computers

Article

Features Engineering for Malware Family Classification Based

API Call

Ammar Yahya Daeef 11, Ali Al-Naji 23*

check for
updates

Citation: Daeef, A.Y.; Al-Naji, A.;
Chahl, J. Features Engineering for
Malware Family Classification Based
API Call. Computers 2022, 11, 160.
https://doi.org/10.3390/
computers11110160

Academic Editor: Paolo Bellavista

Received: 9 October 2022
Accepted: 7 November 2022
Published: 11 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Javaan Chahl 3

Technical Institute for Administration, Middle Technical University, Baghdad 10010, Iraq
Electrical Engineering Technical College, Middle Technical University, Baghdad 10022, Iraq
School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
Correspondence: ali_al_naji@mtu.edu.iq

@ N =

Abstract: Malware is used to carry out malicious operations on networks and computer systems.
Consequently, malware classification is crucial for preventing malicious attacks. Application pro-
gramming interfaces (APIs) are ideal candidates for characterizing malware behavior. However, the
primary challenge is to produce API call features for classification algorithms to achieve high classi-
fication accuracy. To achieve this aim, this work employed the Jaccard similarity and visualization
analysis to find the hidden patterns created by various malware API calls. Traditional machine learn-
ing classifiers, i.e., random forest (RF), support vector machine (SVM), and k-nearest neighborhood
(KNN), were used in this research as alternatives to existing neural networks, which use millions
of length API call sequences. The benchmark dataset used in this study contains 7107 samples of
API call sequences (labeled to eight different malware families). The results showed that RF with the
proposed API call features outperformed the LSTM (long short-term memory) and gated recurrent
unit (GRU)-based methods against overall evaluation metrics.

Keywords: malware classification; Jaccard similarity; API call sequence

1. Introduction

As of May 2022, more than 9 million new malware instances have been released, as
stated in a report published by AV-TEST [1]; there are a total of 1363.92 million known
malware instances currently active in the environment, requiring significant and ongoing
technological development to counter new attacks. Furthermore, attackers are constantly
improving their skills in writing malicious programs to evade existing protection mecha-
nisms. Conversely, security software developers are updating their methods and techniques
to block such zero-day attacks. This competitive "game" has led to the production of meta-
morphic and polymorphic malware, which are more advanced than regular malicious
software. Metamorphic malware programs can change their functions and structures with
each iteration; polymorphic malware involves composing new malware based on previous
malware with new features. These capabilities make sensing and classifying specimens
complex processes [2].

Despite an attacker’s tricks, malicious programs need the host operating system and
application services to complete the malicious activity [3]. Hence, the malware requests the
API service of the Windows operating system to perform the malicious action. Such service
requests generate malicious behaviors employed for detection and classification purposes.
As stated by [4], the malware cannot obfuscate or hide the use of the system’s API call.

A large number of malicious programs are classified into families that share common
characteristics. Malware family identification is crucial to researchers because it helps to
expedite the detection and mitigation procedures of incident responders [5,6].

The process of labeling malware into families is not easy because labeling depends on
the outputs of the antivirus programs, which are not always identical, e.g., VirusTotal [3]
provides the analysis results from several antivirus engines with malware labeling. As

Computers 2022, 11, 160. https://doi.org/10.3390/computers11110160

https:/ /www.mdpi.com/journal /computers

https://doi.org/10.3390/computers11110160
https://doi.org/10.3390/computers11110160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-2180-676X
https://orcid.org/0000-0002-8840-9235
https://orcid.org/0000-0001-6496-0543
https://doi.org/10.3390/computers11110160
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11110160?type=check_update&version=2

Computers 2022, 11, 160

20f15

malware in the same family shares common attributes, capturing the API call sharing and
sequences could provide a strong indication of the probable family of the malware.

There is little research on classifying malicious programs into families. Therefore, this
research analyzes the API calls and sequences carried out by malware in the Windows oper-
ating system. The main objective of this research is how API calls (as features) can classify
malware into families accurately. Moreover, we examine the usefulness of visual techniques
in data analysis and combine computationally sophisticated algorithms with human intu-
ition [7]. Finally, we suggest an algorithm to extract and represent attributes to improve
the performances of existing tools for classifying malware into families. The proposed
classification system is based on the bag-of-words (bow) model and machine learning.

2. Techniques for Malware Analysis

Malware analysis describes how to investigate a malicious file, in order to under-
stand its behavior and examine the various parts of harmful software. Malware analysis
aids in determining and reducing the damage caused by attackers. Moreover, malware
analysis assists security experts and incident responders in covert "indications" that ought
to be prevented [8]. It is possible to conduct a malware analysis in a static, dynamic, or
mixed way.

2.1. Static Analysis

For simple static analysis, the malware does not need to be run. Instead, static analysis
searches the file for clues to malicious intent. Identifying libraries, malicious infrastructures,
or packaged files may be valuable. Static analyses have been used to identify many
malware variants [9-12]. The benefits of a static analysis include its speed and not requiring
a controlled environment to run harmful code. However, obfuscation techniques, such as
metamorphic and polymorphic malware, which conceal the harmful payload and make
it unrecognizable, hinder the benefits of this technique [13,14]. Static features are not as
helpful for malware variants that are characterized by frequent changes in dangerous
structures, codes, functions, or even by completely rewriting themselves.

2.2. Dynamic Analysis

In contrast, dynamic analysis does not require reverse engineering of malware. This
method relies on executing malware in an isolated environment to record the file behavior,
such as API calls, memory writing, registry access, and other activities. Sandbox tech-
nology provides a secure environment for suspicious file analysis. Since it monitors how
malware interacts with the operating system in a quarantined environment, it helped in
developing an effective defense mechanism. This technique is considered the most effective
for polymorphic and metamorphic classification. In this context, many dynamic analysis
techniques are proposed [15-17] to detect malware files.

