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Abstract: The urban structure of a city, defined by its inhabitants, daily movements, and land use,
has become an environmental factor of interest that is related to traffic accidents. Traditionally, macro
modeling is usually implemented using spatial econometric methods; however, techniques such as
support vector regression have proven to be efficient in identifying the relationships between factors
at the zonal level and the frequency associated with these events when considering the autocorrelation
between spatial units. As a result of this, the main objective of this study was to evaluate the impact
of socioeconomical, land use, and mobility variables on the frequency of traffic accidents through the
analysis of area data using spatial and vector support regression models. The spatial weighting matrix
term was incorporated into the support vector regression models to compare the results against those
that ignore it. The urban land of Bogotá, disaggregated into the territorial units of mobility analysis,
was delimited as a study area. Two response variables were used: the traffic accidents index on the
road perimeter and the traffic accidents index with deaths on the road perimeter, to analyze the total
number of traffic accidents and the deaths caused by them. The results indicated that the rate of
trips per person by taxi and motorcycle had the greatest impact on the increase in total accidents
and deaths caused by them. Support vector regression models that incorporate the spatial structure
allowed the modeling of the spatial dependency between spatial units with a better fit than the spatial
regression models.

Keywords: support vector regression; regression spatial models; spatial autocorrelation; traffic
accidents; macroscopic variable impacts

1. Introduction

Safety is one of the components that is constantly monitored in mobility within the
urban environment. Explaining variations in vehicle accident levels per spatial unit using
covariates at the zonal level is an area of active research in the context of road safety.
This type of research is labeled as macro/aggregate level analysis [1] and usually has the
purpose of identifying the relationships between socioeconomic, environmental, mobility,
and land use factors and the frequency of traffic accidents observed in the spatial unit.

Different spatial units have been used in the macro analysis of traffic accidents, such
as traffic analysis zones (TAZ) [2–11], census wards [12], census tracts [13–15], basic geo-
statistical areas (BGEA) [16], etc., seeking to establish links between the covariates of the
urban environment and the frequency of these events.

Some researchers even try to differentiate the macro processes that lead to the severity
of traffic accidents. For example, [4] investigated the relationship between produced and
attracted trips in different types of transport and the frequency of traffic accidents with
serious injuries at the TAZ level in the state of Florida. In [12], the relationship between
road infrastructure factors, socioeconomic and traffic characteristics, and traffic accidents
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with minor, serious, and fatal injuries at the census ward level in London is analyzed.
In [17], the importance of the variables associated with serious traffic accidents in four
Florida counties is examined, and in [13], the relationship between the transportation
infrastructure multimodal, socioeconomic, and land use variables and the frequency of
fatal traffic accidents at the census track level is analyzed.

Traditional econometric methods are some of the most used in the macro analysis of
traffic accidents. For example, negative binomial regression (NBR) models are very popular
in this type of analysis as they adapt to the overdispersion of the frequency of events.
In various studies, NBR models were developed to evaluate the relationship between
sociodemographic variables, mobility, and road conditions, as well as the frequency of
traffic accidents at the zonal level [2–4,6,8–10,13,16]. However, other authors differ from
this method due to the inherent presence of spatial autocorrelation in traffic accidents
that causes biases in the coefficients obtained. That is why they suggest the use of spatial
econometric methods [12,18–20].

For their part, spatial econometric methods are based on the analysis of the dependence
between observations in space and the use of a spatial weighting matrix W to represent the
spatial arrangement of spatial units [21,22]. In the modeling of traffic accidents, there are
different studies that use these analytic methods; for example, [15] uses the geographically
weighted Poisson regression (GPWR) models for analysis, which are differentiated by the
type of injury, using sociodemographic factors at the zonal level. Refs. [12,18–20] con-
structed models using spatial regression to identify the relationship between socioeconomic
factors, road, and traffic characteristics and the frequency of vehicular accidents at the zonal
level. They concluded that the use of spatial econometrical methods allows the explanation
of the spatial autocorrelation in the data and eliminates the bias of the variables that present
nonlinear relationships.

Another relatively new alternative to spatial econometric models for traffic accident
analysis is support vector machines (SVMs). Machine learning methods are based on the
idea of minimizing structural risk [23], and they have the great ability to address regression
problems by identifying non-linear relationships between response and explanatory vari-
ables that cannot be captured by linear spatial regression models [11]. Different authors
have used SVMs for the analysis of traffic accidents, obtaining better results with this
technique, which has advantages over other traditional econometrics; for example, [24]
compared the goodness of fit and the predictive performance of traffic accidents of SVM
models with negative binomial models (NB), finding that the former predicted traffic
accidents more effectively and accurately than the traditional NB models. On the other
hand, [11] included spatial dependence in SVM models to assess the impact of socioeco-
nomic and mobility factors on the probability of vehicular accident frequency. They found
that spatial SVM models outperformed non-spatial ones, demonstrating the advantages of
including spatial autocorrelation when modeling vehicle accident data.

