vector, normalized, and used to train a set of classifiers. The feature extraction step
is described in Section 3.

The ensemble classifier uses ANN, KNN, SVM, and NB classifiers. The ANN approach
was selected from a combination of networks evaluated in a grid search. The best ANN
solution was fine-tuned to obtain the final neural network. The KNN, SVM, and NB
were trained with the same feature set as the ANN. Finally, we used a PCA to find the
most relevant features to the classification process, as an attempt to obtain a light and
interpretable model. With these features, a new and simpler classifier was obtained with
performance similar to the complete one. The ensemble classifier step is described in
Section 4.

The implementation of this methodology is publicly available online at https://github.
com/yurifarod/ISBI-2019 (accessed on 8 June 2022). The code was developed in Python 3.7
using machine learning libraries such as Tensorflow, Keras, and Mlxtend; the image pro-
cessing libraries OpenCV, PIL, and Pyradiomics [20]; and many other libraries responsible
for data processing and manipulations, such as Numpy, Scipy, Pandas, CSV, Os, Multipro-
cessing, Queue, and Timeit.

The dataset used was the publicly available C-NMC 2019 dataset, which is described in
the Section 2.1. We used a data augmentation strategy to balance the training and validation
image sets, as described in Section 2.2.

https://github.com/yurifarod/ISBI-2019
https://github.com/yurifarod/ISBI-2019
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2.1. C-NMC 2019 Dataset

The dataset used in this study was provided by the research team of SBILab [21].
The C-NMC 2019 dataset [22] consists of 15,114 images of lymphocytes collected from 118
subjects. These images were split into a training, preliminary, and test sets. Each image set
contains single-cell images of healthy or malignant lymphocytes previously labeled by a
team of oncologists.

The cells were dyed using the Jenner–Giemsa stain technique [23]. The SBILab team
preprocessed these images using segmentation, image enhancement, and normalization
techniques [24–26]. Individual lymphocytes were segmented from blood smear images
and placed in the center of them; each picture has 450 × 450 pixels and a black background.
Figure 1 shows samples of both healthy and malignant cells from this dataset.

Figure 1. C-NMC 2019 dataset samples. The images (a,c) are malignant lymphocytes, and (b,d) are
healthy lymphocytes. Reproduced with permission from Ref. [19]. 2021, IEEE.

The data of the final test set were unlabeled and can be used to submit results to
the website of the “C-NMC challenge: Classification of Normal versus Malignant Cells in
B-ALL White Blood Cancer Microscopic Images” organized by the SBILab [27].

This work used the labeled data, i.e., train and preliminary sets, with 4037 healthy
lymphocytes from 41 subjects and 8491 malignant lymphocytes from 60 patients. These
images were split into training, validation, and test sets. The pictures of the same patient
were placed in the same group, as done by Mourya et al. [11]. The subjects were divided
into training–validation–test in the ratio of 7:2:1, as shown in Table 1.
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2.2. Data Augmentation

Sometimes, a classifier may work very well on the training data while performing
poorly on previously unseen data. When this happens, we say that the model does not
generalize well; i.e., it is overfitted. When a model is complex to the point that it models
noise in the training data instead of smooth decision surfaces, it is probably overfitted.
The model probably memorized the samples present in the training set instead of learning
to generalize from them. To avoid overfitting, we may use several regularization techniques,
such as dropout layers in the ANN, lasso, and ridge regression. Another possibility is to use
data augmentation. It consists of augmenting the dataset with new samples obtained from
the original ones by adding noise or doing some transformation. With data augmentation,
it is possible to increase the dataset’s size when it is too small. It is also useful to balance
the number of samples of the classes, as an unbalanced training set may generate a biased
model [28].

Data augmentation was used to balance the training and validation sets and was not
applied to the test images. New images were created using and combining rotation, blur-
ring, mirroring, shearing transformation, and addition of salt-and-pepper noise. Examples
of these images appear in Figure 2. Table 1 shows the sizes of the augmented sets.

