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Abstract: Road safety assessment is one of the most important parts of road transport safety man-
agement. When road transportation networks are managed safely, they improve the quality of life
for citizens and the economy as a whole. On the one hand, there are many factors that affect road
safety. On the other hand, this issue is a dynamic problem, which means that it is always changing.
So, there is a dire need for a thorough evaluation of road safety to deal with complex and uncertain
problems. For this purpose, two machine learning methods called “feature selection algorithms”
are used. These algorithms include a combination of artificial neural network (ANN) with the
particle swarm optimization (PSO) algorithm and the differential evolution (DE) algorithm. In this
study, two data sets with 202 and 564 accident cases from cities and rural areas in southern Italy are
investigated and analyzed based on several factors that affect transportation safety, such as light
conditions, weekday, type of accident, location, speed limit, average speed, and annual average daily
traffic. When the performance and results of the two models were compared, the results showed that
the two models made the same choices. In rural areas, the type of accident and the location were
chosen as the highest and lowest priorities, respectively. According to the results, useful suggestions
regarding the improvement of road safety on urban and rural roads were provided. The average
speed and location were considered the highest and lowest priorities in urban areas, respectively.
Finally, there was not a big difference between the results of the two algorithms in terms of how
well the algorithm models worked, but the proposed PSO model converged more quickly than the
proposed DE model.

Keywords: road safety; safety management; road transportation; PSO algorithm; DE algorithm;
feature selection

1. Introduction

Road transportation systems are one of the oldest ways to get people and goods
from one place to another. They also play an effective role in helping countries grow and
improve social welfare. As a result of the increasing volume of urban and rural travel in
recent decades, problems related to road transport such as accidents, unconventional traffic,
and environmental pollution have significantly increased. Hence, they are considered
continuous problems for traffic engineers [1,2]. Vehicular accidents represent one of the
greatest threats because of their social cost, both in urban and rural contexts. An increase
in the frequency of accidents leads to a corresponding increase in the need to reduce the
impact of crash occurrences or even outright prevent them. The factors affecting traffic
accidents are several (weather, roadway geometrics, human error, etc.), and it can be
difficult to determine the causes of an accident event. In addition, it is very important to
know what actions are to be taken to mitigate accident occurrences [3–5]. Traditionally,
road safety studies only looked at where deaths happened and did not investigate the main
factors that affected how severe they were. This made it hard to understand the benefits of
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safety measures [6]. Road safety assessment is one of the most important and necessary
issues in road transport; it has been extensively studied by adopting traditional approaches
based on advanced statistical analysis [7–13] and innovative approaches through the use of
simulation techniques and the adoption of techniques of artificial intelligence [14–20]. Even
though many studies have been conducted in the field of road safety, it is a complicated
issue with many uncontrollable parts and factors, so more research is needed in this area.
Due to the complexity of road safety and its components, the use of approaches such as
artificial intelligence techniques can play an effective role in more accurate assessments.
This is because artificial intelligence (AI) is a powerful tool that can be used to study
complex phenomena without making any prior assumptions about the model [21–23].

Zeng et al. [24] created neural network models to examine the nonlinear connection
between accident frequency using severity and risk variables. For this purpose, they first
suggested a structure optimization approach to enhance generalization performance, and
then they suggested a rule extraction algorithm to highlight the impacts of the influenc-
ing elements. Their findings supported the assumption that variables are nonlinearly
related to accident frequency by severity. Halim et al. [25] provided a thorough review
of the many artificial intelligence methods that have been utilized in the literature to
both analyze and predict dangerous driving behaviors. The literature reviewed in this
essay dates from 2004 to 2014. The identification of risky driving behavior and accident
prediction were investigated using AI approaches. They also offered a list of datasets
and simulations that the scientific community may use to carry out studies in the area.
Ait-Mlouk et al. [26] investigated association rule mining, a broad data mining approach
that might anticipate accidents in the future and help drivers steer clear of threats. Finally,
a survey was done on road accidents in Morocco between 2004 and 2014 based on their
proposed method. The results showed that the proposed method worked well. Fernandes
et al. [27] focused on the development of a vulnerable road user (VRU) social machine to
assess VRUs’ behavior in order to improve road safety. Based on their study, the formal
backdrop utilized Logic Programming to describe its architecture based on deep learning
and evolutionary computing. Based on their results, they made some recommendations
for using evolutionary computation in road safety. Xu et al. [28] used an artificial neural
network to figure out how road lighting affects traffic safety at access points. Their findings
demonstrated the profound effect that road lighting has on access point road safety. Addi-
tionally, when there are more lanes or faster moving vehicles, the impact of road lighting is
greater. Silva et al. [29] modeled road safety using several machine learning techniques.
Their results showed that machine learning techniques can be reliable systems in crash
analyses. Boukerche et al. [30] conducted an investigation to predict vehicular traffic flow
using two kinds of prediction methods, including statistics-based and machine learning
(ML)-based. Finally, they introduced the characteristics of both methods and discussed
the limitations and capabilities of the two types of methods. Afework and Sipos [31] em-
ployed the artificial neural network technique to simulate accidents for four lane non-urban
highways. They created an accident prediction model that had high accuracy for accident
prediction analysis. Guido et al. [32] investigated road safety by using stochastic models.
For this purpose, they evaluated 154 accident cases with two clustering techniques. Lastly,
it was found that PSO modeling performed better than GA modeling when it came to
looking into road safety. In another study, Guido et al. [33] evaluated 775 crash cases. They
developed a binary classification model to assess the safety of road transportation. Their
results showed that binary classification modeling can be applied as a powerful tool for
evaluating road safety. A road safety analysis was carried out for accident prevention by
Tonni et al. [34]. They introduced an AI-based driver vigilance system for helping drivers
with crash prevention.