3. Related Works

The amount of malware spreading has increased significantly; as a reaction from
the security community, several studies have been conducted to automatically detect and
analyze malware. As attackers design malware for many harmful purposes, malware
poses different behaviors on the attacked machine, which results in the existence of many
malware families. Malware family identification is crucial to researchers because it helps to
expedite the detection and mitigation procedures of incident responders [5,6].

Machine learning solutions have great success in the detection and classification of
malware families [18]. Therefore, researchers have employed various machine-learning
techniques with different static and dynamic features for malware classification [19-22].
Malware producers have created a variety of malware obfuscation techniques, including
encryption, packing, and API call insertion to avoid detection [23]. The dynamic detection
method is unaffected by static obfuscation techniques, such as encryption and packing,
because they often do not alter the behavior of malware. For this reason, dynamic detection

Computers 2022, 11, 160

30f15

has received a lot of attention in the field of malware detection. However, for API call-based
solutions, the obfuscation method using rearrangement and insertion in the sequences
of API calls may result in the failure of the detection system. For instance, authors of a
black-box attack [24] focus on generating attacks against API call-based models. Aggressive
patterns utilize both static features and API calls. Research shows that such attacks are
effective against a variety of classification models.

In order to lessen the effects of obfuscation methods on malware detection, the authors
in [25] used Cuckoo Sandbox to extract the sequence of API calls from different malware
families to provide a public dataset and employ the deep learning model to classify each
malware family. Hansen et al. [26] and Qiao et al. [27] proposed a malware identification
system with features related to API calls. In order to classify malware families, the first
author translated dynamic analysis findings from the Cuckoo Sandbox investigation into
API call sequences. In contrast to Hansen'’s findings, the authors of [27] classified malware
based on the API call sequences and their frequencies. The Cuckoo Sandbox and CWSand-
box were used to acquire the API call sequences. Typically, the API requests take the form
of sequences with different lengths, making feature extraction from these sequences a
complex process. Therefore, researchers thought about employing deep learning models,
such as RNNs (recurrent neural networks) using API call sequences. RNN is highly efficient
at processing time series sequences, especially in the natural language processing field.
Li et al. [28] presented a classification model for malware families using the RNN model.
Long API call sequences are used as classification features for variants of malware. The
binary classification presented by Eskandari et al. [22] distinguished malware using RNNs
and features extracted from API calls. A deep learning and visualization method for classi-
fying malware was proposed by Tang et al. [29]. Dynamic analysis was used to retrieve API
calls, after which, feature images that depicted malware behavior in accordance with color
mapping guidelines were created. CNN (convolutional neural network) was then used
to categorize the feature images. A single-layer LSTM model for binary classification was
used by Yazi et al. [25] to offer malware family recognition. Additionally, Catak et al. [30]
used API calls to categorize malware families, they suggested a single-layer LSTM and a
two-layer LSTM in their work. In particular, they initially suggested an LSTM to obtain
API sequences and that these features be used as input to a CNN for binary classification.
Some researchers mapped API call sequences as TF-IDF vectors of features, such as in [31].

The API calls and their sequences constitute the basis for the above-mentioned family
classification methods. However, extracting features from API calls to differentiate malware
families is still challenging. Most works have tackled malware classification as a binary
problem and focused on the accuracy provided by API call features. However, using the
visualization method to extract the hidden patterns and correlation of API calls among
different malware families was not highlighted in previous works. Based on the aforemen-
tioned findings, this paper uses visualization techniques to uncover the hidden patterns of
API call sequences and provide a deep understanding of the sequence correlations of API
calls among different malware families. Moreover, we provide a classification algorithm to
classify different malware families.

4. Windows API Call Dataset

The publicly available dataset of malware API calls found in [3] was used in this
research. The total number of samples was 7107, categorized into 8 families as depicted
in Figure 1. The eight families were Trojan, worm, downloader, spyware, virus, backdoor,
adware, and dropper with no goodware samples. The dataset contains malware labels and
an arbitrary length of API calls for each record. These API calls are collected by running
windows malware in an isolated environment using a Sandbox. Python scripts are written
to extract some important statistics for initially understanding the dataset. The API call
sequence length ranges from ten to thousands and the average length of sequences per
class is presented in Table 1. Spyware had the longest average API call sequence, which
can be justified due to the purpose of spyware in recording user internet movement as

Computers 2022, 11, 160

40f 15

well as other activity data. As the total number of unique API calls found in the dataset is
278, finding the distribution of overall malware families indicates the API call correlation.
Table 2 depicts the number of API calls each malware family shares; Trojan shares the
most API calls. Extraction of the most frequently utilized API calls from each malware
family may provide insight into the thought processes of attackers. Figure 2 shows the top
30 most frequently used API calls found in each family. When extracting the shared API
calls among all malware families from the top 30, most are related to network connection
activities for attackers. These shared API calls are listed in Table 3.

Malware distribution with their families.
1000 - S o — —— L L
J-HUHRE g RN
600 A II I
MERE BN
200 A II I
i L0

Spyware Downloader Trojan Worms Adware Dropper Virus Backdoor

Number of malware

Figure 1. Number of samples in each malware family.

Table 1. API sequence length (average).

Family Average of Sequence Length
Spyware 46,951
Downloader 6522
Trojan 13,818
Worms 33,614
Adware 6867
Dropper 16,008
Virus 18,369
Backdoor 11,293

Table 2. Number of API calls found in each family.

