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Abstract: Non-Zero crossing point detection in a sinusoidal signal is essential in case of various
power system and power electronics applications like power system protection and power converters
controller design. In this paper 96 data sets are created from a distorted sinusoidal signal based on
MATLAB simulation. Distorted sinusoidal signals are generated in MATLAB with various noise
and harmonic levels. In this paper, logistic regression model is used to predict the non-zero crossing
point in a distorted signal based on input features like slope, intercept, correlation and RMSE.
Logistic regression model is trained and tested in Google Colab environment. As per simulation
results, it is observed that logistic regression model is able to predict all non-zero-crossing point in a
distorted signal.

Keywords: non-zero crossing point; distorted sinusoidal signal; logistic regression model; noise;
harmonics

1. Introduction

In many electrical domains like in industrial electronics, grid synchronization, power
quality and power system protection etc., accurate non-zero crossing point (NZCP) detec-
tion is critical. Practical line voltages are seldom distortion-free, and they usually include a
lot of harmonics and noise, which can cause synchronisation issues. NZCP detection is an
easy task in case of pure sinusoidal signal, it can be identified using simple comparator
circuits. However, NZCP detection in a distorted sinusoidal signal using comparator cir-
cuits is not appropriate as it contains multiple false ZCPs. So there is a need to build an
accurate mechanism to separate NZCPs in a distorted sinusoidal signal. In case of protec-
tion systems, the fault current has DC decaying component. This component decreases
the accuracy and speed of the protection relay operation [1]. A separate methodology is
required to estimate and remove dc component from the fault current with in one cycle.
After elimination of dc component, fault current signal passes through ZCP detection
circuit to identify the zero-crossing and open circuit breaker at ZCP points.

Many researchers are working on ZCP detection problem and provided various
solutions. Artificial Neural Network (ANN) model is developed in [2] to predict the
ZCPs in distorted signal. Distorted signal simulated in MATLAB with noise levels 10%
to 50%, and with THD levels 10% to 50%. Data samples extracted from these signals
with a window size of 15. A phase-delay free method is proposed in [3] to detect the
ZCPs of back electromotive force in spindle motors.In this method rotor position detection
with sensor-less control of spindle motors in hard disk drives. The method applies a
digital filtering procedure to identify the true and false zero-crossing points of phase back
electromotive forces, the latter of which are caused by the terminal voltage spikes due to
phase commutations. This methodology is especially suitable for high-speed sensor-less
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brush-less dc motors. Impact of asymmetric machine parameters and resistance tolerance
of back emf measurement circuit on ZCP detection based sensor-less control of high speed
brush less DC motor is studied in [4]. In this study, authors did not analyze the impact of
asymmetric mutual inductance on ZCP detection.

A digital zero-crossing detector circuit is used for phase synchronization and frequency
tracking to control the grid-tie power converter for efficient energy conversion system
in [5]. Zero-crossing point detection based methodology is proposed in [6] to estimate the
synchronization between the signals. This technique observes the synchronization between
signals by detecting the phase change with in half cycle. This methodology works well in the
frequency range of 50 Hz to 52 Hz only. Power quality is analyzed based on measurements
like RMS value, frequency and harmonics. For accurate measurements, proper zero-
crossing detection is required. In [7], comparative analysis between digital filters for ZCP
detection in power quality measurement in presence of 3rd and 5th harmonics and noise is
presented.

ZCP detection using Digital pulse-frequency modulator based of FPGA is imple-
mented in [8] to identify the zero current and zero voltage transition. This methodology
is implemented to change the resonant pulse width in a quasi-resonant pulsed converter
under the different load conditions. Analog ZCP detection based on digital zero-crossing
detection algorithm with signal reconstruction and least square fitting technologies is used
in [9] for high precise time difference measurement in ultrasonic flow measurement unit.
ZCP detection in line voltage based on multistage filter, least square line fitting model and
extrapolation of the ZCP is implemented in [10]. This methodology is implemented only
on 50 Hz sinusoidal signal but arguing that this can be applicable up to 60 Hz signal. ZCP
detection in inductor current for high current swithed mode DC-DC converters is presented
in [11]. In this paper voltage polarity detector based on the transistor memory cell and auto
zero-comparator is used for ZCP detection.