In accordance with the previously described methods and covariates used for the
macro analysis of traffic accidents, this research evaluated the impact of socioeconomic,
land use, and mobility variables on the frequency caused by traffic accidents at the zonal
level through spatial regression models and support vectors. The spatial autocorrelation
term was included in the SVR models to assess the goodness of fit and the predictive
performance compared to those that ignore it. The macro analysis was carried out using
the territorial mobility analysis units (TMAUs) of the urban land of Bogotá, established by
the district mobility secretariat (SDM), and the 2019 traffic accident records, differentiated
by accidents as a spatial aggregation unit, including total vehicles and fatalities. The main
findings of this research were: (1) the rate of trips per person by taxi and motorcycle had
the greatest impact on the increase in total traffic accidents and deaths caused by them;
(2) the support vector regression models that incorporate the spatial structure allowed the
modeling of the spatial dependency between the spatial units with a better fit than the
spatial regression models; (3) the variable constructed from the individual contributions
of land uses and socioeconomical stratification (categorical variables) was relevant from
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a statistical point of view and had a negative impact on the increase in deaths caused by
traffic accidents; and (4) the variable rate of trips per person in the Transmilenio (BRT-type
public transport) had an impact of reducing the total number of traffic accidents in the
study area.

The rest of the document is structured as follows. The following section presents the
study area and the data. Subsequently, part of the theory associated with the methods is
described. Consecutively, the results and evaluation of the modeling are presented; the
impacts of the covariates where the data provided evidence against null effects in their
respective statistical hypotheses are discussed; and finally, the relevant conclusions and
recommendations are presented.

2. Variables and Data

The response variables in the models were associated with the total number of traffic
accidents and the deaths caused by them, based on the socioeconomic, land use, and
mobility factors at the zonal level, using the territorial mobility analysis units (TMAUs) as
a spatial unit. The study area was delimited to the urban land distributed in 110 TMAU
polygons that corresponded to an approximate area of 37,972.7 Ha. The spatial information
of the TMAU polygons and the alphanumeric information of the socioeconomic, mobility,
and matrix indicators were extracted from the 2019 mobility survey of Bogotá and neigh-
boring municipalities through the online services of the integrated information system
on regional urban mobility (SIMUR). The georeferenced records of traffic accidents were
extracted from the spatial database of Consolidated Road Accidents in Bogotá (Siniestros
viales consolidados en Bogotá) of the Bogotá Open Data online services, filtering 29,028
records from the year 2019.

The integration of the socioeconomic, mobility, and matrix alphanumeric information
with the TMAU spatial units was carried out in the ArcGISversion 10.7.1 software licensed
by ESRI Colombia. The response variables corresponded to the traffic accidents index on
the road perimeter (TAI) and the traffic accidents index with deaths on the road perimeter
(TADI). The construction of these variables was accomplished through multiple geopro-
cesses in ArcMap 10.7.1., using the geographic information of the Integral Road Network
of Bogotá (MVI), available in the online services of Open Data Bogotá, and was calculated
as shown in Equations (1) and (2), respectively.

TAI =
number o f tra f f ic accidents per TMAU

Total length in KM o f road sections per TMAU
(1)

TADI =
number o f deaths caused by tra f f ic accidents per TMAU

Total length in KM o f road sections per TMAU
(2)

These indexes relate the number of traffic accidents and the deaths caused by them with
the perimeter of the road network contained in each spatial unit, providing a measure that
is closer to the reality of the phenomenon of vehicular accidents in an urban environment.

The spatial distribution of the TAI and the TADI can be seen in Figure 1.
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2.1. Spatial Analysis Units and Data Aggregation

One of the determining interests of the present study was to determine the level of
spatial aggregation of the data. As [12] points out, as the spatial unit of analysis is smaller,
the counts per sampled unit decrease and the distribution becomes smaller. It becomes
highly biased, which leads to a considerable increase in units with zero values [25].

For Bogotá, different spatial unit options were evaluated: localities, cadastral sectors,
and TAZ, but the TMAUs, in addition to having the total coverage of urban land and
being at an intermediate level between neighborhoods and localities, had information
related to socioeconomic indicators, mobility, and land use; so, they were convenient for the
analysis. In addition, these geographical divisions were established by the District Mobility
Secretariat to analyze the city’s mobility. In turn, these were made up of one or more
neighborhoods that maintain homogeneous socioeconomic and land use conditions [26].
Table 1 shows the descriptive statistics of the variables involved.
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Table 1. Descriptive statistics of the variables at the TMAU level.

Variables Mean Median S.D. Min Max C.V.
Response variables

Traffic accidents index on the road perimeter—TAI
(traffic accidents/kilometer) 4.303 4.369 2.635 0.055 13.172 0.612

Traffic accidents index with deaths on the road
perimeter—TADI (traffic accidents with
deaths/kilometer)

0.584 0.422 0.521 0.000 2.521 0.893

Land use factors

LV
Land uses and socioeconomic
stratification (weighted explained
variance)

0.55 0.44 0.60 0.11 4.07 1.09

Socioeconomical factors
X1 Population density (people per kilometer) 18,963.1 19,553.3 11,591.36 0 53,668.6 0.61

X2
Rate of motorization of motor
vehicles—RMMV (motorized vehicles per
1000 inhabitants)

236.6 212.46 139.66 0 753.43 0.59

X14 Number of households (households per
TMAU) 19,411.18 15,936.5 15,028.03 0 85,108 0.77

Mobility factors

X3 Rate of pedestrian trips per person—RPTP
(average daily pedestrian trips per person) 2.13 2.14 0.36 0 2.79 0.17