Family Number of API
Spyware 228
Downloader 232
Trojan 255
Worms 236
Adware 212
Dropper 226
Virus 241

Backdoor 227

Computers 2022, 11, 160 50f 15

o - regqueryvalusein =
aeateprar tmemor
setsockopt
exception 5 @
§ et £
H copyfilew 5
< @ shutdown
< rtopenfile s
&] connect
2z shutdown E
H k] dosesocket
e g threadi2
g =z widcreate
£]
L o
2 Tread32 g
g g
% dnsquery_a pet dnsquery a
g ery i ery.
E o £
o s=nd 2 ul
8 _anomaly__ g sen
¥ nt o anomaly
£ e listen
wsasocketa wsasocketa
ioctisocket
listen ioctlsocket
ntc
infirile= a1 ————————— | fndfirstfileexa
0 EY 100 150 200 250 300 0 0 200 400 600 800 1000
Frequency of API Frequency of API
. freq
drioacdl - req
ntopenfile onnect
ayptdecrypt ayptdecrypt
ttaddvectors 5
El 3
; thread32: = thread3Znext
< 0
F] 5 shutdown
< °
] shutdonn g e
g > dosesocket
2 =
Z] ceateactcoow
g _exception_] wiidcreate
2 dul f 2
4 £
S g dnsquery a
g dnsquery_a E ul Y
H B
2 g
H usasocketa o listen
2 & send
inctisocket wsasacketa
listen _anomaly
send
anomaly inctlsocket
nkcreat ex e
o 200 400 600 800 1000 0 200 400 600 800 1000
Frequency of AP Frequency of API
regqueryvalusexy -
loadresource - g
ceateactcoow
thread32
dosesocket w widcreate
g E
g S
- ntopenfile %
n connect & Idrioaddil
: = shutdown
5 3 e
3 8
H widcreate 3 432
g =
2 £ dosesocket
E g
& shutdown 2
g o
b+ g dnsquery a
£ dul s
s dnsquery_a H
- listen g
g 2 listen
o wsasocketa e send
é _anomaly_
ioctisocket
wsasocketa
anomaly ioctlsocket
ntcreat ex ntes
findfirstfileexa
0o 100 200 300 400 500 600 700 800 0 200 400 600 800 1000
Freguency of API Frequency of API
- freq - freq
ntclose a
rtladdvector: rtiaddvector:
. findresourceexa widcreate
3 g
ki _exception__ 3 dosesocket
g ayptdecrypt e
H a
H
-1 <
< u
- 00 H
& 3 o Maperie
B 5 connect
> g shutdewn
z 2
g copyfilew H I t
£ duls £
E dnsquery_a H dnsquery_a
= send 7 listen
a listen £
2 1] ‘wsasocketa
2 vsasocketa & foctisocket
send
ioctisocket _anomaly_
_anomaly__
i Le
0 200 400 600 800 1000 0 200 400 600 800
Frequency of AP Frequency of API

(8) (h)

Figure 2. The top 30 most frequently used API calls in each malware family. (a) Adware; (b) Backdoor;
(c) Virus; (d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

Computers 2022, 11, 160

6 of 15

Table 3. Shared API calls among the top 30.

Shared API Calls
listen getfileversioninfosizew
ntcreatethreadex regenumvaluew
httpopenrequesta dnsquery_a
findfirstfileexa module32nextw
ioctlsocket getfilesizeex
send getaddrinfow
__anomaly__ wsasocketa

The unique API call occurrence in each family can provide good features to recognize
the malware class in this context; Table 4 describes each unique API call with the number
of samples in which they occur. According to the above statistics, malware families share
most of the 278 API calls, which makes class separation a challenging job. Therefore, more
statistical analyses and visualizations are required to explore possible hidden patterns.

Table 4. Unique API in each family.

. . . No. Samples
Family Unique API Description Occurrence
The malware calls this API by passing the address of the load library
Spyware rtlcreateuserthread to this API call to make the remote process run the DLL on behalf of 7
the malicious code.
Downloader createdirectoryexw Creates a new directory 2
getusernameexa Retrieves the user’s name 1
Trojan wsasend Sends data on a connected socket 1
rtldecompressfragment Decompress part of a compressed buffer 1
rtlcompressbuffer For easy file compression implementation 1
cryptgenkey Decrypt the malware’s configurations 1
ntdeletefile Delete specific file 1
cryptdecodeobjectex Decode the structure of the encryption algorithm 1
Worms recvfrom To transfer data using UDP connections. 1
Adware - - -
Dropper - - -
Virus certopensystemstorea The local system’s certificates can be accessed using this function. 1
netgetjoininformation Function returns data on the specified computer’s join status 1
cryptunprotectdata Retrieve and decode the saved logins 1
. . Finds a window whose class name and window name match the
findwindowexw . . 1
given strings.
setinformationjobobject ~ Restrictions for a job object 1
findfirstfileexa Dlrectory search for a file or sub-folder with the supplied name and 1
properties.
Backdoor - - _

5. Jaccard Similarity

Visualizing the shared API calls found in each malware family provides the common
characteristics of that family. Visualization techniques are used to answer the important
question: to what extent do the malware samples of specific families use the same com-
binations of API calls? Network visualization of samples sharing API calls is used for
this purpose. It is possible to compare sets of unordered collections of elements using the
Jaccard similarity metric [32]. Although different techniques for similarity are found in
the scientific community, such as Euclidean L2, L1 distance, cosine distance, and others,
the Jaccard similarity index is still the most widely used technique. The Jaccard similarity

Computers 2022, 11, 160

7 of 15

API_calls.txt

between two sets is the shared features divided by the total number of the features. Consid-
ering extraction of the unique API calls of malware A and B, the intersection of A and B
provides the features that are shared by both malware. Figure 3 illustrates this by depicting
three pairs of malware attributes that were taken from three different malware samples.
Each case shows the features that are unique to the two sets, the features that both sets
share, and the Jaccard value that results from the supplied malware examples and features.

