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Abstract: Approximate arithmetic circuits are an attractive alternative to accurate arithmetic circuits
because they have significantly reduced delay, area, and power, albeit at the cost of some loss in
accuracy. By keeping errors due to approximate computation within acceptable limits, approximate
arithmetic circuits can be used for various practical applications such as digital signal processing,
digital filtering, low power graphics processing, neuromorphic computing, hardware realization of
neural networks for artificial intelligence and machine learning etc. The degree of approximation
that can be incorporated into an approximate arithmetic circuit tends to vary depending on the
error resiliency of the target application. Given this, the manual coding of approximate arithmetic
circuits corresponding to different degrees of approximation in a hardware description language
(HDL) may be a cumbersome and a time-consuming process—more so when the circuit is big.
Therefore, a software tool that can automatically generate approximate arithmetic circuits of any size
corresponding to a desired accuracy would not only aid the design flow but also help to improve a
designer’s productivity by speeding up the circuit/system development. In this context, this paper
presents ‘Approximator’, which is a software tool developed to automatically generate approximate
arithmetic circuits based on a user’s specification. Approximator can automatically generate Verilog
HDL codes of approximate adders and multipliers of any size based on the novel approximate
arithmetic circuit architectures proposed by us. The Verilog HDL codes output by Approximator can
be used for synthesis in an FPGA or ASIC (standard cell based) design environment. Additionally,
the tool can perform error and accuracy analyses of approximate arithmetic circuits. The salient
features of the tool are illustrated through some example screenshots captured during different stages
of the tool use. Approximator has been made open-access on GitHub for the benefit of the research
community, and the tool documentation is provided for the user’s reference.

Keywords: approximate computing; computer arithmetic; digital design; high speed; low power;
digital image processing; computer hardware; computer software

1. Introduction

Approximate computing enables improvement in speed, reductions in area and power,
and savings in energy compared to accurate computing at the expense of an acceptable
loss in the accuracy of results [1]. There are many practical applications that are inherently
error-resilient, and they have been considered as suitable candidates to evaluate the effi-
cacy and practicality of approximate computing. Examples of such practical applications
include multimedia [2], low-power graphics processing [3], memory for multi-core pro-
cessors [4], the hardware implementation of neural networks for machine learning and
artificial intelligence [5], software engineering [6], memory storage [7], big data mining
and analytics [8], and neuromorphic computing [9]. Approximate computing broadly
covers hardware, software, and memory storage, and approximate hardware includes
approximate arithmetic circuits [10] and approximate logic circuits [11]. Within the domain
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of approximate arithmetic circuits, the design of approximate adders and multipliers has
attracted significant attention [12], which is understandable given that addition and multi-
plication are frequently performed in microprocessors and digital signal processors. For
example, in [13], it was found that additions constituted nearly 80% of the operations in
an ARM processor’s arithmetic and logic unit, and it was noted in [14] that adders and
multipliers contributed to about 80% of the total power consumption of a fast Fourier
transform processor.

This paper discusses approximate adders and multipliers. Approximate adders are
categorized into two types: Static Approximate Adders (SAAs) and Dynamic Approximate
Adders (DAAs). SAAs have a fixed approximation, and they could enable significant
reductions in delay, area, and power compared to accurate adders for an increase in
the approximation. However, prior knowledge of the target application could be useful
to determine an optimal approximation for an SAA. On the other hand, DAAs have a
flexible approximation and could be configured to produce an approximate or accurate
results on demand, i.e., the accuracy of results could be adjusted as per need and prior
knowledge about a target application may not be necessary. However, to achieve this,
DAAs incorporate additional error detection and correction logic to facilitate a variable
approximation, which forms a design overhead. Furthermore, multiple computational
cycles might be required to achieve a result that corresponds to a desired accuracy in a
DAA. These two tend to negatively impact the design metrics of DAAs in general. In [15],
for a digital video-encoding application, it was observed that the savings in power achieved
by an SAA over an accurate adder is comparable with a DAA.

Many multiplier architectures such as Braun array, Booth algorithm, Wallace tree,
Baugh Wooley algorithm, and the Dadda tree are available for unsigned and signed mul-
tiplication [16]. These accurate multiplier architectures have been modified to obtain
approximate multiplier architectures in the literature [17]. With respect to unsigned multi-
plication, and especially for small multiplications that are typically encountered in digital
image processing, the Braun array multiplier (BAM) [18] is preferable because it has a
simple and regular structure. Moreover, BAM allows for easy pipelining to increase the
throughput as required. Approximate (array) multiplier architectures can be derived by
making vertical and/or horizontal cuts in an accurate BAM [19] and assigning different
combinations of binary constants to the dangling internal inputs and dangling product bits.

In this article, we describe Approximator, which is a software tool developed to auto-
matically generate Verilog HDL codes of approximate adders and multipliers of any size,
corresponding to the following approximate arithmetic circuit architectures proposed by us:
approximate adders (HEAA [20], HOERAA [21], HOAANED [22], and M-HERLOA [23])
and approximate (array) multipliers (AAM01 [24,25]). Though we proposed three ap-
proximate array multiplier architectures in [24], among them AAM01 [25] (also called
PAAM01 [24]) was found to have better optimized error characteristics, and its superior
performance was confirmed for a couple of digital image processing applications, namely
digital image denoising and digital image blending. Hence, we decided to only incor-
porate AAM01 into Approximator. The approximate adder and multiplier architectures
comprising Approximator correspond to static approximation.