As reviewed, there have been many studies done on road safety, but it is a complicated
issue with a lot of unknown parts and factors, so more research is needed. To close this gap,
the paper aims to provide information on factors influencing accident occurrences in both
urban and rural settings. The study of the scientific literature showed that ANN has been
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widely utilized to forecast accident severity and is therefore a promising new modeling
approach in the area of traffic safety. Therefore, the overarching goal of this research is to
investigate the potential of optimizing ANN performance. Another goal of this study is
to test two distinct artificial intelligence methods for predicting crash severity and then
to contrast their relative efficacy. Hence, two data sets with 202 and 564 accident cases
for urban and rural areas of Cosenza, in southern Italy, were selected and evaluated. The
accident dataset was extracted from the database of the Automobile Club Italia (ACI), which
collaborates with the National Institute of Statistics (ISTAT) in collecting road accident data
in Italy. The ACI-ISTAT crash database was integrated with that of the “Regional Center
for the Collection of Data on Road Accidents in Calabria—CRISC” [35].

This paper’s remaining sections are structured as follows. Section 2 provides a brief
overview of artificial intelligence techniques and then explains the case study and how to
gather the dataset. Section 3 constructs models and discusses the results. In Section 3, a
sensitivity analysis is also conducted. The conclusion and suggestions for further research
are presented in Section 4.

2. Methodology

In the scientific literature, most of the statistical models used to predict road accident
severity and, consequently, contributing factors are regression methods such as choice
models and logistic regression models [36–38]. These models are frequently built on
predefined relationships and assumptions, which can have a significant impact on the
accuracy of the results. To overcome these limits, the present study used two different types
of AI techniques based on ANN. Based on an analysis of the scientific literature, it became
clear that ANN has often been used to predict crash severity. It can be thought of as a new
modeling technique in the field of traffic safety. Accordingly, the goal of this study is to
use the capabilities of optimization algorithms to take into account the possibility that the
optimization approach could help improve the performance of an ANN. In particular, on
the one hand, the Particle Swarm Optimization showed better performance in real function
optimizations; on the other hand, the application of a hybrid approach for ranking of road
crash severities using the Differential Evolution (DE) algorithm and ANN generated very
good results. Therefore, another objective of the present research is to apply two types of
AI techniques to crash severity prediction and subsequently compare them to determine
which approach performs better.

It should be noted that performance indicators are a useful tool for evaluating the
performance of algorithms in modeling. Therefore, in this study, the mean squared error
(MSE) is used to evaluate the performance of algorithms that calculates the average squared
deviation between the observed and predicted values based on Equation (1). In fact, MSE
is introduced as the best cost (minimum cost) in the modeling process, and the lower this
value is, the better the performance of the algorithms in modeling.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

(1)

where yi and ŷi are the ith observed value and the corresponding predicted value, respec-
tively. The number of observations is represented by n.