Malware 1 Malware 2
Jaccard index=0/20=0 Jaccard index=106/10=1

(o] o)
0O
oo

Jaccard index=6/10=0.6
Figure 3. An illustration of the concept underlying the Jaccard index in graphic form.

The similarity index is 1 if two malware samples share the same API combination, and
0 for a completely dissimilar combination. This can be expressed in Equation (1).

The process depicted in Figure 4 was used to visualize the shared API calls based on
the Jaccard similarity. Experimentally, the first 500 samples of each malware family were
used (except adware was 300). The distinctive API calls were collected for the malware
to calculate the similarity score between all malware pair samples belonging to a given
family. Following the extraction process, repeatedly comparing the attributes of each pair
of malware samples by using the Jaccard index and the API call-sharing graph was then
constructed. To achieve this, the cutoff point for how many API calls the two samples
should share was chosen; this study used 0.5 as a threshold value as shown in Algorithm 1.
A malware pair was linked for visualization if the Jaccard value of that pair was higher
than the threshold. The Python library NetworkX [33] was used to generate the network
dot file and the open-source network visualization tool Graphviz [34] was used to visualize
the dot file.

1

Labels.csv :

Calculate Jaccard index
between each pair

First 300 malware
(Adware)

Extract unique API calls
of each sample

Calculate Jaccard index
between each pair

Extract unique API calls
of each sample

First 500 malware
(Trojan)

For each family, draw
malware as a node
number and draw edge
between each pair if
jaccard index > 0.5
using NeworkX and
GraphViz.

Calculate Jaccard index
between each pair

Extract unique API calls
of each sample

First 500 malware
(Worms)

Calculate Jaccard index
between each pair

Extract unique API calls
of each sample

First 500 malware
(Spyware)

Calculate Jaccard index
between each pair

Extract unique API calls
of each sample

First 500 malware
(Downloader)

Calculate Jaccard index
between each pair

First 500 malware
(Virus)

Extract unique API calls
of each sample

Calculate Jaccard index
between each pair

Extract unique API calls
of each sample

First 500 malware
(Dropper)

BIRERN
BIREAN

BIREAN

Figure 4. API call visualization workflow using the Jaccard similarity index.

_|AnB| _ |AN B

J(AB) = 0B = Ta[T Bl = AN B|

M

Computers 2022, 11, 160 8 of 15

Algorithm 1: Creating Networkx file.
Input :Unique API call sets X

1 foreach x € X do
foreach x,,1 € X do
Intersection = len(x; N x,,11)
Union = len(x, U x;,11)
Similarity index = Intersection /Union
if Similarity index > 0.5 then
‘ Create graph edge
end
9 end
10 end

W 3 SN U s W N

Output: Networkx dot file

NetworkX is a Python library used to build and manipulate complex networks. It is
used to examine complex networks represented as node and edge-based graphs. A node
denotes an element, while an edge links two nodes to show their connections as shown
in Figure 5, where the nodes are labeled from A to E. To visualize API calls, the graph’s
nodes are numbered according to the sequence of the malware sample. For example, the
first 500 malware samples of the Dropper family were drawn as nodes numbered from 1 to
500. The node names and the edge information according to the Jaccard index were stored
as a dot file containing graph description language as represented in Figure 6. By creating
the dot file, Graphviz was used to process it to generate PNG representation.

Figure 5. Nodes and edges in Networkx.

[l Dropper.dot E1 l [= Dropperdot E1

1 strict graph { — 502 4 -- 295 [penwidth="1.0"]; —

2 1 [label=1]; 11 -- 89 [penwidth="1.0"1;

3 2 [label=2]: 17 -- 47% [penwidth="1.0"1;

4 3 [label=3]: 27 -- 202 [penwidth="1.0"1;

5 4 [label=4]: 32 -- 187 [penwidth="1.0"1;

& 5 [label=5]; Z 32 -- 260 [penwidth="1.0"1: Qm_

7 & [label=6]; g_ 32 -- 482 [penwidth="1.0"1: [oj]
7 [label=71; o) 509 34 -- 150 [penwidth="1.0"1; g
3 [label=8]; 510 34 -- 374 [penwidth="1.0"1;

1 9 [label=9]; E 5 44 -- 50 [penwidth="1.0"]; =t

11 10 [label=10] =] 51 -- 391 [penwidth="1.0"]; Eh

12 11 [label=11] o 51 -- 403 [penwidth="1.0"]; o)

13 12 [label=12] g 54 —- 378 [penwidth="1.0"]; =

14 13 [label=13] 54 —- 489 [penwidth="1.0"]; E

15 14 [label=14] 62 —— 223 [penwidth="1.0"]; pard

16 15 [label=15] 70 —— 382 [penwidth="1.0"]; =

17 16 [label=16] 72 -- 160 [penwidth="1.0"]; g

18 17 [label=17] 72 -- 454 [penwidth="1.0"];

19 18 [label=181; 72 -- 496 [penwidth="1.0"];

20 19 [label=19]: 76 —- 118 [penwidth="1.0"];

21 20 [label=20]: 522 76 -- 159 [penwidth="1.0"1;

Figure 6. The content of the Networkx dot file.