Figure 2. Examples of augmented images: (a) source image; (b) vertical and horizontal mirroring;
(c) 60◦ clockwise rotation; (d) Gaussian blur with 17 × 17 kernel; (e) shear transformation with a
factor of 0.3; and (f) salt-and-pepper noise. Reproduced with permission from Ref. [19]. 2021, IEEE.

Table 1. Numbers of samples in the training, validation, and test sets. The number of patients is
shown in parenthesis. Reproduced with permission from Ref. [19]. 2021, IEEE.

Original Data-Augmentation
Malignant Healthy Malignant Healthy

Training 5923 (42) 3035 (29) 20,000 20,000
Validation 1531 (12) 506 (8) 5000 5000

Test 1007 (6) 496 (4) N/A N/A

3. Feature Extraction

The first step of the proposed classification method is the feature extraction. From each
image contained in the dataset, we extracted an array of 1387 features. The features used
were combinations of several found in previous leukocyte classification studies, and were
the same as the ones used in our previous study [19].
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We used low-order statistical, textural, morphological, contour, and DCT features
extracted from each lymphocyte image. Table 2 shows the number of features used of
each type.

Table 2. Number of features of each type.

Feature Type Number

Low-order statistical 108
Textural 75

Morphological 20
Contour 160

DCT 1024

Total 1387

We obtained the low-order statistics from each channel of the images in both RGB and
HSV formats. These statistics provide information about the image histograms, such as
energy, entropy, skewness, kurtosis, mean, and standard deviation, as defined by the Image
Biomarker Standardisation Initiative (IBSI) [29].

The textural features were calculated using the coefficients of co-occurrence matrices.
These coefficients represent the different gray level combinations that occur in the image
and can be used in image classification tasks [9,30]. We used features obtained from the
gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray
level dependence matrix (GLDM), gray level size zone matrix (GLSZM), and neighboring
gray-tone difference matrix (GLDM) [20,29].

The morphological features used—rectangularity, eccentricity, elongation, compact-
ness, etc.—indicate the general shape of a lymphocyte, and also have been used in the cell
classification task by other authors [7,9,31].

The contour features were obtained from the discrete Fourier transform of the centroid
distance function (CDF) of the lymphocyte. The CDF represents the distance between the
lympocyte centroid and each pixel of its contour. This kind of shape signature was first
proposed by Cosgriff [32] as a technique to identify objects and has been used to classify
cells [33,34].

The discrete cosine transform (DCT), due to its energy compactness in the frequency
domain, is widely used in image and video compression [35,36]. In this study, we calculated
the DCT from the lymphocyte image converted to grayscale, producing a matrix with
202.500 DCT coefficients. The size of of this matrix was the same as the number of pixels in
each image (450 × 450). We mapped the coefficients to a 1D array using a zigzag scan and
used only the first 1024 lowest frequency coefficients.

Finally, all the features were combined into a unique vector for each sample image to
train the different classifiers. The features from all samples were combined into a matrix
with one sample per row and one feature per column. Feature values were normalized
by subtracting each value from the column’s mean and dividing it by the column’s stan-
dard deviation.

4. Ensemble Classifier

The study of Garcia et al. [13] showed that it is possible to achieve high-performance
results by combining different lightweight classifiers into a single solution. These classifiers
obtain better results if trained with diverse data and applied to a complex and unbalanced
problem. The simple vote scheme is a light and fast method to combine these classifiers.
In this type of ensemble solution, it is possible to train all the classifiers with the same data
in parallel, saving processing time. The ensemble classification result of a certain input is
given by the class with the most votes from the different classifiers [15]. A criterion could
be determined to be used in case of ties.



Computers 2022, 11, 125 7 of 17

In this study, we combined an NB, a KNN, an SVM, and an ANN into four different
ensemble classifiers, each one composed by three classifiers. Our classification problem has
only two classes, so an odd number of classification models ensured that there would be
no ties.