An adaptive, robust, and computationally efficient disturbance reduction method for
line-frequency zero-crossing detectors using multiplicative general parameters adaptive
algorithm is proposed in [12]. The proposed adaptive system consists of a fixed finite-
impulse response filter block and two multiplicative general parameters. Fast zero-crossing
point detection method based on global minimization algorithm is proposed in [13]. A new
approach to the design of a digital algorithm for network frequency estimation is proposed
in [14]. The algorithm is derived using Fourier and zero crossing technique. The Fourier
method is used as digital filter and zero-crossing point detection technique is applied to
the cosine and sine components of the original signal which can be corrupted by higher
harmonics. An indirect way of detecting the Zero-Crossing instant of the back EMF from
the three terminal voltages without using the neutral potential is proposed in [15]. The
method proposed in [16] uses the voltage mode PWM changing the ramp slope according
to the ac line voltage to control the switch on-time. The performance was verified with a
100 W boost PFC converter.

A digital frequency measurement method is proposed is proposed in [17] to over-
come the difficulty that the single zero-crossing point detection is sensitive to noise in
the traditional dual mixer time difference measurement method.The proposed method
uses sinusoidal beat technology, multi-channel synchronous acquisition technology, and
digital frequency measurement technology. Sensor less control of BLDC motor based on
zero-crossing point detection of the back electromotive force (BEMF) is proposed in [18].
Micro-controller based and low cost speed controller for BLDC motors up to 500 W is devel-
oped in [19] by employing the zero crossing point (ZCP) detection of the back-electromotive
forces. Estimation of line back electromotive force based on sensor-less control strategy
is proposed in [20]. In this work, commutation rule for different positions of the rotor
is developed based on the phase relationship between the ideal commutation points of
the brush-less direct current motor and the zero-crossing points (ZCPs) of the line back-
electromotive force. A current decomposition method and a control diagram are proposed
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in [21] to eliminate the fundamental circulating currents by detecting zero cross current
point which increases the accuracy of the control algorithm.

Identification of Safety operation area represented by back emf ZCP in a high speed
BLDC motor in terms of free wheeling angle is implemented in [22]. Effect of PWM
techniques mechanism on free wheeling angle is investigated. For given motor parameters,
torque and speed area of BLDC motor are identified. Robust ZCP detection mechanism is
developed in [23] using support vector machine. In this study, authors considered noise
level up to 20% and THD level 50%. ZCP detection using voltage sensors, voltage shifter
and micro controller is discussed in [24]. Machine learning is powerful approach to find
the solution for various problems in electrical engineering like load forecasting [25–27]
and health care [28] etc., Most of the researchers are also using machine learning based
approach to detect the ZCP in distorted signals. In this paper also machine model called
logistic regression model is used for NZCP detection.

Zero crossing sampling digital phase-locked loop (PLL) is analyzed as a building block
for a phase synchronization syste in [29]. In this paper, analysis of PLL is described using
frequency domain methods. The design and performance analysis of frequency synchro-
nization and transfer over packet networks is presented in [30]. In this paper, authors uses
time stamps-based raised cosine pulse shaping first order adaptive zero-crossing digital
phase-locked loop (AZC-DPLL). The system is designed to recover frequency as well as
packets, independently of the input signal level in the presence of noise. A first-order
derivative of Gaussian filter is used to detect and locate rapid changes in voltage signal
caused by crossing of a threshold angle determined by maximum overlap of capacitive
electrodes in [31].

Main contributions of this paper are as follows:

• ZCP detection in wide range of distorted signals by considering noise levels from 10%
to 60%, THD level from 10% to 60%.

• Logistic regression model which is a machine learning model is used for the first time
ZCP detection.