X4
Rate of trips per person on public
transport—RTPPT (average daily trips on
public transport per person)

0.59 0.6 0.18 0 1.05 0.31

X5 Rate of trips per person by taxi—RTPT
(average daily taxi rides per person) 0.1 0.08 0.07 0 0.3 0.70

X6 Rate of trips per person by car—RTPC
(average daily car trips per person) 0.33 0.27 0.29 0 1.5 0.85

X7
Rate of trips per person on
motorcycle—RTPM (average daily
motorcycle trips per person)

0.08 0.08 0.04 0 0.25 0.55

X8 Rate of trips per person by bicycle—RTPB
(average daily bicycle trips per person) 0.1 0.08 0.07 0 0.33 0.68

X9
Trips in a typical day—origin—TTDO
(origin of trips in a typical day across all
available modes of transportation)

114,176.69 100,169.93 75,521.33 551.97 394,626.84 0.66

X10

Trips in a typical
day—destination—TTDD (destination of
trips in a typical day across all available
modes of transportation)

114,241.15 101,562.74 75,297.79 551.97 395,196.43 0.66

X11
Travel rate per person in
Transmilenio—RTPTM (average daily
Transmilenio trips per person)

4.48 1.56 11.08 0 102.86 2.47

X15 Average maximum speed allowed
(kilometers per hour) 39.55 39.16 6.06 30 54.61 0.15

SD: standard deviation; CV: coefficient of variation.

2.2. Socioeconomic Characteristics

According to the literature, different authors suggest that the frequency of traffic
accidents is related to socioeconomic variables, such as population density, number of
households, average family income, employed population, and households with and
without a car [1,2,6–10,12,14,27]. In view of this, and to assess the impact of socioeconomic
factors on traffic accidents, information was available on four socioeconomic variables that
represent the exposed population, the number of vehicles per inhabitant, the number of
households, and housing conditions (Table 1). These variables were obtained from the 2019
Mobility Survey of Bogotá and the neighboring municipalities for the year 2019 and reflect
the socioeconomic profiles of the users and the preferences of citizens when traveling [26].

2.3. Mobility Characteristics

Mobility is a factor that is widely related to vehicular accidents as the movement of
users is the factor that most likely causes these events to occur. Various authors have found
that the production and attraction characterized by the reason for the trip and the type
of transport is related to the frequency and severity of vehicular accidents in an urban
environment [4,13,17,28]. In this research, the production and total attraction of the trips,
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trips discriminated by the type of transport [26], and the average maximum speed allowed
were involved. The latter was calculated at the zonal level from the vectorial information
of the Comprehensive Road Network of Bogotá through multiple geoprocesses.

2.4. Land Use and Socioeconomic Stratum

The fact that traffic accidents are random events inherently related to the land use
characteristics of the place where they occur is widely recognized. Multiple studies have
shown the importance of land use in modeling traffic accidents [3,8,10,13,14,27,29]. This
is related to the economic activities carried out daily by citizens that have substantial
implications in the production and attraction of trips and therefore in the vehicular acci-
dent rate. In this research, information was available on land uses, including residential,
commercial and services, and residential and industrial, and on socioeconomic strata:
1 (low-low), 2 (medium-low), 3 (medium-medium), 4 (medium), 5 (medium-high), and
6 (high) predominant in the TMAU.

3. Methods

The methods focused on the macro analysis of the relationships between the socioeco-
nomic, land use, and mobility variables and the frequency of traffic accidents through the
construction of spatial and support vector regression models. Spatial weighting matrices
were introduced to reflect the spatial proximity relationships between the TMAU in the
spatial regression and the spatial SVR models. A latent variable constructed from dimen-
sions based on the individual contributions of the categorical variables of land use and
socioeconomic strata was proposed. The selection of variables was carried out using the
conventional backwards step-by-step method. The data were not partitioned into training
and testing given that the interest of this study was to evaluate the effect of independent
variables on the frequency of traffic accidents. The fit and performance of the models were
evaluated using the mean absolute error (MAE) and the root mean square error (RSME)
measures of performance (MOP) to compare spatial econometric models versus machine
learning models in the macro analysis of traffic accidents. The effect of the relevant vari-
ables from a statistical point of view was analyzed by comparing the total impact of the
spatial regression models and the weights derived from the linear kernel SVR models.

3.1. Spatial Autocorrelation

Spatial autocorrelation examines the degree to which a variable is correlated with itself
at different locations [21]. The presence of this is usually detected by Moran’s global I statis-
tic that allows an analysis of the variations of spatial autocorrelation between neighboring
values using the spatial weighting matrix W [30]. In the present research, the constructed
W matrices were used from the rock contiguity criterion [31] and the relative neighbors’
graph [32], using the mean centroid weighted by traffic accidents to model the spatial
autocorrelation generated by the endogenous and exogenous variables and/or the error
term. In addition, Moran’s I test was used to assess the spatial independence in the model
residuals. For this, the spatial dependence “spdep” package of R was used [33].