4.1. Naive Bayes Classifier

The naive Bayes classifier is one of the simplest and most widely used algorithms of
pattern recognition. It is a probabilistic approach that calculates, for each possible class,
the probability of an object belonging to it. The classification result is the class with the
highest probability [37].

This algorithm is based on the Thomas Bayes decision theory, which assumes that the
decision problem is posed in probabilistic terms and that all relevant probability values are
known [38]. In simpler words, the Bayesian classifier maps decision boundaries based on
the information given by labeled data and calculates the probabilities of new objects being
allocated into a certain class. In this study, we used a Gaussian classifier with no prior class
and a smoothing value of 10−9.

4.2. K-Nearest Neighbor

Proposed in 1951, the KNN is another machine learning algorithm used in many
works of supervised classification problems. This method has a simple logical structure
and classifies a given object as the most frequent occurring class in its neighborhood [38].

In other words, the KNN determines the class of a sample by finding the most frequent
class among the K nearest objects to the sample. These neighbors are the ones used in
the training step, and are already labeled. In the particular case where K = 1, the KNN
is equivalent to the nearest neighbor algorithm, and the chosen class is defined by the
neighbor closest to the sample to be classified [37].

4.3. Support Vector Machine

The third lightweight classifier trained from the feature vector was the SVM classifier.
The central idea of this algorithm is to obtain hyperplanes that separate the samples used
for training into their respective classes [38].

The points closest to the discrimination hyperplane are called support vector points,
and the distances between these points and a hyperplane are called margins. The support
vector machine technique searches for a separation hyperplane that maximizes the mar-
gins [37]. In this study, we used a canonical SVM classifier with default parameters and
linear discrimination.

4.4. Neural Network Training and Fine-Tuning

The previously extracted feature matrix was fed into an ANN that discriminates the
lymphocytes as either malignant or healthy. The classification scheme is represented by
Figure 3.

To find the best architecture to solve our problem, we did an extensive search in the
hyper-parameter space of our network. Table 3 shows all the evaluated values and the best
parameters found. The grid search executed 25 epochs for each data point to finish the
process timely.

After finding the best architecture among all ANN possibilities, a fine-tuning step was
implemented to obtain, among other values, the best number of epochs. Since the best
optimization method was the Adam function, it was essential to choose the best values
for the learning rate, β1, and β2. These coefficients are responsible for controlling the
exponential decay rates of the moving averages [39]. The values tested were 0.01, 0.001,
0.005, 0.0001, 0.0005 for the learning rate. The values tested for β1 and β2 were 0.99, 0.98,
and 0.97. The best value found for β1 and β2 was 0.97, and for the learning rate the best
was 0.001.
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Figure 3. Artificial neural network scheme. Reproduced with permission from Ref. [19]. 2021, IEEE.

Table 3. Grid-search execution. Reproduced with permission from Ref. [19]. 2021, IEEE.

Parameter Values Chosen Value

Hidden Layers 1, 2, 3, 4 1
Batch Size 250, 750, 1000, 1500 250
Dropout 0.1, 0.25, 0.3, 0.5 0.1
Neurons Number 1024, 1536, 2048, 2560 2560
Activation Prelu, Relu, Sigmoid, Softmax Relu
Optimizer Adamax, Adam, SGD Adam
Kernel Initializer Random Uniforme, Normal Normal

Finally, we searched for the minimum number of epochs necessary to maximize
the F1-score. A number of epochs that is too big could cause excessive specialization
on the training dataset. This condition leads to an incapacity in generalizing and errors
when evaluating new images. This phenomenon is called overfitting [38]. The number
of epochs started at 50, and at each iteration increased by 50 until the F1-score remained
stable. The test showed that 150 is the best number of epochs for this ANN, and after this
threshold, additional training could cause overfitting.