• New data consists of 96 datasets which are developed to work on ZCP detection
problem and are available in https://data.mendeley.com/datasets/d2hs6zt8gw/1
(accessed on 20 March 2022).

• Performance of the machine learning models to detect ZCP in distorted signal with
various window sizes is observed.

The remaining part of the paper is organized as Section 2 explains the datasets and
machine learning models, Section 3 describes result analysis and Section 4 presents conclu-
sions.

2. Methodology

This section presents the process of extracting the slope,intercept,correlation(R) and
RMSE features from a distorted sinusoidal signal. Also, it describes about the datasets
created for ZCP detection problem. And, also it discusses about the architecture and
training process of logistic regression model used for the ZCP detection.

2.1. Feature Extraction and Datasets

Distorted sinusoidal signals of 5 cycles are generated for 0.1 s with noise level of 10%
to 60%, with THD levels of 10% to 60% using MATLAB. Features like slope, intercept,
correlation (R) and RMSE are extracted from these distorted signal with various window
size like 5, 10, 15 and 20 using equations as mentioned in [2]. Total of 96 datasets are
developed from a distorted signal with various noise and THD levels, window size. The
complete information about all these data sets are shown in Figures A1–A3 in Section
Appendix A. This complete data is published in mendeley data repository [32]. In the label
column of each dataset consists either 0 or 1. 0 represents Non-Zero Crossing point (NZCP)
and 1 represents Zero Crossing Point (ZCP).

https://data.mendeley.com/datasets/d2hs6zt8gw/1
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2.2. Logistic Regression Model

Logistic regression model [33] is useful for the binary classification problem and the
architecture is shown in Figure 1. Logistic Regression, like linear Regression, is a statistical
machine learning method. It categorises the data by looking at outcome variables at the
extreme ends. Logistic regression generates a logistic curve with a range of 0 to 1 [34].
Sigmoid activation function is mathematically modelled as shown in Equation (1) and it
gives the output value between 0 and 1 [35]. As the Sigmoid activation function is in LGR
model that is useful to predict the probability to exist ZCP in the signal. Complete training
algorithm to update the model parameters (m1, m2, m3 and m4) and bias parameter (b)
using stochastic gradient decent (SGD) optimizer [36] is presented in Algorithm 1. The cost
function that is used in this problem is binary cross-entropy [37,38] that is mathematically
modeled as shown in Equation (2). Training process of logistic regression model with
sample calculations is presented in Appendix B.

f (x) =
1

1 + e−x (1)

Cost f unction(E) = −y ∗ log(yp)− (1 − y) ∗ log(1 − yp) (2)

Figure 1. Logistic regression model architecture.
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Algorithm 1 Logistic Regression Model Training Process using SGD

1: Read data [m,c,R,E] and initialize model parameters [m1,m2,m3,m4], bias [b], epochs
and N (number of samples in data)

2: for iteration = 1, 2, . . . epochs do
3: for sample = 1, 2, . . . , N do
4: Predict the label yp using Equation (3).

yp =
1

1 + em1∗m+m2∗c+m3∗R+m4∗E+b (3)

5: Update the model parameters using Equations (4)–(8)

m1 = m1 − η ∗ m ∗ (yp − y) (4)

m2 = m2 − η ∗ c ∗ (yp − y) (5)

m3 = m3 − η ∗ R ∗ (yp − y) (6)

m4 = m4 − η ∗ E ∗ (yp − y) (7)

b = b − η ∗ (yp − y) (8)

6: end for
7: end for
8: Read final model parameters [m1,m2,m3,m4] and bias [b]. Calculate accuracy of the

model based on training and testing data based on Equation (9)

Accuracy =
Numbero f samplescorrectlyclassi f ied

Totalnumbero f samples
(9)

3. Result Analysis

Logistic regression model is trained with all 96 datasets which are created with various
levels of noise, THD and window size in Google Colab. The performance of all these
models is observed in terms of accuracy.