Computers 2022, 11, 160 9 of 15

6. Network Visualization of Jaccard Similarity

The resulting networks of API call sharing for each family are shown in Figure 7. It
is very clear that sharing relationships were very weak within the same family, and this
means that most of the malware samples used different combinations of API calls, which
weakened their reliability in classifying malware families. It also weakened the reliability of
the API call sequence because it gave inaccurate results. This can be justified for a number
of reasons, e.g., malware family labeling in the dataset may be prone to error. Moreover,
most malware creators insert additional API call sequences to mask the malicious behavior
of malware.

®

Pemme OO®O®®®

™)

0
00
009
elelC
oo
®
5

0@

fototatc: Il .
O® _OOOgq4 ©O®
@>®®®@%%é§@@@@)

P LLVD5G
Dolololote

00020

®®

©®

® DOC -
OOO® LVODFHIDHID
PO PPECSHPEOGHO®

(b)

®
®
38®

®®
5> @® O 20 EFereoeeme®®
O@@@%@@%@@%%Q®®®®®®®®

(3)
3) O
¢
V)

090
502
°%®®@
;UO%Q
8® 0

050 950,
@888 ¥ V) . g
08®

2050

3930

o

® OO
® OO
OO O®
HOE®OOD
HO®O®®

®OOE®

®®®gm>
CO® ©nm

OO0 Cooe 2
CICHCI e =
%@5@®é%3 P .

@ 2000000 COIRIOE®E® g

POIPDOOD OOOOOOD D5

SIS clolololololololololololedoies
COOPRRD OO IDHD

COPHEEEEE® PEOEOEOI®HD

COOEOOEEEEE® OOOOOOOXR®SHD
©® CoooeEe®TE®T®

() (d)

Figure 7. Cont.

Computers 2022, 11, 160 10 of 15

® 00 _2P0eeeeeme@® @O®® ©® 29000ee 2P0 @ca @
>

OO OCrmeeeeeee O 20 _2000ooe 2Pee ®aen. @®
OO _EPOOOEOEDO® _OO@®® D 2P0 ZPe6 Oanm. OO
OO _CPOOEOEOOO® _DOOO® G2 PCore 00 Cepm 000
SR e ok ORI R e
GELOODDOOOD X0 Coeoo® . 22 6E ©e®HmoD®
GoSSESTOEOOD SN 0 ®®@®oo°°€;{n°°00®®®®
WOTCITBE 026 D055 03B Tect L B ECeoS,

® G =X O
CeEeoooeE R I OO 285 20 PCao K CEmmOeoe00®

CEEOOE® DO IS CO® O g O

EEE®DO __CESEED 2 ® LPooo® o ololololalor

v Y, b
Poe . O eommeomo®

O®
EE6E00® 1) CLeo 209 o IR oo SO
EO®O DO® OaE OO®m & e o D@
®O®® DOEHE D Er® SHOIO) @ FEPDe e O® Do
S>OH® OBDE & POV Y ee VB Re®, 00
OE® _DOO®®>® O®GmGm Al @@ Coo OO0 BOoTOOO® BO5 @@
O _Coe®m® ®&® O o® 00O COGE® O® oD
o) E2ES0HI® . OOOOOOE OOGEO® D@ D
© oo es e 2290065203 ® PPREOEOOE® EOBBHH® DD D
Corooosamreealle0620S CDOEEEEEE®®HEH®®IDBED®
OOEEEEE®® ®® O ® o OOEEEE®®® OE®@®E®2®RHDE®
ORI SITSEBESESE SR eeesee8sss
©O® @@ ® ©) ®® IS0 &
oo TEPRREEO0OOZOE oeermermerd ooeeee®®306
(e) (®)
- SOPCICIO OIS ASOIOIC) ®® DO®®
S e®. CPee 2222 20000® > @ @0 FC0reee 200®
©0® cloaoele OO ® @@ o 6o oo RelO) 2 OO OO®®®
Coo P06 2ol g O® @O ZFEPoeoe 2000
Bee _CCne 20 22000000 q e 0o _CO00eerae COOO®®®
HHODHE 2O FIOOOOO®g, ® OO0 _2O000reee COOOO@D®
E® DOHHDD _POO0eOO® e O ® OB ZEETYOOO0 _C0000O®®
5OV e6 D T ©® COOE _DOOOOE®®
o OOH® T e oo CPOEE®®®
©® - OO _CPQOOOOS
C%X3%Sﬁp H® TPLREEEO® ©
2P CoEDE O APEe®® ®
®®®? D@D s e @ @
o RCIeIoIc) CESR e one® O
E®OOO® D 2 e @2
®®@®®®® BT 0?'96 ®®®@
<3
Cons OB ﬁPQﬂzgooé%%?
Comm® DO & SloES
®@E® OO Gry OO O O® @@ © ®
CICINES) B ODDD P® g,
Lo 2D SlolololoiolotSle
O O® ®® EEOORERO
O AP OOOOO® DD OORSHeOS2BR
@®®@®®® @@@@@@@@®®®®®
e ® eeRLREeID&
O @OOO® @@@@ @@@ &
olololololo PEOOLEIDE
® &
clolololololo) ODHE®HEED®H®
CEOOED® DOROODOOD OPHEEEDHDOS
CEOO®@®®® COEEEE COHH®®@HO® o

Figure 7. API call similarity graph for each malware family. (a) Adware; (b) Backdoor; (c) Virus;
(d) Trojan; (e) Spyware; (f) Worms; (g) Downloader; (h) Dropper.

One interesting observation about the similarity graph is that some malware samples
are tightly linked, which means they belong to the same attack group or the same compila-
tion tools. The adware graph shows a more connected group compared with other families
due to its very specific purpose. Depending on the visualization results, using API calls,
such as a bag-of-words (with 0 and 1), or employing the sequences of these API calls with
deep learning leads to low accuracy classification results. As all malware families share
most of the 278 API calls that exist in a dataset, using the frequency of occurrence of all API
calls can provide a simple and more accurate classification solution.