4.5. Ensemble Learning

According to Dietterich et al. [40], ensemble learning algorithms differ from other
approaches because they do not use a single model to explain the data. Instead, they
construct a set of classifiers and combine them in some fashion to classify new data points.
As previously mentioned, other ensemble classifiers were proposed to solve the C-NMC
problem, but none of them combined a neural network with other lightweight models [4,9]
or with dense convolutional networks [11,17,18].

The literature presents several ways to combine a classifier into a single solution. It
is possible to combine the results of the classifiers, use them as input to a new classifica-
tion algorithm, use a function with different weights for each classifier [41], or use more
sophisticated approaches, such as alpha-integration [42].
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In this study, we trained—using the same vector of features—three of the most no-
torious and simple classifiers, a Gaussian NB with no prior class, a KNN, and a linear
SVM classifier. These three classifiers plus the ANN were combined into four different
ensemble classifiers, each one composed by three primitive ones, using a simple voting
scheme. This procedure ensures the absence of ties and provides a fast and light solution
without giving preference or a bigger weight to a particular classifier. The four ensemble
classifiers created were

• ANN + SVM + NB (full ensemble model, with best F1-score).
• ANN + SVM + KNN.
• ANN + KNN + NB.
• SVM + KNN + NB.

Each primitive model used in the ensemble was trained separately, as described in the
previous sections, without further optimization or fine-tuning. The result of the ensemble
is the class with the most votes from each primitive model after their individual decision, a
method known as late hard fusion [43].

4.6. Principal Component Analysis and Interpretable Models

The study of Ruding [44] explains the importance of using interpretable models instead
the black-box trained machine learning to better understand the relevant features and to
study which characteristics are decisive for the discrimination of classes. This practice can
generate better and more applicable solutions to real world scenarios.

As an attempt to find the most important features for the classification task at hand, we
started by choosing the full ensemble model, i.e., the ensemble classifier with best F1-score,
composed by the ANN, SVM, and NB.

We used the Mlxtend feature selection Python library to find the principal components
of our best ANN configuration. The Mlxtend sequential feature selection (SFS) removes
one of the features at each iteration, returning a list of features and a score obtained with
them. This process was interrupted when we observed the reduction in the quality metric.
The minimum number of features selected to minimize the loss of precision of the ANN
had about 15% of the total number of features.

Afterwards, we used the Keras features selector to find the 15% most relevant features
for the SVM and NB classifiers [45]. The final reduced list of features was obtained from
the union of the reduced lists of the individual classifiers. This procedure returned an array
with 268 features, as shown in Table 4. These features are listed with the source code in
descending order of importance at https://github.com/yurifarod/ISBI-2019/blob/main/
z_interpretable_ensemble_analysis.txt (accessed on 8 June 2022). We used this reduced
feature array to train a new, reduced version of our the full ensemble classifier:

• PCA, ANN + SVM + NB (reduced ensemble model).

The new reduced model is a lighter, interpretable, and faster solution. The hyperpa-
rameters used to train the ANN with the reduced parameter set were the same as the ones
used for the full-set training.

Table 4. Number of features of each type in the reduced ensemble model.

Feature Type Number

Low-order statistical 33
Textural 45

Morphological 4
Contour 4

DCT 182

Total 268

https://github.com/yurifarod/ISBI-2019/blob/main/z_interpretable_ensemble_analysis.txt
https://github.com/yurifarod/ISBI-2019/blob/main/z_interpretable_ensemble_analysis.txt


Computers 2022, 11, 125 10 of 17

5. Results and Discussion

As the C-NCM 2019 dataset was unbalanced, the obtained accuracy may not reflect
reality. F1-score was chosen as the metric to overcome this problem. The metric also allows
the comparison with other studies, as the teams who participated in SBILab’s challenge also
used the F1-score. Gupta [46] edited a book where the participants’ results can be found.