3.1. Data Analysis

Statistical information like mean and standard deviation of a few datasets i.e., ZCP-
Noise-25, ZCP-THD-25 and ZCP-NTHD-37 that are created for this work are presented in
Table 1. From the Table 1, it is observed that features like slope (m), intercept (c), correlation
(R) and RMSE are in different ranges i.e., m in range from −1243 to 6546, c in range from
−512 to 358.2553, R in range from −1 to 1 and RMSE is in range from −1 to 93. In order to
train the machine learning models all these data samples are normalized between 0 and 1
using Min-Max Scalar method as shown in Equation (10).

Xnorm =
X − Xmin

Xmax − Xmin
(10)

Box plot is developed based on data available in dataset ZCP-Noise-01 in order to
observe the outliers in the data and presented in Figure 2. From the Figure 2, it is observed
that input features in dataset ZCP-Noise-01 has outliers as the tested signal is a distorted
signal with noise level of 10%. Similarly for other datasets also outliers are observed using
box plot. Histogram plot is developed based on data available in dataset ZCP-Noise-01 in
order to observe the distribution of the data and presented in Figure 3.
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Table 1. Statistical information of few datasets used for ZCP detetcion

Dataset Parameters F1: Slope F2: Intercept F3: R F4: RMSE Class Label

ZCP-Noise-25

count 5983 5983 5983 5983 5983

mean −0.88316 0.043519 0.178602 0.222048 0.042788

std 955.2613 54.74236 0.574137 0.179013 0.202396

min −6566.06 −379.817 −0.9963 0.001939 0

25% −432.624 −18.5855 −0.29639 0.079228 0

50% 7.678848 0.128758 0.244949 0.184938 0

75% 426.264 18.08087 0.700304 0.319451 0

max 6546.075 358.2553 0.999759 3.118094 1

ZCP-THD-25

count 5983 5983 5983 5983 5983

mean 26.05313 0.244515 0.117112 9.363675 0.047141

std 420.6106 23.87878 0.962177 9.621188 0.211959

min −1243.35 −119.628 −1 0.030847 0

25% −240.585 −8.52422 −0.99737 0.418909 0

50% 115.445 0.502588 0.95357 6.462708 0

75% 240.5101 8.481969 0.998753 16.82061 0

max 1243.346 112.0011 1 31.62446 1

ZCP-NTHD-37

count 8973 8973 8973 8973 8973

mean 223.7721 2.82314 0.227908 12.50375 0.04547

std 854.9431 45.78754 0.826784 20.19635 0.208344

min −5100.17 −512.655 −1 −0.99982 0

25% −103.545 −1.76951 −0.75217 0.254625 0

50% 422.3923 0.147574 0.608881 0.698736 0

75% 629.808 14.21895 0.999571 17.56015 0

max 5816.218 352.3505 1 93.00019 1

Correlation among various features like slope, intercept, correlation and RMSE in
various datasets like ZCP-Noise-25, ZCP-THD-25 and ZCP-NTHD-37 is observed using
correlation plots as presented in Figure 4. From the Figure 4, it is observed that there is
correlation more than 50% between slope and intercept.

(a) Slope (b) Intercept

Figure 2. Cont.
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(c) Correlation
(d) RMSE

Figure 2. Box plot for ZCP-Noise-01.

(a) Slope (b) Intercept

(c) Correlation (d) RMSE

Figure 3. Histogram plot for ZCP-Noise-01.

(a) ZCP-Noise-25 Dataset

Figure 4. Cont.
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(b) ZCP-THD-25 Dataset

(c) ZCP-NTHD-37 Dataset

Figure 4. Correlation plot for various datasets

3.2. Machine Learning Model Performance on Distorted Signal with Noise

Logistic Regression Model(LGR) model is trained and tested on datasets which are
created with a distorted sinusoidal signal with various noise levels from 10% to 60%.
Testing and training accuracy for LGR model on these 28 datasets are presented in Table 2.
The window size that gave better testing accuracy is considered as optimal LGR model
to predict the ZCP in distorted signal for each noise level and is highlighted in Table 2.
from Table 2, it is observed that LGR model is able to predict NZCP with better accuracy in
distorted signal for each noise level with window size 5. The information about correctly
and wrongly predicted ZCPs are presented in Table 3. From Table 3, it is observed that
LGR model is unable to detect true ZCP points but is able to detect all non-ZCP points in
the distorted signals due to noise.
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Table 2. Training and testing accuracy details of LGR models for various noise signals and win-
dow size.