2.1. Artificial Neural Networks (ANNs)

In recent decades, artificial intelligence has played an effective role in the development
of various sciences and industries [39–43]. Artificial neural networks (ANNs) are an
intelligent method to model problems, analyze them accurately, and find the best solutions.
They have been studied and used in many scientific and industrial fields [44–46]. ANN is
computational system that operates to process information by modeling the mechanism
of the human nervous system [47]. One of the most efficient models of existing neural
networks is the multilayer perceptron (MLP), which is inspired by the behavior of human



Computers 2022, 11, 145 4 of 16

brain networks and the propagation of signals in the human brain and is also called the
feedforward network [48]. The back-propagation (BP) algorithm is one of the most effective
algorithms for training ANN [49]. The feed-forward back-propagation neural network
(BPNN) falls into the category of supervised learning techniques and consists of at least
three layers. The first to third layers are called input layer, hidden layer, and output layer,
respectively [50,51]. The number of neurons in the input and output layers is equal to the
number of inputs and outputs of the problem, respectively. The number of neurons and
the number of hidden layers vary based on the characteristics of the problem [52]. Then,
the predicted value of the output of the problem is compared with the actual value of the
problem in the output layer. During the processing of data, the biases of the individual
neurons and the individual weights of the connections are updated when the difference
between predicted and actual data is propagated back through the network [53,54]. In
fact, in BP, one output is made during each epoch by swapping input signals between the
computational nodes of successive layers. In order to get the net weighted input (netj) that
each node receives, Equation (2) is used as follows:

netj =
n

∑
i=1

xi w−θ
i (2)

where the number of inputs is denoted by n, the input signal and weight for the ith
node by xi and wi, and the threshold for the nodes is denoted by θ. This net input is
sent via an activation function (such a step, sigmoid, or linear function). This process
keeps going until the algorithm finds the best answer with the fewest errors [55]. In this
study, two meta-heuristic algorithms are applied to train the multilayer perceptron neural
network, which are explained in the following sections.

2.2. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is an efficient population-based optimization method
that is widely used for dealing with complex systems in computational science [56–59]. The
concept of this algorithm is based on swarm intelligence (SI) and inspired by the social
behavior and movements of a bird flocks or fish schooling [60]. In 1995, it was introduced
and developed by Kennedy and Eberhart [61]. In the process of optimizing the algorithm, a
set of solutions is randomly created in a D-dimensional community or search space [61,62].
It should be noted that each answer (solution) is considered a particle. There is a position
vector and a velocity vector for each particle. These vectors demonstrate the direction and
velocity of each particle, respectively. In determining the best optimal solution, two factors,
including the personal best position (Pbest) and global best position (Gbest), are considered
in the velocity vector [57,58]. Figure 1 shows the motion of a set of particles and their
locations in new positions. Equations (3) and (4) show how the velocity vector and position
are updated, respectively [63].

V(k+1)
i = wVk

i + c1 r1·(pbesti − Xk
i ) + c2 r2·(gbest− Xk

i ) (3)

X(k+1)
i = Xk

i + Vk
i (4)

where V(k+1)
i and X(k+1)

i are the new velocity vector and the new position vector, V(k)
i

and X(k)
i represent the current velocity and position, w is the inertia weight, which has

impact on in controlling the current velocity vector on the new velocity vector; it can
vary between 0.4 to 0.9. r1 and r2 are two random parameters within [0, 1], and c1 and c2
are two positive constants, which are called the individual learning factor and the social
learning factor. The values of c1 and c2 are determined by experts and based on experience
as the learning factor [60]. In addition, Equation (5) should be met. The flowchart of the
process optimization of the PSO algorithm is shown in Figure 2 [64].

c1 + c2 ≤ 4 (5)
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2.3. Differential Evolution (DE)

Differential evolution (DE) is a simple and effective population-based metaheuris-
tic search algorithm that was introduced by Storn and Price in 1995 for solving prob-
lems with continuous values, and then it was developed for solving binary and discrete
problems [65,66]. Gradient information is not required in the DE algorithm, which means
that the optimization problem does not need to be differentiable [67]. The DE algorithm has
been used successfully in dealing with uncertainty for modeling complex problems, and it
can be a reliable and robust algorithm for training ANN [68]. In the optimization process of
the DE algorithm, a random initial population is generated like in a genetic algorithm. The
next generation will be generated, and the best generation will be selected. In this process,
there are four operators, including initialization, mutation, crossover, and selection. It
should be noted that in the process of generating new generations and mutation operators,
the DE algorithm differs from the genetic algorithm [68]. After generating a random initial
population in the initialization step, the search space is developed by the mutation, where
Vg

i represents the mutant solution vector of Xg
i . Equation (6) calculates the value of Vg

i .
The length of the mutation step is determined by Fk, which is the scaling factor varying
within [0, 1].