The optimal hyper-parameters, i.e., the number of hidden layers, the number of
neurons per layer, and the optimizer function, were chosen based on the performances of
several ANNs generated by combining the parameters presented in Table 3. The table also
shows the optimal parameters.

The experiments were done on an Intel Core i7-7500U CPU @ 2.7 GHz × 4, with 32 GB
of RAM, without a dedicated GPU, as we aimed to evaluate a low-cost setup.

The published F1-scores obtained from the preliminary test set in SBILab’s challenge
are shown in Table 5. Compared to these results, the best ensemble classifier trained using
the proposed feature extraction method achieved the the highest F1-score. The ANN
and two other ensemble classifiers had among the five best F1-scores. Notice that these
approaches use less computational power than all convolutional neural network approaches
submitted to this challenge. Another interesting point is the high performance achieved by
the reduced ensemble model, which evidences its viability.

The time spent in training is omitted in most papers, but it is possible to compare the
sizes of the neural networks. The number of parameters in our biggest model is smaller
than those in most convolutional networks submitted to the SBILab challenge, and the
reduced model is significantly smaller than all approaches. The proposed approach could
potentially become a portable solution, and even be used in a low-cost device, such as a
smartphone. Table 6 indicates the network sizes as computed by Tensorflow.

Table 5. Performance of participants in the C-NMC challenge hosted by the SBILab. Proposed
classifiers in boldface.

SBILab Challenger F1-Score Methodology

ANN + SVM + NB 93.70% Feature extraction and ensemble classifier
[47] 92.50% Transfer learning with ResNets
[48] 91.70% Transfer learning with VGG16

ANN + SVM + KNN 91.80% Feature extraction and ensemble classifier
ANN 91.20% Feature extraction and ANN

ANN + KNN + NB 90.60% Feature extraction and ensemble classifier
[17] 90.30% Deep multi-model ensemble network

PCA, ANN + SVM + NB 89.87% Reduced feature vector and ensemble classifier
[49] 89.47% Transfer learning with MobileNetV2
[50] 87.89% ResNeXt50

SVM + KNN + NB 87.60% Feature extraction and ensemble classifier
[51] 87.58% Transfer learning with CNN and recurrent ANN
[23] 87.46% Transfer learning with ResNet18
[52] 86.74% InceptionV3 + DenseNet + InceptionResNetV2
[53] 85.70% ResNeXt50 + ResNeXt101
[18] 84.00% Transfer learning with Inception + ResNets
[54] 81.79% Transfer learning with ResNets + SENets

SVM 79.53% Feature extraction and SVM
KNN 76.66% Feature extraction and KNN
NB 74.25% Feature extraction and NB



Computers 2022, 11, 125 11 of 17

Table 6. Size comparison with other network architectures. Proposed classifiers in boldface. Adapted
from Ref. [19]. 2021, IEEE.

Network Number of Parameters

VGG16 138,357,544
ResNet152 60,380,648
InceptionResNetV2 55,873,736
ResNet50 25,636,712
Xception 22,910,480
DenseNet201 20,242,984
ANN and full ensemble 9,177,601
DenseNet121 8,062,504
Reduced ensemble model 2,775,553

In comparison with a CNN approach [55], using the same computational setup, all of
our ensemble classifiers had similar F1-scores. The best ensemble learning model showed a
better F1-score, and far smaller computational time and network size. Table 7 shows the
results of this comparison.

Table 7. VGG16 Comparison. Adapted from Ref. [19]. 2021, IEEE.

Metric Reduced Ensemble ANN Full Ensemble VGG16

Feature extraction time 16 min 1 h 2 min 1 h 2 min -
Training time 8 min 9 min 9 min 16 h 20 min
Number of parameters 2,775,553 9,177,601 9,177,601 66,358,593
F1-score 89.87% 91.20% 93.70% 92.60%

For the malignant class, our best model achieved an F1-score of 93.70%. This result
was obtained by combining an NB, an SVM, and a neural network with three layers (one
input, one hidden, and one output). The output layer consisted of one neuron and used a
sigmoid activation function. The hidden layers contained 2560 neurons each and used the
ReLU activation function. The ANN was trained from scratch using an Adam optimizer,
a learning rate of 0.001 over 150 epochs, and 0.97 for β1 and β2.