NL WS
Accuracy

NL WS
Accuracy

Testing Training Testing Training

10%

5 97.6 97.8
40%

15 91 90.8

10 91.3 91.8 20 94.3 94.1

15 95.3 93.2

50%

5 95.6 95.2

20 92.6 92.3 10 94.6 94.2

20%

5 95.6 95.2 15 93 92.9

10 94.3 93.2 20 94 94.1

15 95 95.5

60%

5 95.6 95.2

20 94 94.4 10 92.3 92.9

30%

5 95.3 95.2 15 93.6 95.2

10 90 91.6 20 91.6 93.1

15 94 93.9

10–60%

5 96.2 95.5

20 94 94.1 10 87.4 86.9

40%
5 95.6 95.2 15 89.2 89

10 94.3 93.5 20 84.1 82.9

NL: Noise Level WS: Window Size

Table 3. True and false zcp detection information of optimal LGR models for various noisy signals.

Noise Level Window Size

Testing Data Training Data

NZCP ZCP NZCP ZCP

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

10% 5 293 0 0 7 682 0 0 7

20% 5 287 0 0 13 664 0 0 33

30% 5 286 0 0 14 664 0 0 0

40% 5 287 0 0 13 664 0 0 33

50% 5 287 0 0 13 664 0 0 33

60% 5 287 0 0 13 664 0 0 33

All 5 1727 0 0 68 4000 0 0 188

3.3. Logistic Regression Model Performance on Distorted Signal with THD

Logistic Regression Model(LGR) model is trained and tested on datasets which are
created with a distorted sinusoidal signal with various THD levels from 10% to 60%. Testing
and training accuracy for LGR model on these 28 datasets are presented in Table 4. The
window size that gave better testing accuracy is considered as optimal LGR model to
predict the ZCP in distorted signal for each THD level and highlighted in Table 4. The
information about correctly and wrongly predicted ZCPs are presented in Table 5. From
Table 5, it is observed that LGR model is unable to detect true ZCP points but is able to
detect all non-ZCP points in the distorted signals due to harmonics with THD levels.



Computers 2022, 11, 94 10 of 19

Table 4. Training and testing accuracy details of LGR models for various THD signals and window
size.

THD Level Window Size
Accuracy

THD Level Window Size
Accuracy

Testing Training Testing Training

10%

5 95.33 95.26
40%

15 87.33 89.67

10 95.33 95.26 20 87.33 89.67

15 95.33 95.26

50%

5 87.33 89.67

20 95.33 95.26 10 87.66 84.36

20%

5 95.33 95.26 15 82.66 79.19

10 95.33 95.26 20 82.66 79.19

15 91.67 89.67

60%

5 82.66 79.19

20 91.67 89.67 10 83 79.34

30%

5 91.67 89.67 15 82.67 79.19

10 91.67 89.67 20 83.33 79.62

15 91.67 89.67

10–60%

5 95.87 95.03

20 91.67 89.67 10 91.08 89.92

40%
5 87.33 89.67 15 86.18 86.05

10 87.33 89.67 20 80.78 80

Table 5. True and false zcp detection information of optimal LGR models for various harmonic
signals.

