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Abstract: Deep learning has achieved state-of-the-art performances in several research applications
nowadays: from computer vision to bioinformatics, from object detection to image generation. In
the context of such newly developed deep-learning approaches, we can define the concept of multi-
modality. The objective of this research field is to implement methodologies which can use several
modalities as input features to perform predictions. In this, there is a strong analogy with respect to
what happens with human cognition, since we rely on several different senses to make decisions. In
this article, we present a short survey on multimodal integration using deep-learning methods. In a
first instance, we comprehensively review the concept of multimodality, describing it from a two-
dimensional perspective. First, we provide, in fact, a taxonomical description of the multimodality
concept. Secondly, we define the second multimodality dimension as the one describing the fusion
approaches in multimodal deep learning. Eventually, we describe four applications of multimodal
deep learning to the following fields of research: speech recognition, sentiment analysis, forensic
applications and image processing.
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1. Introduction

In recent years, deep-learning (DL) approaches have opened up the path to addressing
tasks which have been considered, so far, almost impossible to tackle [1]. Research
challenges which previously, in fact, had to rely on feature-extraction steps, were then
efficiently and successfully addressed through the use of non-features-engineering-based
DL methods, constituting a significant revolution in the field of artificial intelligence (AI).

To give some examples, successful applications of DL can be found in several different
fields of applications, such as, for instance, computer vision [2–4], bioinformatics [5] and
natural language processing [6,7].

In all of these cases of applications, the strength of deep neural networks (DNN) relies
on the possibility of processing directly to structured data, such as, for instance, images or
graphs, without the need of a pre-processing features-extraction step [8].

In this context, the field of multimodal DL has recently gained more attention. Several
DL fields of research were moved, in fact, towards trying to build systems that could
mimic as much as possible the learning behaviour of a human being. Trying to answer
such a research question, multimodality becomes one of the main research directions to be
pursued. Our world is, indeed, inherently multimodal [9]. We, in fact, constantly rely on
several multiple senses (e.g., audio, visual, touch) and combine their knowledge to make
our decisions. Each modality [10] we come into contact with, brings, in fact, knowledge
to us [11]. If, therefore, we want to have DL systems more similar to humans [12], we
need to move towards the multimodality framework [13]. To offer a simple example, we
could think of a basic concept, such as the concept related to the animal dog. When, as
children, we built our prototypical concept concerning the animal dog, we certainly relied
on all of our sense [14]: vision (looking at dog images as well as the real animal and in this
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way learning how the animal should look), information about the sound produced by the
animal (for instance, when the dog was barking), as well as other details such as the way
in which the animal interacts with the surrounding world. A graphical example of such a
multimodal cognitive process is represented in Figure 1.

Figure 1. Conceptual representation of the animal dog. As humans, we rely on several of our senses
to learn such a concept. Fusing together all of these pieces of information, we construct a concept and
we then become able to recognize the animal.

The goal of this paper is to provide an overview and survey of DL-based approaches
for multi-modal integration. The design challenges of the present study were manifold.
A unique consensus for the definition of multimodality is not present in the literature.
Moreover, applications are widespread between different research fields. Therefore, we
decided to focus on four different fields of applications, in such a way that the examples
provided could be explanatory and useful for introducing the importance of multimodal.
Our survey offers a novel perspective on multimodality definition. For the first time in the
literature, to the best of our knowledge, we defined multimodality as a two-dimensional
concept: the first dimension concerning what we defined as a multimodal taxonomy and
the second dimension focusing on the fusion steps in multimodal architecture.

The paper is structured as follows. In Section 2, we introduced the general principle
of multimodality. In Section 3, DL applications are presented, in particular, four applica-
tions related to the research fields of: speech recognition, sentiment analysis, deep-fake
recognition and computer vision. Moreover, in Section 4, we summarize and discuss future
perspectives on the field.