Vg
i = Xg

r3 + Fk·(Xg
r2 − Xg

r1) (6)
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where Xg
r1, Xg

r2 and Xg
r3 represent solution vectors that are randomly chosen, and Equation (7)

should be satisfied for these vectors [69].

Xg
r1, Xg

r2, Xg
r3|r1 6= r2 6= r3 6= i

i = [1, 2, 3, . . . , NP]
(7)

where i is the index of the current solution. In the next step, by combining two vectors,
including the mutated and the parent vectors, in a crossover operation based on Equation
(8), a trial vector (Ug

ij) is produced [69].

Ug
ij =

{
Vg

ij Rand j ≤ CR,
Xg

ij Rand j > CR,
j = 1, 2, 3, . . . , n (8)

where Randj is a randomly selected real number. The crossover probability (CR) is a constant
in the range of [0, 1]. According to Equation (8), if the Randj is less than or equal to CR, the
trial vector (Ug

ij) is considered from the mutant solution vector; otherwise, the trial vector

(Ug
ij) is equal to Xg

ij. Figure 3 indicates the flowchart of the DE algorithm [60].
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2.4. Data Description

In this study, two data sets were used to look at and rate potential safety management
elements for the transportation system. The data sets included 202 and 564 accident reports
from urban and rural Cosenza in southern Italy. The data set of accidents is derived from
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the records of the Automobile Club Italia (ACI), an organization that works with the Italian
National Institute of Statistics (ISTAT) to compile information on traffic accidents around
the country. The Regional Center for the Collection of Data on Road Accidents in Calabria
(CRISC) database was added to the ACI-ISTAT database [35]. The present study takes into
account seven qualitative and quantitative explanatory (independent) variables, of which
four are qualitative and three are quantitative. The seven variables were chosen based on
all of the available data that could be used as input data for the case study. These variables
include light conditions, weekday, type of accident, location, speed limit, average speed,
and annual average daily traffic. In addition, the number of vehicles involved in accidents
was considered as an output. The variables are coded and described in Table 1.

Table 1. Independent and dependent variables with different degrees of qualitative and
quantitative content.

Data Field Type Variable Code/Unit Description Percentage of Total Crashes

Traffic flow
characteristics

AADT (veh/day)

1 <5000 6.9
2 5000–9999 4.7
3 10,000–14,999 54.8
4 >14,999 33.6

Avg Speed (km/h) Not coded
Min. 28

100Max. 122
Avg. 85.29

Speed Limit (km/h)

1 50 26.3
2 70 31.2
3 90 17.6
4 110 0.8
5 130 24.1

Environment
characteristics

Light Conditions 0 Daylight 66.8
1 Nighttime 33.2

Day of the Week 0 Weekend or Holiday 30
1 Weekday 70

Location environment Road classification
1 Highway 37.5
2 Other 62.5

Accident characteristic

Number of Vehicles
1 1 31.6
2 2 52
3 3 or more 16.4

Accident Type

1 Collision with vehicle 68.6
2 Collision with pedestrian 3
3 Collision with obstacle 7.2
4 Other 21.3

Based on the available data, seven factors were identified as having important model-
ing implications. As part of the modeling process, we put in variables at the same time and
look at how each one changes the equation. The effects of each possible combination of
variables were studied, and the best variables were chosen for the model.

3. Results and Discussion

For modelling, two data sets with 202 and 564 accident cases, respectively, for urban
and rural areas of Cosenza, in southern Italy, were gathered for the purpose of inves-
tigating and prioritizing potential factors for safety management in the transportation
system. For this purpose, seven factors affecting transport safety including the light
conditions, weekday, type of accident, location, speed limit, average speed and annual
average daily traffic were considered, and the combination of MLP neural network with
two meta-heuristic algorithms, namely PSO and DE algorithms, were applied. It should



Computers 2022, 11, 145 8 of 16

be noted that 70% of the datasets were considered for training, and the rest were selected
for validation (15%) and testing (15%) [68]. Additionally, the mean squared error (MSE)
was considered for investigation of the modeling performance (best cost of the model’s
performance). More discussions regarding the development of the ANN with PSO and DE
models to rank potential factors for road safety will be given in the next sections.