THD Level Window Size

Testing Data Training Data

NZCP ZCP NZCP ZCP

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

10% 5 286 0 0 14 664 0 0 33

20% 5 286 0 0 14 664 0 0 33

30% 5 275 0 0 25 625 0 0 72

40% 5 262 0 0 38 588 0 0 109

50% 5 262 0 0 38 588 0 0 109

60% 20 248 0 2 50 552 0 3 142

All 5 1721 0 0 74 3979 0 0 208

3.4. Logistic Regression Model Performance on Distorted Signal with Harmonics and Noise

Logistic Regression Model(LGR) model is trained and tested on datasets which are
created with various THD and noise level combined distorted signals. Testing and training
accuracy for LGR model on these 40 datasets are presented in Table 6. The window size
that gave better testing accuracy is considered as optimal LGR model to predict the ZCP in
distorted signal for each THD and noise level combination and highlighted in Table 6. The
information about correctly and wrongly predicted ZCPs are presented in Table 7. From
Table 7, it is observed that LGR model is unable to detect true ZCP points but is able to
detect all non-ZCP points in the distorted signals due to both noise and harmonics.
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Table 6. Training and testing accuracy details of LGR models for various THD and noise combined
signals.

Noise and THD Window Size
Accuracy

Noise and THD Window Size
Accuracy

Testing Training Testing Training

10–20%

5 95.33 95.26

30–60%

5 95.33 95.26

10 93.33 92.68 10 91.66 89.67

15 87.66 84.36 15 87.66 84.36

20 89.66 86.94 20 82.33 79.19

10–40%

5 95.33 95.26

60–20%

5 95.33 95.26

10 92 89.52 10 91.66 89.67

15 87.66 84.36 15 87.33 84.36

20 82 78.19 20 82.66 79.19

10–60%

5 96 95.69

60–40%

5 95.33 95.26

10 91.66 89.67 10 91.66 89.67

15 87.66 84.36 15 98 97.99

20 82.66 79.19 20 98 97.99

30–20%

5 96 95.69

60–60%

5 95.33 95.26

10 91.66 89.67 10 96.66 97.13

15 87.66 84.36 15 98 97.56

20 82.66 79.19 20 85 83.78

30–40%

5 96 95.69

10%30%60%–
20%40%60%

5 95.76 95.31

10 91.66 89.81 10 90.6 90.14

15 86.66 83.35 15 85.73 84.97

20 82 78.19 20 81.38 80.09

Table 7. True and false zcp detection information of optimal LGR models for various THD and noise
level combinations

Noise Level THD Level Window Size

Testing Data Training Data

NZCP ZCP NZCP ZCP

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

10% 20% 5 286 0 0 14 664 0 0 33

10% 40% 5 286 0 0 14 664 0 0 33

10% 60% 5 288 0 0 12 667 0 0 30

30% 20% 5 288 0 0 12 667 0 0 30

30% 40% 5 288 0 0 12 667 0 0 30

30% 60% 5 286 0 0 14 664 0 0 33

60% 20% 5 286 0 0 14 664 0 0 33

60% 40% 15 286 0 0 14 664 0 0 33

60% 60% 15 261 1 33 5 588 0 92 17

ALL 5 2578 0 0 114 5987 0 0 294
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3.5. Performance of the LGR Model on Test Signal

A test signal with noise level 10% and peak value of fundamental component 1V is
generated in MATLAB. This test signal has total 3 zero crossing points and 48 non-zero
crossing points. Feature like slope, intercept, correlation and RMSE are extracted from
test signal and processed through LGR model to detect non-zero crossing points. Figure 5
shows test signal, actual non-zero crossing points and predicted non-zero crossing points.
From the Figure 5, it is observed that the developed LGR model able to detect all non-zero
crossing points, but unable to detect zero-crossing points.

(a) Test signal (b) Actual ZCP and NZCP Locations

(c) Predicted ZCP and NZCP Locations

Figure 5. Performance of the LGR model on test signal.

3.6. Comparative Analysis

Comparison of performance of logistic regression model based on it’s performance on
zcp detection in a distorted signals with noise 10% to 60% , in a distorted signals with THD
10% to 60% and in a distorted signals having noise level 10%, 30%, 60% and THD level 20%,
40%, 60% in terms of testing accuracy is presented in Figure 6. From Figure 6, it is observed
that logistic regression model is able to detect zero-crossing points on noisy signal with
good accuracy than on harmonic and combined signals.