7. API Call Frequency-Based Classification

The malware dataset [3] was created by executing the malware samples in the Cuckoo
Sandbox, which is a wildly used malware analysis environment. This tool monitors the
behavior of each malware and generates reports, including dynamic and static analysis

Computers 2022, 11, 160

110f15

120 A

100 4

z

I L s L

f_-_-
[

(=T =1

=

=

20 4

150 A
125 4

100 4

25 A

150 4
125 A
100 4

25 4

Adware

results, such as API calls and hash values. Then, the hash value of each sample is fed to
VirusTotal, which analyses each sample with different antivirus tools. As different antivirus
engines produce different labels for the same sample, the class of the malware is determined
by considering the majority agreement among the results of antivirus engines. The labeled
dataset was finally produced by matching the malware classes and the sequences of
API calls.

In order to convert the raw data into a format suitable for classification algorithms,
Python code was used to extract all 278 unique API calls that existed in the dataset. These
API calls were arranged as a bag-of-words; for each malware sample, the frequency of each
API call was recorded. Therefore, the feature vector length was 278 and each feature was
the frequency of the corresponding API call in that sample. Algorithm 2 depicts the process
of feature extraction. The histogram of the feature distribution is visualized in Figure 8.
This histogram shows many zero values for the API calls in the extracted features. Adware
presents the best histogram distribution.

Algorithm 2: Feature extraction and classifier learning.

Input :Dataset of malware API calls X, family class Y
1 foreach x € X do

2 foreach API.all € x do

3 ‘ APlIcallsrequency = (Numberg foccurrences)
4 end

5 Createfeaturevector

6 end

7 XTrain, XTests YTrain, YTest <—Split rate (X,Y) 0.8 for training

Output:Malware class classifier

Trojan Werms

150
125 1
100 1

5 8
r--l
£ W
S S I S N

25 1

=]

0 100 200 300 200 400 600 800 1000 200 400 600 800 1000
Spyware Downloader Virus
I 120 I 1
100 | 125 A I
I 80 1 I 100 A I
I o1 il
| oll o)
I 20 4 . 25 1 I
0- 0-
0 200 400 600 800 0 200 400 600 800 1000 0 200 400 600 800 1000
Dropper Backdoor

=

200

£
-

400

125

100 +

25

600 800 o 200 400 600 800 1000

Figure 8. Histogram distribution of the extracted features.

Computers 2022, 11, 160

12 0f 15

The testing classifiers were chosen based on their widespread use and the success
provided by them in the field of malware classification. Therefore, random forest (RF),
support vector machine (SVM), and k-nearest neighborhood (KNN) were used in this
research. The Python machine learning library scikit-learn was used with the default
parameters to implement the classification process.

8. Experimental Results

The benchmark dataset was imbalanced in some malware families, such as Adware
and Spyware. Hence, accuracy evaluation was not enough to identify the best classifier and
make fair comparisons with other research [28,30]; the same evaluation metrics, precision,
recall, and F1 score were used to present the results.

By examining the results shown in Table 5, RF and SVM show trade-offs in some
evaluation values but RF provides the best classification performance compared to all of
the evaluation metrics, and kNN is the worst. The results are based on the visualization
analysis, where the highest evaluation metrics are noted for the Adware class and the
worst classification results are observed for Spyware and Trojan. Referring to Figure 7, the
lowest API call sharing was drawn for Trojan followed by Spyware. This interprets the low
classification results for these families. The comparisons with the state-of-the-art works
that employ deep learning methods, such as LSTM and GRU, are shown in Table 6. On
the one hand, the proposed method in this work using RF outperforms the deep learning
techniques in terms of the higher evaluation metrics for all malware families, and on
the other hand, it provides a simple traditional malware classifier compared with deep
learning techniques, which require more processing resources and longer times during the
learning processes.

Table 5. Classifiers performance results.

Spyware Downloader Trojan Worms Adware Dropper Virus Backdoor

RF

Precision 0.49 0.77 0.43 0.66 0.92 0.55 0.87 0.62
Recall 0.46 0.74 0.40 0.66 0.87 0.71 0.77 0.66
F1 score 0.48 0.75 0.42 0.66 0.89 0.62 0.82 0.64
SVM

Precision 0.58 0.83 0.19 0.62 091 0.50 0.74 0.64
Recall 0.27 0.39 0.79 0.26 0.55 0.43 0.41 0.27
F1 score 0.37 0.53 0.31 0.36 0.69 0.46 0.53 0.38
kNN

Precision 0.43 0.63 0.41 0.47 0.71 0.37 0.71 0.44
Recall 0.39 0.63 0.31 0.37 0.82 0.49 0.61 0.60

F1 score 0.41 0.63 0.36 0.41 0.76 0.42 0.66 0.51

Computers 2022, 11, 160

13 of 15

Table 6. Comparison with state-of-the-art works.