3.2. Traditional Linear Spatial Model

Spatial regression models study the effects of spatial interaction between geographic
units. These effects can be generated by the endogenous and exogenous variables and/or
the error term [22]. In this study, different spatial linear regression models were tested;
however, the following two models obtained the best results to estimate the total number
of traffic accidents and the deaths caused by them: the general nested spatial model (GNS)
and the spatial Durbin error model (SDEM), respectively. These two models arise from
a classical linear regression model (CLRM), where the residuals are εi ∼ N

(
0, σ2) and

follow the traditional Gauss–Markov assumptions. Going from the general to the specific
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approach, the general nested spatial (GNS) model includes all types of spatial interaction
effects and is denoted as (Equation (3)).

Y = ρWY + α1N + Xβ + WXθ + u; u = λWu + ε (3)

where ρ is the autoregressive spatial coefficient, λ is the spatial autocorrelation coefficient,
θ and β represent a K× 1 vector of fixed but unknown parameters to be estimated. W is a
nonnegative N × N matrix that describes the spatial configuration or arrangement of the
units in the sample and is called the spatial weighting matrix. Imposing the restriction
of ρ = 0, the spatial error model (SDEM) is derived, which combines the exogenous
interaction effects and the error term (Equation (4)).

Y = α1N + Xβ + WXθ + u ; u = λWu + ε (4)

For the construction of the spatial regression models, the spatial regression analysis
package “spatialreg” of R [34] was used.

Total Impacts

Interpreting the impact or effect of the changes in an endogenous or exogenous
variable in spatial regression models is complex as it differs in all regions or observations;
however, [35] found how to summarize the impacts in all the regions with scalar measures
called direct, indirect, and total impacts. The direct impacts summarize the sum of the
impacts in the region experiencing a change; the indirect ones record the sum of the impacts
due to changes in other regions; and the totals are the sum of the first two and summarize
the impact of a region versus its change and that observed due to the change in other regions.
In the present investigation, the total impact (Equation (5)) of the exogenous variables in
the total number of traffic accidents and the deaths caused by them were calculated.

→
M(r)total = n−1l′nSr(W)ln (5)

where Sr(W) acts as a “multiplier” matrix applying higher order neighborhood relations to
Xr y ln is a vector of ones of n× 1. The total impacts derived from the spatial regression
models were calculated with the spatial dependence “spdep” package of R [33].

3.3. Support Vector Regression Models

Support vector regression (SVR) is an efficient supervised learning tool for estimating
real valued functions. Specifically, the SVR is formulated as an optimization problem
(Equation (6)) in which a convex loss function to be minimized is defined. The idea is
to find the flattest tube or margin that contains most of the training instances [23]. The
hyperplane is represented in terms of support vectors that correspond to training samples
that lie outside the boundary of the tube.

mn
1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (6)

where w is the magnitude of the vector or hyperplane, C > 0 (cost) determines the balance
between the regularity of f and the amount up to which the deviations greater than ε are
tolerated, and ε and ξi and ξ∗i are the variables that control the error made by the regression
function by approximating the margin. Thus, the approximation function f (x) is described
in (Equation (7)).

f (x) =
n

∑
i=1

(α− α∗)K(xi, x) (7)

where α, α∗ are the dual variables associated with the constraints, with α, α∗ ε [0, C], i =

1, . . . , n,
n
∑

i=1

(
αi + α∗i

)
= 0 a}, and K(xi, x) is the kernel function. Two types of SVR
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models were created in the present study: non-spatial and spatial. In the case of the spatial
SVR models, the matrix W was incorporated as a known input parameter lagging the
independent variables with the criteria mentioned in Section 3.1., with the function lag.listw
from the spatial dependence “spdep” package of R [33]. Two (2) kernel functions were used:
the linear (Equation (8)) and the Gaussian radial basis (Equation (9)).

K(x, xi) = xTxi (8)

K(x, xi) = exp−‖x− xi‖2

σ2 (9)

The first is to interpret the coefficients (weights) as impacts as this function does not
extend the feature space; so, the resulting hyperplane is in the same input space. The
second is to explore the predictive performance of the models. For the construction of the
SVR models, the linear predictive models package “LiblineaR” of R [36] was used.

4. Analysis of Results

The relationship between socioeconomic, land use, and mobility factors and the total
number of traffic accidents and deaths caused by these, represented by the traffic accidents
index on the road perimeter (TAI) and the traffic accidents index with deaths on the road
perimeter (TADI), was analyzed by means of spatial econometric models (SDEM and GNS)
and SVR models (non-spatial and spatial). The spatial weighting matrices mentioned in
Section 3.1 were used to model each response variable. The selection of variables in the
spatial regression models was carried out using the backward step-by-step staggering
method. Finally, the SVR models were made up of the variables that were statistically
relevant in the spatial regression models.

4.1. Latent Variable Construction

In this research, an integration of the categorical variables was proposed: land uses and
socioeconomic strata in a latent variable (LV) constructed from the individual contributions
of each one of them through a multiple correspondence analysis (MCA) (Equation (10)).
The sum of these contributions is usually related to the association patterns [37] that can be
used as input in the modeling. This was conducted to quantify the effect of the underlying
structure of these two categorical variables on the total number of accidents and deaths
caused by them.

LV =
1
c

√√√√ d

∑
i=1

(Di fi)
2 (10)

where c is a constant that represents the total percentage of the explained variance from
extracted dimensions, Di represents the i-th variance explained by dimension, and fi is
the variance explained by the i-th dimension normalized with the total variance explained
by the extracted dimensions. For the current case, an explained variance of 81.2% was
obtained from six dimensions (Equation (11)), which is above the recommended threshold
of 70% [38].