3.1. Modelling by ANN-PSO

In the first model, the PSO algorithm was used to train the MLP neural network. In
the first step, control parameters of the model should be determined. For modeling to be
faster and more accurate, these parameters need to have accurate values [30,31]. In general,
there are no specific rules for determining the values of these parameters. Instead, experts
and trial and error are used to figure out their values [30,31]. Hence, a set of values was
considered for the hidden layer of ANN equal to 5, 10, and 15, the swarm sizes were 5, 10, 15,
and 20, and the maximum iteration value was selected as 10, 20, 30, and 40 for the modelling
of urban areas. In addition, a set of values was considered for the hidden layer of ANN
equal to 5, 10, 15 and 20, the swarm sizes were 5, 10, 20 and 30, and the maximum iteration
value was considered equal to 10, 20, 30, 40, and 50 for modelling of rural areas. According
to the number of control parameters, 60 and 80 models were constructed for urban and
rural areas, respectively. After evaluating and comparing the results, the best developed
models for urban and rural areas were determined and selected; their characteristics are
shown in Table 2. In addition, the results obtained in terms of the best cost in each iteration
for urban and rural areas are indicated in Figures 4 and 5, respectively.

Table 2. The control parameters of the best developed models for urban and rural areas by ANN-PSO.

Control Parameters Values for the Best
Developed Model of Urban Area

Values for the Best
Developed Model of Rural Area

Number of hidden layers 5 5

Swarm size 15 20

Individual learning factor (C1) 1.49 1.49

Social learning factor (C2) 1.49 1.49
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According to Figure 4, the PSO algorithm was able to converge rapidly in the sixth
iteration, in which the values of the best cost were equal to almost 0.018. Then, the best
cost value of the best developed model for urban areas was fixed from the sixth iteration
to the 30th iteration. In addition, the convergence process of the algorithm in urban data
analysis was also appropriate, which meant it was equal to approximately 0.0025. The best
cost of the best developed model for urban areas was fixed from the 11th iteration to the
30th iteration based on Figure 5. Consequently, it can be concluded that the best developed
models of urban and rural areas obtained satisfactory performances.

3.2. Modeling by ANN-DE

In the second model, the MLP neural network was trained by the DE algorithm. As
mentioned before, the first step is to figure out the control parameters of the algorithm. For
this purpose, a set of values was considered for urban areas including population sizes of
the algorithm of 5, 10, and 15, the range of the hidden layers of ANN was equal to 5, 10,
and 15, and a range of values equal to 10, 20, 30, and 40 was considered for the maximum
iteration. Furthermore, in the modeling of rural areas, the ranges of population sizes of
the algorithm and the hidden layers of ANN were considered as equal to 10, 20, and 25
and 5, 10, 15, 20, respectively. The set of the maximum iterations, which was a range of
values equal to 10, 20, 30, 40, and 50, was considered for the maximum iteration. Finally,
for the modelling of both areas, the crossover probability was considered 0.2, which can
have a significant effect on optimization performance [68]. In total, 36 models for urban
areas and 60 models for rural areas were constructed and developed. Consequently, after
evaluating all models, the best developed model for urban areas was selected, whose
structure included the population sizes of the algorithm and had hidden layers equal to 10
and 5. In addition, the structure of the best developed model for rural areas included the
population sizes of the algorithm and the hidden layers equal to 5 and 10. Figure 6 shows
the results obtained for the best cost in each iteration for urban and rural areas.

The results obtained from Figure 7 show that the DE algorithm was converged in
the 10th iteration for the analysis of urban data, and the best cost was fixed up to the
30th iteration, at which point it was almost 0.0183. In addition, it could be converged in
the 10th iteration, and then this value was fixed to the last iteration, which was equal to
0.0026. Consequently, the results obtained indicate that the modeling of the DE algorithm
was acceptable.
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3.3. Discussion

In this work, two feature selection techniques, which include the combination of
ANN with the PSO algorithm and DE algorithms, were applied to evaluate and prioritize
some potential factors for safety management in transportation systems in urban and rural
areas. Before modeling, the two data sets with 202 and 564 accident cases from Cosenza’s
cities and rural areas were gathered, and many models were made. After considering the
modelling results, the best developed models for urban and rural areas were determined
based on the ANN-PSO and ANN-DE algorithms. A comparison was made between the
performances of the two models of ANN-PSO and ANN-DE based on convergence. When
testing the performance of an algorithm that uses an iterative calculation method, the
convergence rate is especially important because it tells us how long these calculations take.
If the number of calculations needed to get a certain level of accuracy is reduced or reaches
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a required level of accuracy in the least number of iterations of the algorithm, the cost of
calculations (like errors) will be lower. In this case, there was not a big difference between
models in terms of how quickly they converged, but ANN-PSO models converged faster
than ANN-DE models for both urban and rural areas.