2. Multimodality: A Definition

The world surrounding us can be defined as inherently multimodal. In our day-to-day
learning experiences, we collect information using all of our five senses to be able to gather
data to later use in our personal cognition experience. Similarly, a multimodal dataset, in
machine learning, can be defined as a dataset in which multiple data types, related to the
same concept, have been collected. The word multimodality, in fact, indicates the presence
of several different types of data to be used as input in the implemented DL model [15]. If
a uni-modal approach can, in fact, provide only a partial view of the research problem at
hand, using multiple data sources (i.e., a multimodal approach) could actually significantly
improve the learning process [16].
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More formally, in this review, we introduce the definition of multimodality as a two-
dimensional concept. In particular, the two dimensions can be defined as follows:

1 Dimension 1 Taxonomy: concerns a taxonomical definition of the concept of multimodality
2 Dimension 2 Fusion: instead, focuses on the types of fusion to be used for the multimodal features

To define the taxonomy of multimodality, i.e., dimension 1, we used the formalism of
the seminal paper [15]. In particular, the taxonomical description of multimodality is based
on the definition of five key concepts, which we will later describe in Section 2.1.

In contrast, the second dimension focuses on when and how the multimodal features-
merging process takes place. If this is performed in a pre-processing step, we call it early
fusion. If, instead, this process is left to a later step, taking place after the classification or
prediction performed by the DL architecture, it is called late fusion. A halfway merging
solution could happen, in which features are fused during the model deployment, or half
at the beginning and half at the end of the learning process. This latter is named hybrid
fusion. We will describe this dimension in depth in Section 2.2.

The relationship between the two multimodality dimensions is graphically represented
in Figure 2.

Figure 2. Figure showing the relationship exiting between the two defined multimodality dimensions,
taxonomy and fusion, described in Section 2.

2.1. Dimension 1: Taxonomy

The taxonomy description of multimodality we report here was originally proposed
in [15]. However, to the best of our knowledge, this is the first time in the literature that
multimodality taxonomy is defined as one of the two multimodality dimensions. The
seminal paper [15] defines five fundamental research challenges in multimodality.

In particular [15], the authors state that with a taxonomical definition of multimodality,
we can provide a new vision of it, going beyond the more usual description of fusion.

The five taxonomical multimodal research challenges are [15]:

1 Representation: this concept addresses the need of representing and summarizing
in a proper way the input features, irrespective of the differences existing between
the modalities. To give an example, language is often represented as symbolic, while
visual modalities are often represented as signals.

2 Translation: this point concerns the capability of translating one modality to another.
This task is particularly crucial, as it determines that the relationship between modali-
ties might exist. If this is not case, then this should be carefully taken into account in
the multimodality-DL implementation.

3 Alignment: in this case, this concept refers to the need to identify the direct relation-
ships between one or more sub-element parts of the same input data. In [15], the
authors assess the need of measuring the similarity between the modalities used in
the experimental setting.
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4 Fusion: this research challenge tackles, instead, the need of joining information in two
or more modalities, to perform a certain prediction task. We will expand on this in the
definition of Section 2.2.

5 Co-learning: this research challenge entails the need of transferring knowledge be-
tween the modalities used in the experimental settings. This is said to be particularly
relevant [15] for several types of DL algorithms such as, for example, zero-shot learn-
ing, which is a new DL approach in which models are tested on examples which were
never seen during training. Moreover, this research aspect is said to be particularly
relevant when one of the modalities is characterized by a limited amount of resources
(for example, a limited amount of labelled data). Several deep-learning extensions
have been proposed for the co-learning research field. A relevant overview concerning
this concept is reported in [17].

2.2. Dimension 2: Fusion

The second multimodality dimension we defined concentrates on the fusion process.
More specifically, dimension 2 focuses on the study of when and if the various input
modalities will be merged during the learning process. In particular, we could more
formally define the following fusion paradigms [16,18]:

1 Early fusion: such fusion happens when the multimodal input data is fused prior
to the application of the AI model. More specifically, the fusion process takes places
as at the initial step, before the dataset is used as input to the DL algorithm. More
specifically, we could say that the fusion process happens directly on the raw data. If,
instead of the raw data, a pre-processing feature-extraction step is performed, then we
say that the merging step is performed at a feature level.