Spyware Downloader Trojan Worms Adware Dropper Virus Backdoor

RF

Precision 0.49 0.77 0.43 0.66 0.92 0.55 0.87 0.62
Recall 0.46 0.74 0.40 0.66 0.87 0.71 0.77 0.66
F1 score 0.48 0.75 0.42 0.66 0.89 0.62 0.82 0.64
LSTM (2 layers [30])

Precision 0.23 0.64 0.25 0.39 0.61 0.27 0.56 0.35
Recall 0.19 0.61 0.14 0.20 0.75 041 0.68 0.46
F1 score 0.21 0.62 0.18 0.26 0.67 0.33 0.61 0.40
LSTM (Case 2 [28])

Precision 0.38 0.71 0.30 0.45 0.77 0.62 0.72 0.55
Recall 0.32 0.72 0.38 0.52 0.91 0.51 0.76 0.51
F1 score 0.35 0.71 0.33 0.48 0.83 0.56 0.74 0.53
GRU (Case 2 [28])

Precision 0.36 064 0.40 0.60 0.74 0.61 0.68 0.40
Recall 0.38 0.74 0.32 0.52 0.90 0.46 0.76 0.65
F1 score 0.37 069 0.36 0.56 0.81 0.53 0.72 0.50

9. Research Limitations

The training dataset must be sufficiently large in order to draw reliable findings from
a study, such as malware family classification. How accurate the results are will depend
on the sample size used. More meaningful relationships in the data can be found from
the larger dataset. Therefore, the limited number of malware samples for each family is
considered a limitation of this study. Additionally, due to processing resource limitations,
the Jaccard similarity visualization was only possible for the first 500 samples.

10. Conclusions and Future Direction

This work utilized malware API calls as classification features to recognize different
families of malicious software. The network analysis of shared API calls provided valuable
information about the malware connectivity within the same family. This connectivity
showed limited API call sharing among the samples of the same malware family, meaning
the instances used different combinations of API calls. This can occur for many reasons,
e.g., dataset labeling being prone to errors, attackers inserting API calls to hide the real
purpose of malware, and the possibility of detecting the analysis environment (Sandbox)
by advanced malware blocking the actual malicious behavior. This conclusion reduces the
effectiveness of using API calls as time-series features. Time-series-based malware classifica-
tion solutions use high-computational cost-neural network algorithms. API call frequencies,
as features with RF classifiers, show effective and simple solutions for multiclass malware
classification compared with existing complex methods.

Employing the proposed method for binary classification by adding legitimate samples
would be an interesting future work direction. Another way to utilize the results of this
work is by improving the visual analysis to comprise more dynamic and static attributes
achieved from the new facilities supported by the VirusTotal service.

Author Contributions: Conceptualization, A.Y.D. and A.A.-N.; data curation, A.Y.D.; formal analysis,
AY.D,; funding acquisition, A.A.-N. and J.C.; investigation, A.Y.D.; methodology, A.Y.D. and A.A.-N;
project administration, A.A.-N. and]J.C.; resources, A.Y.D.; Software, A.Y.D.; validation, A.Y.D.;
writing—original draft, A.Y.D.; writing—review and editing, A.A.-N. and J.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Computers 2022, 11, 160 14 of 15

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Institute, A.T. Malware Statistics and Trends Report: AV TEST. 2022. Available online: https:/ /www.av-test.org/en/statistics/
malware/ (accessed on 19 July 2022).

2. Al-Hashmi, A.A.; Ghaleb, FA.; Al-Marghilani, A.; Yahya, A.E.; Ebad, S.A.; Saqib, M.; Darem, A.A. Deep-Ensemble and
Multifaceted Behavioral Malware Variant Detection Model. IEEE Access 2022, 10, 42762-42777. [CrossRef]

3. Catak, FO.; Yazi, A.F. A benchmark API call dataset for windows PE malware classification. arXiv 2019, arXiv:1905.01999.

4. Oliveira, A.; Sassi, R. Behavioral malware detection using deep graph convolutional neural networks. TechRxiv 2019, preprint.
[CrossRef]

5. VMRay. Sans Webcast Recap: Practical Malware Family Identification for Incident Responders. 2021. Available online: https:
/ /www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap (accessed on 10 July 2022).

6. Sebastian, M.; Rivera, R.; Kotzias, P.; Caballero,]. Avclass: A tool for massive malware labeling. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, Paris, France, 19-21 September 2016 ; pp. 230-253.

7. Heer,].; Bostock, M.; Ogievetsky, V. A tour through the visualization zoo. Commun. ACM 2010, 53, 59-67. [CrossRef]

8. Srivastava, V.; Sharma, R. Malware Discernment Using Machine Learning. In Transforming Management with Al, Big-Data, and IoT;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 215-232.

9. Liu, X;; Du, X;; Lei, Q.; Liu, K. Multifamily classification of Android malware with a fuzzy strategy to resist polymorphic familial
variants. IEEE Access 2020, 8, 156900-156914. [CrossRef]

10. Kakisim, A.G.; Nar, M.; Sogukpinar, I. Metamorphic malware identification using engine-specific patterns based on co-opcode
graphs. Comput. Stand. Interfaces 2020, 71, 103443. [CrossRef]

11. Bayazit, E.C.; Sahingoz, O.K.; Dogan, B. A Deep Learning Based Android Malware Detection System with Static Analysis.
In Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 9-11 June 2022; pp. 1-6.

12. Liu, X,; Lin, Y.; Li, H.; Zhang, J. A novel method for malware detection on ML-based visualization technique. Comput. Secur.
2020, 89, 101682. [CrossRef]

13. Cui, Z,; Xue, F; Cai, X,; Cao, Y.; Wang, G.g.; Chen,]J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind.
Inform. 2018, 14, 3187-3196. [CrossRef]

14. Zhang, J.; Qin, Z,; Yin, H.; Ou, L.; Zhang, K. A feature-hybrid malware variants detection using CNN based opcode embedding
and BPNN based API embedding. Comput. Secur. 2019, 84, 376-392. [CrossRef]

15. Qiang, W.; Yang, L.; Jin, H. Efficient and Robust Malware Detection Based on Control Flow Traces Using Deep Neural Networks.
Comput. Secur. 2022, 122,102871. [CrossRef]