The training of all approaches can be executed in parallel on a multi-core CPU; it took
a maximum of 9 min in the CPU used in the experiments. Each sample consisted of an array
with size 1 × 1387 for the complete classifiers and size 1 × 268 for the reduced approach.

Table 5 shows us that a reduced version of our best ensemble learning classifier (ANN
+ SVM + NB), although not as good as the version trained with all the features, can achieve
a high performance. The F1-score is 4% smaller than our best result, with faster training
and a lighter structure than the version trained with all 1387 features. Table 8 shows the
quality metrics obtained with our best ensemble model, its reduced version, and the ANN.

Table 8. Metric comparison between the full ensemble, reduced ensemble, and ANN.

Metric Reduced Ensemble ANN Full Ensemble

F1-Score 89.87% 91.20% 93.70%
Accuracy 83.19% 86.82% 88.13%
Sensitivity 86.60% 88.11% 95.47%
AUC 75.10% 84.68% 88.36%
Kappa 44.47% 56.45% 67.79%
Precision 94.36% 96.48% 97.32%
Specificity 65.43% 77.92% 80.25%

We evaluated the variability of the best methods by doing a Monte Carlo experiment
with 100 repetitions. The training and validation sets were mixed together. At each
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step, new random training and test sets were obtained and used to train and evaluate
new classifiers.

Table 9 shows the results obtained in the Monte Carlo experiment with the full ensem-
ble classifier (ANN + NB + SVC), ANN, and reduced ensemble classifier. A nonparametric
Mann–Whitney U-test was used to verify if the ensemble model is significantly better than
the ANN. We can see that the full ensemble model always achieved better metrics than the
ANN. Besides that, considering a significance level of 0.01, the p-values obtained were all
smaller than the threshold for all metrics, which confirms that the improvements in the
metrics from the usage of the full ensemble model were statistically significant over using
simply the ANN.

Table 9. Metrics obtained with the Monte Carlo experiment.

Metric
Reduced

Ensemble
Mean (SD)

Reduced
vs. ANN
p-Value

ANN
Mean (SD)

ANN
vs. Full
p-Value

Full
Ensemble
Mean (SD)

F1-Score 89.78% (0.74%) 1.6 × 10−31 91.94% (0.75%) 1.0 × 10−24 93.88% (1.41%)
Accuracy 83.05% (1.16%) 6.7 × 10−32 86.54% (1.19%) 1.1 × 10−24 89.67% (2.32%)
Sensitivity 85.24% (1.13%) 9.8 × 10−28 87.89% (1.18%) 9.2 × 10−25 90.89% (2.21%)
AUC 76.62% (1.99%) 1.3 × 10−32 82.57% (1.94%) 3.2 × 10−17 86.12% (3.02%)
Kappa 40.99% (3.40%) 1.2 × 10−32 51.79% (3.53%) 2.2 × 10−23 61.08% (7.64%)
Precision 94.85% (0.58%) 2.6 × 10−34 96.38% (0.56%) 2.6 × 10−34 97.09% (0.72%)
Specificity 68.01% (3.57%) 2.3 × 10−31 77.25% (3.48%) 2.1 × 10−10 81.35% (4.41%)

Figures 4 and 5 show, respectively, the F1-scores and accuracies obtained in the Monte
Carlo experiment. The figures show histograms and boxplots of the metrics obtained.

(a) (b)

Figure 4. Histograms (a) and boxplots (b) of the F1-scores obtained in the Monte Carlo experiment
with the full ensemble, ANN, and reduced ensemble models.