Comparison of logistic regression model based on the performance on zcp detection in
a distorted signal with various noise levels and harmonic levels in terms of testing accuracy
is presented in Figure 7. From Figure 7, it is observed that logistic regression model is able
to detect zero-crossing points on noisy signals with good accuracy than harmonic signals.
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Figure 6. Comparison of performance of logistic regression model on various distorted signals.

Figure 7. Comparison of performance of logistic regression model on harmonic and noise signals.

4. Conclusions

Accurate non-zero crossing point detection in a distorted signal is a complex task and
essential to operate the power system network without power quality issues, protect the
system against faults and for efficient power electronics converter controller design. In
this study, performance of the logistic regression model on accurate NZCP detection in a
distorted sinusoidal signal is discussed.

Distorted sinusoidal signals are generated in MATLAB with various noise and THD
levels and from each signal features like slope, intercept, correlation and RMSE are extracted
in order to prepare the data to train and test the logistic regression model. From the
observations based on simulation results, logistic regression model is performing slightly
better to detect NZCP in distorted signal with noise than harmonics and combined signal.
From the observations based on simulation results, logistic regression model is able to
predict non-ZCP points with good accuracy but is unable to detect ZCP as the model is
highly biased towards non-ZCPs as more samples in dataset belongs to Non-ZCP.

NZCP detection problem is further extended by incorporating the voltage swell in
the sinusoidal signal by considering other machine learning models like decision tree and
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random forest, deep learning sequence models like recurrent neural network, long-short
term memory and gated recurrent unit.
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yp Predicted output label
y Actual output label
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Appendix A. Datasets Information

Figure A1. Information about distorted signal with noise.

https://data.mendeley.com/datasets/d2hs6zt8gw/1
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Figure A2. Information about distorted signal with harmonics.

Figure A3. Information about distorted signal with noise and harmonics.

Appendix B. Training Procedure for Logistic Regression Model

In order to explain the training process of the logistic regression model shown in
Figure 1 using Algorithm 1, sample data shown in Table A1 is considered. Learning rate η
is considered as 0.1. Initial random model parameters are shown in Table A2.
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Table A1. Sample data.

Data Sample m c R RMSE Label

Training
1 0.5 −0.001 0.98 0.01 1
2 0.3 −0.007 0.965 0.01 0

Testing 1 0.4 0.001 0.96 0.01 1

Table A2. Initial model parameters.

m1 m2 m3 m4 b

1 −1 1 −1 1

Appendix B.1. Iteration:1 and Sample:1

Calculate output of LGR model using Equation (3).

yp =
1

1 + e−[(1∗0.5)+(−1∗−0.001)+(1∗0.98)+(0.01∗−1)+1]
= 0.9

Update the model parameters m1, m2, m3, m4 and bias parameter “b” using
Equations (4)–(8) respectively.

m1 = 1 − 0.1 ∗ 0.5 ∗ (0.9 − 1) = 1.005

m2 = −1 − 0.1 ∗ −0.001 ∗ (0.9 − 1) = 0.99

m3 = 1 − 0.1 ∗ 0.98 ∗ (0.9 − 1) = 1.001

m4 = −1 − 0.1 ∗ 0.01 ∗ (0.9 − 1) = 0.001

b = 1 − 0.1 ∗ (0.9 − 1) = 1.01

New model parameters and bias parameter are shown in Table A3.