16. Palsa,].; Adam, N.; Hurtuk, J.; Chovancova, E.; Mados, B.; Chovanec, M.; Kocan, S. MLMD—A Malware-Detecting Antivirus
Tool Based on the XGBoost Machine Learning Algorithm. Appl. Sci. 2022, 12, 6672. [CrossRef]

17. Usman, N.; Usman, S.; Khan, F; Jan, M.A.; Sajid, A.; Alazab, M.; Watters, P. Intelligent dynamic malware detection using machine
learning in IP reputation for forensics data analytics. Future Gener. Comput. Syst. 2021, 118, 124-141. [CrossRef]

18. Bahtiyar, S.; Yaman, M.B.; Altinigne, C.Y. A multi-dimensional machine learning approach to predict advanced malware. Comput.
Netw. 2019, 160, 118-129. [CrossRef]

19. Han, W,; Xue, J.; Wang, Y.; Huang, L.; Kong, Z.; Mao, L. MalDAE: Detecting and explaining malware based on correlation and
fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208-233. [CrossRef]

20. Xiaofeng, L.; Xiao, Z.; Fangshuo, J.; Shengwei, Y.; Jing, S. ASSCA: API based sequence and statistics features combined malware
detection architecture. Procedia Comput. Sci. 2018, 129, 248-256. [CrossRef]

21. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578-594.
[CrossRef]

22. Eskandari, M.; Khorshidpur, Z.; Hashemi, S. To incorporate sequential dynamic features in malware detection engines. In
Proceedings of the 2012 European Intelligence and Security Informatics Conference, Odense, Denmark, 22-24 August 2012;
pp- 46-52.

23. Lu, F;Cai, Z; Lin, Z; Bao, Y.; Tang, M. Research on the Construction of Malware Variant Datasets and Their Detection Method.
Appl. Sci. 2022, 12, 7546. [CrossRef]

24. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Crete,
Greece, 10-12 September 2018; pp. 490-510.

25. Yazi, A.F; Catak, EO.; Giil, E. Classification of methamorphic malware with deep learning (LSTM). In Proceedings of the 2019

27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24-26 April 2019; pp. 1-+4.

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
http://doi.org/10.1109/ACCESS.2022.3168794
http://dx.doi.org/10.5120/ijca2021921218
https://www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap
https://www.vmray.com/cyber-security-blog/practical-malware-family-identification-sans-webcast-recap
http://dx.doi.org/10.1145/1743546.1743567
http://dx.doi.org/10.1109/ACCESS.2020.3019282
http://dx.doi.org/10.1016/j.csi.2020.103443
http://dx.doi.org/10.1016/j.cose.2019.101682
http://dx.doi.org/10.1109/TII.2018.2822680
http://dx.doi.org/10.1016/j.cose.2019.04.005
http://dx.doi.org/10.1016/j.cose.2022.102871
http://dx.doi.org/10.3390/app12136672
http://dx.doi.org/10.1016/j.future.2021.01.004
http://dx.doi.org/10.1016/j.comnet.2019.06.015
http://dx.doi.org/10.1016/j.cose.2019.02.007
http://dx.doi.org/10.1016/j.procs.2018.03.072
http://dx.doi.org/10.1016/j.cose.2018.05.010
http://dx.doi.org/10.3390/app12157546

Computers 2022, 11, 160 15 of 15

26.

27.

28.

29.
30.

31.

32.

33.
34.

Hansen, S.S.; Larsen, TM.T.; Stevanovic, M.; Pedersen,].M. An approach for detection and family classification of malware based
on behavioral analysis. In Proceedings of the 2016 International Conference on Computing, Networking and Communications
(ICNC), Kauai, HI, USA, 15-18 February 2016; pp. 1-5.

Qiao, Y;; Yang, Y,; Ji, L.; He, J. Analyzing malware by abstracting the frequent itemsets in API call sequences. In Proceedings of
the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne,
Australia, 16-18 July 2013; pp. 265-270.

Li, C.; Zheng,]. API call-based malware classification using recurrent neural networks. J. Cyber Secur. Mobil. 2021, 10, 617-640.
[CrossRef]

Tang, M.; Qian, Q. Dynamic API call sequence visualisation for malware classification. IET Inf. Secur. 2019, 13, 367-377. [CrossRef]
Catak, FO.; Yazi, A.F,; Elezaj, O.; Ahmed, J. Deep learning based Sequential model for malware analysis using Windows exe API
Calls. Peer] Comput. Sci. 2020, 6, 285. [CrossRef]

Schofield, M.; Alicioglu, G.; Binaco, R.; Turner, P.; Thatcher, C.; Lam, A.; Sun, B. Convolutional neural network for malware
classification based on API call sequence. In Proceedings of the Proceedings of the 8th International Conference on Artificial
Intelligence and Applications (AIAP 2021), EL-Oued, Algeria, 28-30 September 2021.

Rogel-Salazar, J. Data Science and Analytics with Python; Chapman and Hall/CRC: London, UK, 2018.

Networkx. NetworkX Network Analysis in Python. 2022. Available online: https://networkx.org/ (accessed on 20 July 2022).

Graphviz. What Is Graphviz? 2022. Available online: https://graphviz.org/ (accessed on 20 July 2022).

http://dx.doi.org/10.13052/jcsm2245-1439.1036
http://dx.doi.org/10.1049/iet-ifs.2018.5268
http://dx.doi.org/10.7717/peerj-cs.285
https://networkx.org/
https://graphviz.org/

	Introduction
	Techniques for Malware Analysis
	Static Analysis
	Dynamic Analysis

	Related Works
	Windows API Call Dataset
	Jaccard Similarity
	Network Visualization of Jaccard Similarity
	API Call Frequency-Based Classification
	Experimental Results
	Research Limitations
	Conclusions and Future Direction
	References