LV =

√(
Dim1× 15.9

81.2

)2
+
(

Dim2× 15.3
81.2

)2
+
(

Dim3× 14.2
81.2

)2
+
(

Dim4× 12.5
81.2

)2
+
(

Dim5× 12.5
81.2

)2
+
(

Dim6× 10.8
81.2

)2
(11)

4.2. Spatial Regression Models

The results of the models to estimate the variables TAI and TADI, together with the
coefficient of determination, the heteroscedasticity test (Breusch–Pagan), normality of
residuals (Shapiro–Wilk), and the spatial autocorrelation (Monte Carlo simulation Moran’s
I), and the MOP are presented in Table 2. The dependence between variables was reviewed,
identifying the non-presence of perfect multicollinearity in the models.
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Table 2. Results of the spatial regression models for the variable TAI.

TAI~ TADI~

GNS SDEM

Variables Coeff * E.E. Coeff * E.E.

Intercept −5.0505 *** 1.3377 0.0521 — 0.2389
Land use factors

LV Land uses and
socioeconomic stratification — — — −0.1750 * 0.0848

W(LV) Land uses and
socioeconomic stratification — — — −0.3116 * 0.1320

Socioeconomic factors
X14 Number of households −6.77 × 10−5 *** 1.61 × 10−5 — — —

W(X1) Population density −6.23 × 10−5 * 2.76 × 10−5 — — —
W(X2) RMMV — — — 0.0034 * 0.0015

W(X14) Number of households — — — −1.40 ×
10−5 * 6.94 × 10−6

Mobility factors
X5 RTPT 8.0470 * 3.5763 1.7509 * 0.7265
X6 RTPC −1.4546 * 0.5979 -0.5181 ** 0.2009
X8 RTPB — — — — — —

X9 TTDO 1.47 × 10−5 *** 2.99 × 10−6 −3.12 ×
10−5 * 1.47 × 10−5

X10 TTDD — — — 3.35 × 10−5 * 1.48 × 10−5

X11 RTPTM −0.0315 * 0.0146 — — —

X15 Average maximum
allowable speed 0.1585 *** 0.0286 — — —

W(X5) RTPT 10.4450 . 6.1049 — — —
W(X6) RTPC — — — −1.6902 * 0.7569
W(X7) RTPM 11.4270 . 7.4649 2.7204 . 1.4877
W(X8) RTPB 10.9880 *** 4.1595 — — —
W(X10) TTDD — — — 3.00 × 10−6 * 1.17 × 10−6

W(X11) RTPTM −0.0932 *** 0.0274 — — —

R2 0.7263 0.3571
ρ 0.2607 —
λ −0.2930 0.2222
Log Likelihood −190.8752 −59.6248

Moran I (Residuals) 0.5050 0.4060
Shapiro–Wilk (Residuals) 0.5488 0.0895
Breusch–Pagan 0.0503 0.0600

MAE 1.0711 0.2762
RSME 1.3500 0.3690

W: spatially lagged variable; statistically significant at 0.0001 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’; ‘—‘not included in
the model.

Regarding the TAI, in the GNS model all the assumptions of the MRCL model were
met; the parameter ρ indicates that 26.07% of the alterations in the traffic accidents index
on the road perimeter in a TMAU affect the probability of accidents in the neighboring
TMAUs. Moreover, the parameter λ shows that as the random error increases in a TMAU,
it decreases in the adjacent TMAUs at a ratio of 29.3%. In addition, 72.63% of the TAI can
be explained by population density, the number of households, the rate of trips per person
by taxi, car, motorcycle, bicycle, and Transmilenio, trips on a typical day of origin, and the
average number of trips per person at the maximum permitted speed.

Regarding the TADI, the SDEM model complied with all the assumptions of the MRCL
model. This had values of 0.2762 and 0.3690 in the MOP MAE and RMSE, respectively.
The parameter λ indicates that as the random error increases in a TMAU, it increases
in the adjacent TMAUs at a ratio of 22.22%. From this model, it can be interpreted that
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35.71% of the TADI can be explained by land use and socioeconomic stratification, the
rate of motorized vehicles, the number of households, the rate of trips per person by taxi,
automobile, and motorcycle, and travel during a typical day from origin and destination.

4.3. Support Vector Regression Models

Starting from the variables that were relevant from a statistical point of view in the
spatial regression models, the results of the non-spatial and spatial SVR models with the
variables that were selected from the spatial regression models, their effects (weights), the
optimized hyperparameters (C, L1–L2, σ and ε), and the MOPs are presented in Table 3.

Table 3. Results of the SVR models with linear kernel and radial basis for the variables TAI and TADI.