Table A3. Updated model parameters.

m1 m2 m3 m4 b

1.005 0.99 1.001 0.001 1.01

Appendix B.2. Iteration:1 and Sample:2

Calculate output of LGR model using Equation (3).

yp =
1

1 + e−[(1.005∗0.3)+(0.99∗−0.007)+(1.001∗0.96)+(0.001∗0.001)+1.01]
= 0.9

Update the model parameters m1, m2, m3, m4 and bias parameter “b” using
Equations (4)–(8) respectively.

m1 = 1.005 − 0.1 ∗ 0.3 ∗ (0.9 − 0) = 0.978

m2 = 0.99 − 0.1 ∗ −0.007 ∗ (0.9 − 0) = 1.00063

m3 = 1.001 − 0.1 ∗ 0.96 ∗ (0.9 − 0) = 1.01

m4 = 0.001 − 0.1 ∗ 0.01 ∗ (0.9 − 0) = 0.001

b = 1.01 − 0.1 ∗ (0.9 − 0) = 0.92

New model parameters and bias parameter are shown in Table A4.
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Table A4. Updated model parameters at end of iteration:01.

m1 m2 m3 m4 b

0.0978 1.00063 1.01 0.001 0.92

Appendix B.3. Iteration:2 and Sample:1

Calculate output of LGR model using Equation (3).

yp =
1

1 + e−[(0.978∗0.5)+(1.00063∗−0.001)+(1.01∗0.98)+(0.001∗0.01)+0.92]
= 0.9

Update the model parameters m1, m2, m3, m4 and bias parameter “b” using
Equations (4)–(8) respectively.

m1 = 0.978 − 0.1 ∗ 0.5 ∗ (0.9 − 1) = 1.024

m2 = 1.00063 − 0.1 ∗ −0.001 ∗ (0.9 − 1) = 0.983

m3 = 1.01 − 0.1 ∗ 0.98 ∗ (0.9 − 1) = 1.02

m4 = 0.001 − 0.1 ∗ 0.01 ∗ (0.9 − 1) = 0.001

b = 0.92 − 0.1 ∗ (0.9 − 1) = 0.93

New model parameters and bias parameter are shown in Table A5.

Table A5. Updated model parameters.

m1 m2 m3 m4 b

1.024 0.983 1.02 0.001 0.93

Appendix B.4. Iteration:2 and Sample:2

Calculate output of LGR model using Equation (3).

yp =
1

1 + e−[(1.024∗0.3)+(0.983∗−0.007)+(1.02∗0.965)+(0.001∗0.01)+0.93]
= 0.9

Update the model parameters m1, m2, m3, m4 and bias parameter “b” using
Equations (4)–(8) respectively.

m1 = 1.024 − 0.1 ∗ 0.3 ∗ (0.9 − 0) = 0.997

m2 = 0.983 − 0.1 ∗ −0.007 ∗ (0.9 − 0) = 0.983

m3 = 1.02 − 0.1 ∗ 0.965 ∗ (0.9 − 0) = 0.933

m4 = 0.001 − 0.1 ∗ 0.01 ∗ (0.9 − 0) = 0.00009

b = 0.93 − 0.1 ∗ (0.9 − 0) = 0.83

Training process for logistic regression model using stochastic gradient descent opti-
mizer is completed, new model parameters and bias parameter are shown in Table A6.

Table A6. Updated model parameters at end of iteration:02.

m1 m2 m3 m4 b

0.997 0.983 0.933 0.00009 0.83
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Appendix B.5. Testing of Logistic Regression Model

While testing the logistic regression model, testing data shown in Table A1 and model
parameters shown in Table A6 are used to predict the output label using Equation (3).

yp =
1

1 + e−[(0.997∗0.4)+(0.983∗0.001)+(0.933∗0.96)+(0.00009∗0.01)+0.83]
= 0.8

predicted class: round(yp) = 1 and Actual class: 1.

Confusion matrix is shown in Table A7. Accuracy [39,40] of the given logistic regres-
sion model is calculated using Equation (9) and it is equal to 100%.

Accuracy =
TNZCP + TZCP

TNZCP + TZCP + FNZCP + FZCP
=

0 + 1
0 + 1 + 0 + 0

= 100%

Table A7. Confusion Matrix.

Confusion Matrix
Acutal Label

0 1

Predicted label
0 TNZCP:0 FNZCP:0

1 FZCP:0 TZCP:1
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