2 Late fusion: in this case, the fusion step takes place after the application of the AI
algorithm. In this case, data are processed in a separate multimodal way.
More specifically, such an approach considers the different modalities as single streams.
The drawback is that the possible conditional relationship existing among the different
modalities are not considered during the learning process. Merging strategies could
be of different types:

3 Hybrid fusion: this fusion takes place when the multimodal input data is fused
both before and after the application of the relevant AI algorithm. In particular, this
approach stands in the middle between late and early fusion, taking place halfway in
the DNN model considered. This approach could be, for example, particularly suitable
when there are modalities with consistent dimensions which need to be merged, as
well as when the modalities are of a very different nature, and, therefore, require a
first pre-processing and a later merging procedure during the training process.

We could further use the distinction presented in [19] to define the following five types of
fusion methods.

These five types can be considered as sub-types of the three aforementioned fusion
modalities:

1 Data-level fusion: this is defined as the case in which the modalities are fused before
the learning process. In other words, features are computed independently for each
single modality, and the fusion step takes place when they are already in the feature-
extracted form [20,21]. This is part of the early fusion modality approach.

2 Decision-level fusion: in this case, the decision scores are firstly computed separately
for each AI model applied. Subsequently, the individual decision scores are fused
into one decision, using, for example, an ensemble of methods, or majority voting
approaches [22,23]. This is part of the late fusion-modality approach.

3 Score-level fusion: in this case, the fusion mechanism happens at the level of the
probabilistic output scores of neural networks. It is different from decision-level fusion,
as, in this case, a proper fusion of scores is performed, while in the previous case,
majority voting and ensembling approaches were applied [24]. A single decision is
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then taken only after the fused scores have been produced. This is part of the late
fusion-modality approach.

4 Hybrid-level fusion: in this case, the characteristics of the features- and decision-level
fusion are merged. In particular, a comparison takes place between the decisions
taken by single classifiers and the decisions taken by classifiers when modalities are
fused at a feature level. Such approaches, therefore, rely on the idea of improving the
performances of single classifiers with the use of features-future engineering [25,26].
This is part of the hybrid-modality approach.

5 Model-level fusion: in this case, the fusion takes place during the training and
learning procedure of the AI model implemented [27,28]. This is part of the hybrid-
modality approach.

3. Multimodality Deep-Learning Applications

Several multimodal DL architectures have been proposed [9]. In this section, we
will consider four fields of the application of multimodality to DL. In particular, we will
present examples for the following research fields: speech recognition, sentiment analysis,
DeepFake forensic detection and image reconstruction or segmentation.

In Figure 3, we present a graphical summary abstract of the four areas of applica-
tion presented in our paper. The following subsections are organized as follows. In
Section 3.1, we will describe applications of multimodal approaches for speech recogni-
tion. In Section 3.2, we will describe application concerning the detection of sentiments in
audio–visual–text datasets. Later, in Section 3.3, applications to the forensic field will be
described. Eventually, in Section 3.4, we will describe computer-vision applications with
particular reference to image reconstruction and segmentation. An overall summary of the
applications and papers reviewed in this Section is presented in Table 1. In the table, we
report the model used, together with the features and the relevant paper references. In the
discussion of the applications and of the models, we will mainly describe the performances
obtained and the input multimodal features used.

Figure 3. Example of workflows for multimodal speech recognition, sentiment analysis, multi-modal
image reconstruction and forensic multimodal application.
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Table 1. Table summarizing the various applications listed in Section 3. The first column reports
the application type and second column the DL model used. The third column includes a brief
description of the input multimodal features and the last column a reference to the relevant paper.