Figure 6 shows the receiver operating characteristic (ROC) curve of the full ensemble
classifier. The proposed test, when set to a specificity of 90%, has a sensitivity of 60%.
Diminishing the specificity to 85% raises the sensitivity to 79%. Depending on the usage,
we may want a test that is more sensitive or more specific. Consider the situation where a
patient is under treatment, and we want to know whether the treatment must proceed or
stop. A highly specific test has a low probability of classifying a healthy patient as diseased,
which avoids unnecessary procedures, is often invasive, is costly, and is stressful [56]. Thus,
in case of a positive result, we may assume that the treatment must proceed. On the other
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hand, a highly specific test may have low sensitivity or a high probability of classifying a
diseased patient as healthy, i.e., a false negative. In the case of a negative result, as stopping
the treatment of a diseased patient may cause grave risks, a new test may be done, such as
a bone marrow aspirate (BMA), which is more invasive, but has a high performance.

(a) (b)

Figure 5. Histograms (a) and boxplots (b) of the accuracies obtained in the Monte Carlo experiment
with the full ensemble, ANN, and reduced ensemble models.

Figure 6. ROC curve of the full ensemble classifier. The highlighted points are approximately at the
specificity levels of 0.95, 0.90 and 0.85. test.
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6. Conclusions and Future Work

In this work, we demonstrated that a set of lightweight classifiers combined with a
multilayer neural network, associated with a standard image processing feature extraction
procedure, works as well as deep convolutional learning models. Our results indicate that
the proposed methodology can accurately classify the lymphocytes as healthy or malignant.
The rich textural, frequency-domain, and statistical data used by our method can be applied
to many other problems besides cell classification. Our study of the PCA gives us a way to
select the most relevant features for the classification problem, achieving good performance
with a relatively small number of parameters and a short training time.

State-of-the-art techniques typically use deep convolutional neural networks, which
may require long training, depending on the computer used. The performances of all
proposed methods are comparable to the best approaches in the literature, yet they require
a few minutes to train and seconds to run on a simple Core i7 CPU.

Many studies only tested their methodologies on a few sample images or their private
datasets. On the other hand, our study was done with a large and public set of images,
making our results more general and easily replicated. It must also be noted that images
from different patients were presented from the training and test datasets. This procedure
emulates a real-life scenario well [11].

Although BMA is the gold standard for leukemia diagnosis, it is an invasive procedure
done under anesthesia. Exams done with peripheral blood are less invasive and may
sometimes be preferred, even being less accurate than BMA. Recent studies reported very
good results obtained with peripheral blood flow cytometry (PBFC) [57]. Lam et al. reported
a sensitivity of 99.7% and a specificity of 98.5% obtained with PBFC [58]. A disadvantage
of flow cytometry is the requirement of marker reagents that may not be readily available
in all laboratories, especially in third world countries [59], so blood smear image analysis
may be an alternative. An F1-score of 93.70% is not accurate enough for disease diagnosis
but can serve as a tool for assisting oncologists.

Future works may refine our methodology by focusing on adding features similar to
the 268 best features chosen for our interpretable model, especially textural and low-order
statistical features. We may also test the inclusion of other classification models, such as
decision trees, and linear and quadratic discrimination analysis. We may test our approach
in a more complex dataset and try to solve a a multi-class classification problem. A possible
way to improve our results is to use the scores returned by the classifiers before the decision,
i.e., late soft fusion, and to integrate them in different ways, such as using their averages.
It is also possible to use more sophisticated techniques, such as alpha-integration, and to
optimize the weight of each primitive model in order to minimize the least mean squared
error (LMSE) or the minimum probability of error (MPE) [43,60]. The alpha-integration
uses a family of alpha-means that generalizes many widely used means, e.g., arithmetic,
geometric, and harmonic. The alpha is a continuous value that defines which kind of
mean is used and can be used to minimize the alpha-divergence of the distributions of the
classifier’s results, improving the performance of the ensemble [61].
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