Variables

TAI~ TADI~

Linear Radial Basis Linear Radial Basis

SVR NE SVR E SVR NE SVR E SVR NE SVR E SVR NE SVR E

Bias (b) 4.2983 4.2686 — — 0.5818 0.5858 — —
Land use factors

LV
Land uses and
stratification
socioeconomic

— — — — −0.0697 −0.0840 * × ×

Socioeconomic factors
X1 Population density — 0.4568 * — × — — — —
X2 RMMV — 0.1249 * — ×
X14 Number of households −1.2096 −0.9718 * × × — −0.0640 * — ×

Mobility factors
X5 RTPT 1.0579 1.2382 * × × 0.1030 0.0364 * × ×
X6 RTPC −0.3987 -0.3610 * × × −0.0998 −0.1063 * × ×
X7 RTPM −0.0627 0.1221 * × × — 0.0587 * ×
X8 RTPB 0.3901 0.5337 * × × — — — —
X9 TTDO 1.3135 1.1058 * × × 0.0442 0.1781 * × ×
X10 TTDD — — — — 0.1079 0.0870 * × ×
X11 RTPTM −0.2491 −0.5991 * × × — — — —

X15 Average maximum
speed allowed 1.0128 0.8714 * × × — — — —

Hyperparameters
C (cost) 1 0.4444 1 1 0.1111 0.1111 0.2222 1
L1–L2 (Loss function) L2 L2 — — L2 L2 — —
σ (sigma) — — 0.5000 0.5000 — — 0.5000 0.5000
ε (épsilon) 0 0 0.1000 0.1000 0 0 0.1000 0.1000

R2 0.5070 0.5128 0.7651 0.8252 0.1954 0.1995 0.2006 0.6908
Moran I (Residuals) 0.0420 0.3220 0.0070 0.0540 0.1130 0.0520 0.1370 0.2990

MAE 1.1462 1.2071 0.5572 0.4843 0.3629 0.3537 0.3117 0.1508
RMSE 1.5023 1.4809 0.9637 0.8792 0.4655 0.4643 0.4640 0.2885

* Spatially lagged variable, ‘—’ not included in the model, ‘×’ without assigned weight.

The results shown in Table 3 indicate that the non-spatial SVR model with the linear
kernel and the optimal hyperparameters C = 1 and the loss function L2 explained approx-
imately 50.7% of the TAI. Likewise, the non-spatial model with a radial base kernel and
these same variables explained approximately 76.51% of the TAI. On the other hand, the
spatial model with a linear kernel and the optimal hyperparameters C = 0.4444 and a loss
function L2, made up of the variables RTPC (X6), TTDO (X9), and the spatially lagged
variables of population density (X1), number of households (X14), RTPT (X5), RTPM (X7),
RTPB (X8), TTDO (X9), RTPTM (X11), and average maximum speed allowed (X15), ex-
plained 51.28% of the TAI. In contrast, the spatial model with a radial base kernel and
these same variables explained approximately 82.52% of the TAI. Of these models, only
the spatial models removed the spatial dependence on the residuals with the variables
specified in the models.

Regarding the TADI, the results indicated that the non-spatial SVR model with the
linear kernel and the optimal hyperparameters C = 0.1111 and the loss function L2
explained approximately 19.54% of the TADI, while the spatial model with the radial base
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kernel made up of these variables allowed the explanation of 20.06% of the TADI. On the
other hand, the spatial SVR model with the linear kernel and the optimal hyperparameters
C = 0.1111 and the loss function L2, made up of the RTPT (X5), the TTDO (X9), and the
spatially lagged variables land use and socioeconomic stratification (LV), RMMV (X2),
number of households (X14), RTPC (X6), RTPM (X7), and TTDD (X10), explained the TADI
at approximately 19.95%. Finally, the model with the radial base kernel and these variables
explained 69.08% of the TADI.

4.4. Impact Analysis

The impacts of the variables that were statistically relevant in the spatial regression
models and that later formed the SVR models were analyzed by comparing the total impact
of the spatial regression models and the weights derived from the SVR models with the
linear kernel. The impact of the exogenous variables on the TAI is presented in Table 4.

Table 4. Impacts of exogenous variables on the TAI.

Variables
Impacts

GNS SVR NE SVR E

Socioeconomic factors
X1 Population density −8.43 × 10−5 — 0.4568
X14 Number of households −9.16 × 10−5 −1.2096 −0.9718

Mobility factors
X5 Rate of trips per person by taxi (RTPT) 25.0122 1.0579 1.2382

X6 Rate of trips per person by automobile
(RTPC) −1.9674 −0.3987 −0.3610

X7 Rate of trips per person by motorbike
(RTPT) 15.4555 −0.0627 0.1221

X8 Rate of trips per person by bicycle
(RTPB) 14.8614 0.3901 0.5337

X9 Trips in a typical day—origin (TTDO) 1.99 × 10−5 1.3135 1.1058

X11 Ratio of trips per person in
Transmilenio (RTPTM) −0.1688 −0.2491 −0.5991

X15 Average maximum speed permitted 0.2144 1.0128 0.8714
‘—’ Impact not calculated.

Regarding the TAI, most of the variables were found to be relevant from the sta-
tistical point of view and had the expected sign, which was consistent with the other
studies [2,4,5,8,10,12,17,39]. Specifically, RTPT was the variable with the greatest impact on
the increase in TAI and coincided with what was found in [17], in which it was found that
this was one of the variables with the greatest importance in the increase in total accidents
in the state of Florida. The RTPM had a positive impact on the increase in the TAI, a finding
that is in line with [40], in which it was found that the risk of accidents and the severity of
injuries associated with the use of motorcycles was significantly higher than that associated
with any other type of vehicle. Similarly, and in line with what was found by [39], the
RTPB had a direct association with total traffic accidents. These data are consistent with the
fact that this type of transport is associated with being one of the most vulnerable (along
with pedestrians).