Application Model Multi-Modal Features Reference

Speech
Recognition

HMM visual + audio McGurk et al. [29]
Restricted Boltzamn machines audio + video Ngiam et al. [30]

Deep Boltzman Machines image + text Srivastava et al. [31]
Multimodal Compact Bilinear pooling (MCB) visual + text Fukui et al. [32]

RNN audio + visual Makino et al. [33]
Attention Based DL audio + visual Petridis et al. [34]

Seq2Seq audio + visual Zhou et al. [35]
DL with gating layer audio + visual Tao et al. [36]

Bidirectional Gated Recurrent Units audio + visual Petridis et al. [37]

Sentiment
Analysis

Convolutional Deep Belief Network
face + body gesture +
voice + physiological

signals
Ranganathan et al. [38]

cLSTM-MMA visual + textual Pan et al. [39]
transformers audio + visual + text Khare et al. [40]

LSTM lyric + audio Liu et al. [41]
CNN visual + text + audio Cambria et al. [42]
CNN image + text Lee et al. [43]

FC audio + video Ortega et al. [44]
LSTM and FC physiological Dhaouadi et al. [45]

FC physiological Bizzego et al. [46]
FC text + audio + video Ray et al. [47]

Forensic
Applications

MLP, SincNet, Xecption audio + video Lomnitz et al. [48]

LSTM + MLP multimodal spectral
features Lewis et al. [49]

Siamese Networks audio + video Mittal et al. [50]
Xception, VGG, SincNet video + audio Khalid et al. [51]

CNN based video + audio Cai et al. [52]

Computer
Vision

multiple DNN brain MRI scans Zhang et al. [53]
visible,X-ray,thermal,infrared radiation Mask R-CNN Pemasiri et al. [54]

multiple DL several sensors Feng et al. [55]
GAN multispectral Hong et al. [56]

CNN separable convolutions brain MRI T1 + MRI T2 + CT Dimitri et al. [57]
Multi-Modal U-Net T2W and FLAIR brain scans Falvo et al. [58]

3.1. Audio-Visual Multimodal Applications for Speech Recognition

Speech recognition is a research field in which multimodality can play a fundamental
role. Indeed, one of the earliest examples of multimodal DL applications concerns the use
of audio-visual features for speech recognition. Such systems are defined as AVSR, i.e.,
audio-visual speech recognition systems.

The underlying motivation [15] behind the use of multimodality in AVSR was,
in fact, theorised early by the so called McGurk effect described in [29], in which the
interaction between hearing and vision during speech was analysed. Among the various
findings, the authors in the paper reported [15,29] experimental results concerning the
importance of using both audio and visual features to perform speech recognition. More
specifically, during the experiments performed, the fact was noticed that when a human
being was hearing the words /ba-ba/ at the same time as watching the person’s lips
pronouncing /ga-/ga/, the final perception was the sound /da-da/.

Among the oldest speech-language recognition works, we can find architectures
based on hidden Markov models (HMM) approaches, particularly popular at the time
of the seminal paper concerning the McGurk effect [29]. However, nowadays, state-of-
the-art performances, in multimodal speech-language recognition, are obtained using
DL approaches [30].
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For instance, in [30], which is one of the first examples of applications of DL for speech
recognition, the authors combined features from video and audio, showing how the use of
several different modalities could consistently improve the learning process (for instance,
in the paper, audio and video). In particular, the work used Restricted Boltzmann machines
to extract features for audio-visual classification. In more detail, a multimodal architecture
was trained over the concatenated audio and video extracted features. The authors obtained
state-of-the-art performances using benchmark datasets, and showed the importance of a
multimodal approach through ablation studies.

Similarly, in [31], the authors proposed a Deep Boltzmann Machine approach with
the aim of building a generative model for multimodal data. The model proposed was
based on a bi-modal dataset made of images and text or, alternatively, audio and video.
The experiments achieved good classification performances compared to the state of the art
models such as support vector machines (SVMs).

Several other papers can be included in this line of research. For example, in [32],
the authors addressed the issue of visual question answering. In the paper, the authors
stressed the need to have a multi-modal input feature. In particular, such features could
come from visual or textual representations, and could be successfully merged through the
concatenation of visual and textual information. The method proposed is named Multi-
modal Compact Bilinear pooling (MCB). In the paper, the authors present a comprehensive
assessment of multimodal performances, using a benchmark dataset for visual answering:
in particular, the Visual7W dataset and the VQA challenge) [32]. The authors showed that
the model proposed could significantly improve the state-of-the-art performances on the
Visual7W dataset and on the Visual Question Answering challenge [32].