In the next evaluation, a sensitivity analysis was performed, and a comparison was
made between the results obtained. This was done by comparing the accuracy of the best
ANN-PSO and ANN-DE model predictions to the input data. In this sensitivity study, the
cosine amplitude approach, which was based on Equation (9), was used, where rij is the
strength of the correlation and n is the total number of data points. Both the input (xik) and
predicted (yij) parameters are designated by their respective notations [42].

rij =

n
∑

k=1
(xik × yjk)√

n
∑

k=1
x2

ik

n
∑

k=1
y2

ik

(9)

The results of the sensitivity analysis are shown in Figures 8 and 9 for urban and rural
areas, respectively.
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The results indicated that both models have similar results for the two areas. According
to Figure 8, the two algorithms ranked the average speed and the annual average daily
traffic with the highest ranks (based on the weight) among the seven factors that have an
impact on transport safety in urban areas, while the location had the lowest rank in urban
areas. In fact, the results of prioritization by intelligent algorithms were very consistent
with the field surveys from previous studies [32,33]. For instance, it was expected that
depending on the studied urban environment and the previous studies, the average speed
and the average annual daily traffic could represent potential risk factors for road safety.
In addition, considering the number and type of intersections in the urban area, these
factors could be considered as factors with low potential risk. Hence, it is recommended
that in reviewing traffic plans in the future, using suitable traffic calming measures will be
considered more and more, based on the situation of the studied urban environment.

Meanwhile, according to Figure 9, in rural areas, the type of accident and the average
speed were prioritized by both algorithms as the factors with the highest potential risk,
while location was selected as the lowest priority among the seven factors affecting road
safety in rural areas. On the basis of the acquired results, prioritizing the factors affecting
road safety were consistent with observations and field studies in the rural area [42]. For
example, the type of accident plays a key role in road safety in rural areas where, unlike
on urban roads, frontal or front-to-side collisions can occur, with lethal consequences for
vehicle occupants. The second factor that was prioritized as a potential risk was average
speed. According to the World Health Organization [70], “an increase in average speed
is directly related both to the likelihood of a crash occurring and to the severity of the
consequences of the crash”, especially when crashes occur on rural roads. In addition,
the results of the experimental analysis are in line with the findings of several studies
that report that operating speed is one of the most dangerous things on the road in rural
areas [71–73]. Finally, since the amount of traffic flow volume on the studied rural roads
was lower than the projected flow rate of the roads, choosing the location as a factor with
the lowest priority was the right choice by artificial intelligence algorithms. Therefore, in
reviewing traffic plans for rural roads, it is suggested that two important issues, including
suitable traffic calming measures and geometric specifications, be considered.

It is worth mentioning that developed models are unique models and they should be
applied only to urban and rural areas of Cosenza, in southern Italy. Furthermore, although
the results of these techniques indicated their high capability in prioritizing the potential
factors for safety management in transportation systems, they are not reliable techniques
for incomplete datasets; hence, it is recommended to use other artificial intelligence method
algorithms in these cases.

Finally, although ANN-DE and ANN-PSO approaches may be employed as depend-
able systems for modeling, it is important to highlight that they have certain limitations
that prevent them from being fully used for feature selection analysis. Most importantly,
they cannot be utilized to examine incomplete datasets.

4. Conclusions

There is a set of unpredicted factors that can affect road safety analysis; hence, road
safety analysis deals with uncertainty. Since computational intelligence methods have
a high capability to evaluate complex problems, in this study, two artificial intelligence
techniques were applied to the evaluation of road safety. For this purpose, two data sets
with 202 and 564 accident cases for urban and rural areas of Cosenza in southern Italy were
measured and gathered in the first step. Then, the best developed models for urban and
rural areas were determined by the ANN-PSO and ANN-DE algorithms. A comparison
was made between how fast the best-developed models converged. For both urban and
rural areas, ANN-PSO models were better than ANN-DE models. The results obtained
from data analysis showed that the models built with both feature selection algorithms had
the same results. In urban areas, the average speed and location had the highest and lowest
priorities, respectively. In addition, in rural areas, the type of accident and location were
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selected as the highest and lowest priorities, respectively. The results also fit well with the
conditions of the environments that were looked at. For future work, it is recommended to
use other feature selection algorithms and other factors that may affect transport safety.
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