Moreover, the average maximum speed allowed had a positive impact on the increase
in TAI, as has been found in multiple studies [1,7,8,41]. A higher speed leads to a substantial
increase in the risk of vehicular accidents; so, the impact found was consistent with the
literature. Similarly, the TTDOs had an impact on the increase in the traffic accidents index
on the road perimeter, which is something that coincides with the finding of [28], which
supports this as most road trips are carried out in private vehicles during peak hours and
on a routine basis and, therefore, have a greater exposure to risk. Likewise, as the results
indicate, the effect of population density is neutral (very close to zero) and positive in the
increase in the TAI in the spatial and vector support regression models, respectively, which
is expected because in studies such as [2,6] it has been found that population density is
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associated with an increase in traffic accidents as a larger population is always consistent
with a greater opportunity in terms of exposure and risk of vehicular accident.

In contrast, an unexpected result in the traffic accidents index on the road perimeter
models was that it was the RTPC that had the greatest impact on the reduction in this (a
negative association), which suggests that the number of accidents per KM decreases with
the increase in RTPC at the TMAU level. This is not consistent with the hypothesis that
traffic accidents increase with an increase in light car trips and does not coincide with the
findings in [4,17,42]. However, a possible explanation for this is that, even though in the
decade between 2007 and 2017 the number of light vehicles rose by approximately 51%,
during the last four years, traffic accidents with light vehicles involved have decreased by
38.81% [43], a downward trend. In the same way, the number of households had a negative
impact on the increase in TAI, which was unexpected as studies such as [8,10] identified
that the increase in this variable is related to a larger population, which produces a greater
number of trips and a greater probability of vehicular accidents.

The RTPTM was one of the variables of interest in this study as the Transmilenio is a
type of transport called Bus Rapid Transit (BRT) that usually travels through exclusive lanes
and has other characteristics that differentiate it from the others. The impact of reducing
the traffic accidents index on the road perimeter of the RTPTM was consistent with [44],
in which it was identified that the frequency of accidents decreases as BRT trips increase.
One reason for this may be because BRTs allow the transportation of a greater number of
people, reducing traffic volume and the risk of vehicular accidents. The foregoing makes
sense as 2,058,888 Transmilenio trips are made daily, representing 15.38% of the total trips
in Bogotá [43]. The impact of the exogenous variables on the TADI is presented in Table 5.

Table 5. Impacts of exogenous variables on the TADI.

Variables
Impacts

SDEM SVR NE SVR E

Land use factors

LV Land uses and socioeconomic
stratification −0.4866 −0.0697 −0.0840

Socioeconomic factors

X2 Rate of motorization of motor vehicles
(RMMV) 0.0034 — 0.1249

X14 Number of households −1.40 × 10−5 — −0.0640
Mobility factors

X5 Travel tax per person by taxi (RTPT) 1.7509 0.1030 0.0364
X6 Travel rate per person by car (RTPC) −2.2083 −0.0998 −0.1063

X7 Travel rate per person on motorcycle
(RTPM) 2.7204 — 0.0587

X9 Typical day trips—origin (TTDO) −3.12 × 10−5 0.0442 0.1781
X10 Typical day trips—destination (TTDD) 3.65 × 10−5 0.1079 0.0870

‘—’ Impact not calculated.

Most of the variables that were relevant in the TADI had the expected sign. As with
the TADI models, one of the variables with the greatest impact on the increase in deaths
due to traffic accidents was the RTPM, which is consistent with [40], in which it was found
that the severity of injuries in vehicle accidents associated with the use of motorcycles was
significantly greater than that related to other vehicles. Similarly, and as expected, the
RTPT had a positive impact on the increase in deaths due to traffic accidents, a fact that is
partially consistent with [17] in which it was found that trips generated and attracted by
taxis are important in serious vehicle accidents.

Similarly, the RMMV was another variable that was expected to have an impact on
the increase in TADI. This was consistent with the assumption that deaths from traffic
accidents increase with the increase in motorized vehicles per inhabitant; in addition, this
can be explained by the fact that in the decade between 2007 and 2017 the vehicular fleet in
Bogotá increased by 54.1% [43], and the average number of deaths due to vehicle accidents
was 553.72 deaths per year, a figure that, although small, exceeds the number of deaths
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due to traffic accidents by 0.49% compared to the traffic of 2007. Likewise, the TTDO and
TTDD had a positive impact on the increase in deaths due to traffic accidents. In [28],
it is indicated the production and daily attraction of trips are generally caused by work,
education, and shopping, which is why they are routinely carried out in peak periods, in a
greater hurry, and sometimes over greater distances, generating greater exposure to the
risk of being involved in a severe vehicular accident.

The RTPC was the variable with the greatest impact on the reduction in the traffic
accidents index with deaths on the road perimeter. This result is consistent with the trend of
the period between 2015 and 2019, in which the number of deaths in light vehicles involved
in traffic accidents was reduced by 38% [45]. This can be explained in part by the fact that
in 2017 it was mandatory to improve active and passive safety measures in light vehicles
regarding the integration of the ABS (anti-lock) braking system, the air bag (airbag), and
head restraints (Resolution No. 3752, 2015). The variable of the number of households had
an unexpected result, because, as [8,10] point out, an increase in the number of households
has repercussions for a larger population and therefore a greater number of users that are
vulnerable to suffering an accident in traffic that can be deadly.