Another interesting application of recurrent neural networks (RNNs) for speech
recognition is reported in [33]. In the work, an audio-visual speech recognition sys-
tem is presented. For this purpose, a large dataset was collected and released, with
more than 31k hours of audio-visual training material. Moreover, in [34], the authors
provided a novel hybrid-attention-based DL model, in which a connectionist tem-
poral classification approach was combined with a sequence-to-sequence model for
character-level recognition.

Similarly, in [37], the authors present an end-to-end model which is based upon
residual networks and bidirectional gated recurrent units. This is one of the first works in
which image pixel information is fused with audio waveforms to perform context-word
recognition. An attention model was also used in [35], where the authors provided a
Seq2Seq DL attention-based model and used it for speech-recognition purposes, reaching
state-of-the-art performances. Moreover, in [36], the authors proposed a DL approach with
a gating layer, to avoid having the drop in performance that happens when visual features
are merged with clean speech features.

3.2. Multimodal Applications for Sentiment Analysis

Multimodal sentiment analysis concerns the automatic analysis of different types of
data (for example, visual or text) to predict emotions and feelings. Such a task is inherently
a particularly challenging one, and the use of several sources and modalities could, in
principle, play a fundamental role.

Even for a human being, recognizing an emotion only from a text message could be a
challenging task. However, if the text message is accompanied by a vocal communication,
the delivering of the message sentiment intent could become clearer. Even better is if
there is the addition of some visual information, such as, for example, a video or a live
interaction, between the two participants to the conversation. In other words, in this
way, the message is conveyed through multiple modalities, and a certain clearer message-
sentiment comprehension is delivered to the listener.

Several works present applications of DL for emotion and sentiment analysis, using
a multimodal approach. For instance, in [38], the authors present a multimodal database
emoF-BVP where the face, body gestures, voice and physiological signals of actors playing
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different 23 different emotions were recorded. The multimodal database is enriched by
facial and posture tracking, and a set of experiments was performed on the proposed
dataset, showing promising improvements with respect to the state of the art. In particular,
in this work [38], the authors proposed a model named convolutional deep belief network
(CDBN), which is able to efficiently learn salient multimodal features to express emotions.
The model is able to return consistent predictions when low-intensity or subtle expressions
are detected, improving significantly the state-of-the-art performances.

Several other examples exist in the literature in which multimodal emotion-recognition
systems made use of DL techniques [59].

In most of the recent works for automatic sentiment analysis, the features taken into
consideration were mostly audio and text or image and text.

For example, in [39], the authors proposed a hybrid fusion process, based a on multi-
modal emotion assessment, using visual and text cues. The architecture proposed made
use of a late-fusion approach. Moreover, in their work [39], the authors proposed a novel
multimodal-attention-based mechanism, which they named cLST-MMA. The attention
mechanism implemented could help in fusing relevant information from the different
modalities, performing comprehensive experiments and reaching state-of-the-art perfor-
mances in the benchmark IEMOCAP dataset for emotion recognition.

Analogously, several examples in the literature present the use of audio and
text [40–42,59,60], and promising performances have been reported for these experiments.

However, in the field of multimodal applications for sentiment analysis detection,
another common combination of features is represented by the use of visual features
(i.e., videos) and text, for example, in [43] (images and text) or [44] (video and text).

Another interesting possible application of multimodality to the field of sentiment
analysis is through the use of physiological monitored parameters in humans. For in-
stance, in [45], the authors used physiological signals monitored on gamers to predict
sentiments and stress levels. In particular, the monitored signals were electrocardiog-
raphy (ECG), electrodermal activity (EDA), and electromyography (EMG), which were
measured using non-invasive wearable sensors. In this way, real-time gamers’ emotions
and stress levels could be successfully retrieved. In particular, the authors showed the
used of long short-term memory models together with other relevant neural networks
models provide insights into the evaluation of both approaches to predict the real-time
stress of gamers’.

Similarly, in [46], the authors collected a dataset composed of physiological parameters,
in particular, ECG, electrodermal activity data and other types of physiological parame-
ters that can be monitored through wearable sensors. Such signals were collected from
232 subjects using four different acquisition devices. The authors, moreover, applied a
DNN-based approach to predict emotions from the collected physiological signals.

It is worth noticing, in this context, that much attention has been devoted to the
collection of corpora and datasets, which can be used for the purpose of multimodal
emotion recognition and classification. Such datasets are crucial for DL algorithms
training, and, therefore, their collection is extremely important. An example of this
is [47], where a multimodal, novel, publicly available dataset for sarcasm detection was
released. Another interesting example is [61], where a multimodal-sensor-based dataset
was collected and released.

3.3. Forensic Applications: Multimodal Deepfake Detection

In this subsection, we will consider a particularly recent and important application of
computer engineering forensic, i.e., the detection and analysis of a deepfake.

Deepfake has become a wide spread phenomenon in recent years. It is possible to
define a deepfake as content generated by AI, which seems authentic if evaluated through
the eyes of a human being [62].

The word deepfake comes from the combination of the words deep learning and fake. If
the deepfake is created with malicious intent, this can result in [62] a video of a person in
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which their face or body has been digitally altered so that they appear to be someone else
and could, for instance, be used to spread false information [63]. One important challenge
becomes, therefore, the automatic detection of deepfakes. This task is usually performed
through the use of DNN classifiers, capable of classifying correctly deepfakes vs pristine
images [64]. The use of multimodal data in this context, for instance audio, video and
images, becomes, therefore, crucial for the success of this detection task.

For example, in [48], a multimodal deepfake-detection solution was proposed in
which single images together with temporal images were included in a single framework,
obtaining very good performances.

Similarly, in [49], the same Facebook DeepFake challenge was used in the experimen-
tal framework implemented. In particular, the authors proposed a hybrid DL approach,
based on spatial, spectral and temporal input features, with the aim of predicting real
and fake videos, in a multimodal fashion. The experiments showed performances
reaching 61.95% accuracy when tested on the Facebook Deepfake Detection Challenge
(DFDC) dataset.

Moreover, in [50], the authors exploited audio and video features for deepfake detec-
tion. The method is based on the use of a Siamese network, and a triplet loss. To extract
information for learning, in fact, the similarity between two videos was analysed, obtaining
a classifier which could make the decision if a video was fake or not. The authors obtained
an AUC of 84.4% on the DeepFake-TIMIT Dataset and an AUC of 96.6% on the DF-TIMIT
dataset, two common benchmarks used for deepfake detection. In their work, the authors
exploited, for the first time in the literature, the use of audio and video modalities, and
used them to perceive and detect the presence of a deepfake.

Similarly, in [51], the authors used a benchmark called Audio-Video Multimodal
Deepfake Detection Dataset (FakeAVCeleb) containing videos as well as synthesised fake
audios to be used for deepfake classification. In the paper, the authors extensively compared
one modality to multimodality, highlighting the superiority of a multimodal approach for
performing deepfake detection.

Several other notable examples of deepfake detection can be found in the literature,
such as, for instance, [52]. It has to be highlighted the importance, also in this case, of the
construction of datasets and benchmarks. An example in this context is [65]. In this case,
the authors collected not only deepfake videos, but also lip-synced fake audios.

3.4. Computer Vision and Multimodality: Image Segmentation and Reconstruction

Computer vision is a research area in which DL has played a fundamental role. In the
last few years, a plethora of DL applications to computer visions have been proposed. This
has led to surprising results. For instance, we could mention one of the latest research areas
which has developed concerns images or video generation from text prompts [66,67]. In
this section, we will present the role that multimodality can play when considering the two
computer-vision tasks of image segmentation and reconstruction.