Finally, an interesting finding was that the variable constructed from the individual
contributions of land uses and socioeconomic stratification was relevant from a statistical
point of view as it was able to discriminate the classes represented in a numerical value
that shows association patterns related to these categorical variables. The negative impact
of this on the traffic accidents index with deaths on the road perimeter can be explained by
various causes: (1) 79.04% of the urban land in Bogotá is predominantly residential and,
as [3] points out, the use of residential land is related to traffic accidents with minor injuries
and (2) 73.71% of the urban land of Bogotá has as predominant strata one, two and three,
strata where the use of public transport predominates, which only had 22% of the total
traffic accident fatalities in the city in 2019 [45].

The findings of this study made it possible to identify the factors with the greatest
impact on the increase in traffic accidents and the deaths caused by them in Bogotá. This
can serve the entities in charge of road safety in the city to focus their attention on factors
such as the active and passive safety of taxi transport, the high level of vulnerability of
motorcycle and bicycle transport users, the control of the maximum speed allowed, and
the incentive of the use of mass public transport of Transmilenio to meet the objective of
reducing the number of victims due to traffic accidents as much as possible.

5. Conclusions and Recommendations

This research evaluated the impact of socioeconomic, land use, and mobility variables
on the frequency of traffic accidents at the TMAU level using spatial and support vector
regression models. Moran’s I contrast allowed the identification of the fact that the traffic
accident data were spatially autocorrelated, confirming what was found in other studies
and supporting the use of spatial regression models for the present analysis. These provided
the use of analytic spatial methodologies to consider these dependency structures.

The variables that had a statistically significant relationship with the total number
of traffic accidents in the study area were the following: population density, number of
households, RTPT, RTPC, RTPM, RTPB, RTPTM, TTDO, and the average maximum speed
allowed. These had a spatial relationship with the total number of traffic accidents repre-
sented by the contiguity of order one in the directions of the cardinal points (rock criterion).
This allowed it to be shown that the population density, the number of households, the
RTPT, and the RTPC have a greater effect in the neighboring TMAU than in the TMAU
where there is a change in the traffic accidents index on the road perimeter, while the RTPM,
RTPB, RTPTM, the TTDO, and the average maximum speed allowed had a greater effect in
the TMAUs where there is a variation in the total number of traffic accidents than in those
of their neighbors. Land use and socioeconomic stratification, the RMMV, the number of
households, the RTPT, RTPC, RTPM, and the TTDO and TTDD had a relevant relationship
with mortality due to traffic accidents. Moreover, they had a spatial relationship with the
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mortality of traffic accidents, as represented by the graph of relative neighbors, and had a
greater effect in the TMAU where there was a variation in the change in the traffic accidents
index with deaths on the road than in the neighboring TMAUs.

The GNS model allowed us to consider the spatial autocorrelation present in the
traffic accidents index on the road perimeter, the explanatory variables, and the error
term with better results than the other traditional econometric models. The SDEM model
made it possible to explain the traffic accidents index with deaths on the road perimeter
by modeling the spatial autocorrelation present in the exogenous variables and the error
term, complying with all the assumptions of the CLRM. On the other hand, the spatial SVR
models with linear and radial basis kernel function allowed the elimination of the spatial
dependence on the residuals. The spatial SVR model with a radial basis function obtained
a better fit than the spatial regression and linear kernel SVR models.

The impact analysis allowed us to identify that the rate of trips per person by taxi,
motorcycle, and bicycle were the variables with the greatest impact on the increase in total
traffic accidents in the urban area of Bogotá, while the RTPC had the greatest impact on
the reduction in these in the study area. Although this finding is not consistent with the
literature, it can be explained by the trend in recent years of an inverse relationship between
the growth of the vehicle fleet of light automobiles and the vehicle accidents in which they
are involved. The RTPTM had a negative relationship with the increase in total traffic
accidents, showing that the use of Transmilenio mass transportation reduces the frequency
of vehicle accidents in the study area.

On the other hand, the rate of trips per person by taxi and motorcycle were the
variables with the greatest impact on the increase in deaths due to traffic accidents in the
urban area of Bogotá. The motorcycle was one of the main modes of transport historically
that contributes more deaths in traffic accidents. On the other hand, the RTPC is the variable
with the greatest negative relationship in the increase in deaths in traffic accidents, which
reflects the fact that the mandatory regulation in active and passive safety measures for
light vehicles considerably improved the mortality figures in vehicle accidents. Land use
and socioeconomic stratification had an indirect negative relationship on the increase in
deaths in traffic accidents.

Compared to traditional econometric methods, the proposed SVR provided a new
perspective for regional-level traffic accident analysis, incorporating spatial proximity
effects and providing results superior to those of spatial regression models. However, these
results were obtained at the local level; evaluating this type of models with other datasets
is recommended to validate the results obtained in future research. Likewise, because in
the present study land uses were superficially analyzed due to their predominance in the
TMAU, analysis of the individual impact of land uses on more detailed units, such as ZAT
polygons, is recommended.
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