In the computer-vision area, however, one important remark should be made.
If, until now, the term modality has referred to the cases in which different types

of input were used (e.g., audio + text, audio + video), in the case of images, the term
multimodal could also refer to different modalities of images. For example, in biomedical
imaging, brain scans could be of the modality of MRI or CT scans.

Concerning image segmentation, it consists in the task of labelling each pixel of an
image with the relative object to which it belongs to [2]. In this context, DL has played a
fundamental role, finding applications in several different research areas [68]. The develop-
ment of well-known DL architectures, such as SegNet [69], DeepLab [70] or Xception [71]
nets, have dramatically improved the state-of-the-art performances achieved by CNN-
based architectures for segmentation tasks. In this context, multimodal approaches can
play a fundamental role [68].

For instance, in [55], the authors report experiments performed for autonomous
driving purposes. In particular, to achieve robust performances in scene understanding for
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autonomous driving, a multimodal, in particular, a multi-sensor approach, was used to
obtain the relevant scene segmentation map. Particular attention in the study was devoted
to the fusion step [55].

In [54], instead, we can find a relevant example in which multimodal image seg-
mentation of biomedical images is performed. In particular, the authors proposed a
so-called modality invariant method, in order to obtain human body-part segmenta-
tion. In this case, the modality is intended to be semantically referred to different types
of scans: visible images, X-ray images, thermal images (also named heatmaps) and
infrared-radiation (IR) images. In the experiments, the authors first considered pairs of
modalities, and later developed an architecture devoted to the understanding of a further
relationship between multiple modalities. Subsequently, segmentation was performed
using a CNN-based architecture.

Another notable example of multimodal biomedical image segmentation (in which
multimodal is intended to mean different types of images) concerns the application of DL
architectures for brain-tumour segmentation. Several notable examples have been proposed,
using the publicly released and available dataset Brats [53]. Many challenges have, in fact,
been proposed during the years, with the addition of different image modalities, which
have brought improvements in the segmentation performances obtained.

A comprehensive table reporting performances and comparisons between Brats chal-
lenge participants is reported in [53]. Furthermore, another important and interesting field
of application of image segmentation is the one referring to multispectral and satellite
images [56,72,73]. In addition, in this case, a multimodal approach can be applied. For
instance, in [56], the authors address the problem of semantic segmentation in large-scale
urban satellite images with a scarce amount of cross-modality data. The experiments of
the novel GAN-based architectures were evaluated on two multimodal (hyperspectral and
multispectral) image datasets, achieving state-of-the-art performances.

We will now continue with the exploration of some case studies used in the field of
image reconstruction.

Notable examples of such applications can be found in the biomedical-imaging field.
For example, in [57], the authors proposed a multimodal brain MRI reconstruction architec-
ture based on separable convolutional blocks. Several different brain-scan types were used
as input. The quality of the reconstructed brain scans was assessed through image-quality
indicators such as SNR (signal-to-noise ratio). The fusion was performed concatenating the
latent embedding dimension space. Several other examples could be listed in this line of
research, such as, for instance, [58,74,75].

4. Discussion and Conclusions

Deep-learning approaches have recently shown their capabilities in outperforming
standard machine-learning methods in several tasks. The field of multimodal deep
learning is a newly developing field. In the context of multimodal architecture, mul-
tiple data modalities are fused and used in the learning process, mimicking human
behaviour during the cognitive learning process. The importance of multimodality
has proved to be manifold and in several different tasks. In our brief overview, we
present applications in computer-vision, forensic, natural-language processing tasks
and sentiment analysis. We profoundly analysed four fields in which multimodal
DL has been successfully applied. The four fields should give a broad overview of
the numerous research applications that multimodality can have. We also reported
a summary and comparison of the DL methodologies used. Evaluation on the per-
formances were reported on the various methodologies. We considered a plethora of
different methods, in order to provide the reader with a short applicative overview of
the experimental fields analysed.

Future challenges are manifold. One of the most important matters constitutes the
requirements of a novel dataset, i.e., benchmarks needed for training DL architectures.
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We believe that the field is in continuous expansion and the promising results will
allow the development of novel techniques and DL models in the next few years.
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