Approximator has been made open for access on GitHub for the benefit of the research
community and a beta version of the tool is available for free download [26]. Documentation
about the tool is also provided for a user’s reference [27]. Approximator has been made
available in a convenient graphical user interface (GUI) format for ease of use by an end-
user. Approximator asks for input specifications from a user to: (i) generate Verilog HDL
codes of approximate adders, (ii) generate Verilog HDL codes of approximate multiplier,
(iii) perform error analysis of approximate arithmetic circuits, and (iv) perform accuracy
analysis of approximate arithmetic circuits.

The rest of the article is structured as follows. Sections 2 and 3 describes the approx-
imate adders and the approximate (array) multiplier, respectively, which form a part of
Approximator. Next, the development and working principle of the GUI version of Ap-
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proximator are described in Section 4 through some example screenshots. Finally, Section 5
concludes the article.

2. Approximate Adders

In this section, the architectures of our approximate adders are first described. Sec-
ondly, the usefulness of the approximate adders for a digital image processing application
is demonstrated. Thirdly, the error characteristics of approximate adders are discussed and
popular error metrics are provided. Lastly, the design metrics of accurate and approximate
adders corresponding to FPGA- and ASIC-based implementations are given.

2.1. Approximate Adders—Architectures

An N-bit (static) approximate adder typically consists of an inexact part that inac-
curately adds P least significant bits and an exact part that accurately adds (N–P) more
significant bits [28]. The value of P is best determined based on the target application,
and the logic design of the inexact part depends on the type of the approximate adder
used. In the inexact part of the approximate adders, different types of logic operations such
as AND, OR, NAND, and EXOR are performed to produce the least significant sum bits.
Accurate addition is performed in the exact part, and a high-speed adder may be used for
this purpose. For an FPGA-based implementation, the native accurate FPGA adder can be
used, and for an ASIC-type standard cell-based implementation, a carry look-ahead adder
(CLA) may be used. Hence, the exact part of the approximate adders can be realized in the
same fashion, and the implementation of the inexact parts would alone differ.

Figure 1a shows the block schematic of the accurate adder, and Figure 1b–e show
the block schematics of approximate adders, i.e., HEAA, HOERAA, HOAANED and M-
HERLOA, that form a part of Approximator. In Figure 1, the inexact parts of approximate
adders are shown in red and the exact parts are shown in blue. X and Y represent the adder
inputs, with subscripts (N−1) and 0 denoting the Most Significant Bit (MSB) and the Least
Significant Bit (LSB), respectively. S represents the sum output of the adder, with subscripts
N and 0 denoting the MSB and the LSB, respectively. In HEAA, HOERAA, HOAANED,
and M-HERLOA, there is a carry input provided to the exact part from the inexact part that
is equal to the AND of XP−1 and YP−1.

Approximate adder HEAA [20] is shown in Figure 1b. In the inexact part of HEAA,
sum bits SP−2 to S0 are calculated by OR-ing the corresponding input bits present at the
respective bit locations. The value of SP−1 is equal to the output of a 2-to-1 multiplexer
(MUX) whose select input is equal to the AND of XP−1 and YP−1. If the select input of the
MUX is 0, SP−1 is equal to the OR of XP−1 and YP−1; otherwise SP−1 becomes 0.

Approximate adder HOERAA [21] is shown in Figure 1c. In the inexact part of
HOERAA, sum bits SP−3 to S0 are set to 1. XP−2 and YP−2 are OR-ed to obtain SUMP−2.
SUMP−1 is given by the output of a 2-to-1 MUX, whose select input is equal to the AND
of XP−1 and YP−1. If the select input of the MUX is 0, SP−1 is equal to the OR of XP−1 and
YP−1, and if the select input is 1, SP−1 is equal to the AND of XP−2 and YP−2.

Approximate adder HOAANED [22] is shown in Figure 1d. Sum bits SP−3 to S0 in the
inexact part are set to 1. Sum bit SP−2 is equal to the OR of XP−2 and YP−2. A 2-to-1 MUX
is present, and its select input is defined by the AND of XP−1 and YP−1. The output of the
MUX is SP−1. If the select input of the MUX is 1, the AND of XP−2 and YP−2 produces SP−1.
If the select input of the MUX is 0, the OR of XP−1 and YP−1 and the AND of XP−2 and
YP−2 are OR-ed to produce SP−1.

Approximate adder M-HERLOA [23] is shown in Figure 1e. The EXOR of XP−1 and
YP−1 and the AND of XP−2 and YP−2 are OR-ed to produce SP−1. The complemented
EXOR (i.e., EXNOR) of XP−1 and YP−1 and the AND of XP−2 and YP−2 are NAND-ed,
and this is in turn AND-ed with the OR of XP−2 and YP−2 to produce SP−2. The EXOR
of XP−1 and YP−1 and the AND of and YP−2 are AND-ed, and this is individually OR-ed
with the bitwise OR of XP−3 and YP−3, and XP−4 and YP−4 to produce SP−3 and SP−4,
respectively. The remaining sum bits SP−5 to S0 are set to 1. However, the number of sum
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bits in the inexact part of M-HERLOA which can be assigned a 1 is best determined based
on a target application.
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the number of sum bits which can be assigned a constant 1 in the inexact part is best decided based
on a target application.
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2.2. Image Processing Application

The performance of approximate adders was evaluated based on a digital image
processing (DIP) application. Digital images of 512× 512 pixels, with a grayscale resolution
of 8 bits were used for experimentation. Fast Fourier transform (FFT) was performed on the
images and then inverse FFT (IFFT) was performed to reconstruct the images following the
procedure in [28]. Integer FFT and IFFT operations were performed. In the FFT and IFFT
computations, multiplications were accurately performed, while additions were accurately
and approximately performed, separately, to compare the performance of accurate and
approximate adders.

In general, the savings in design metrics achieved by an SAA compared to the accurate
adder are proportionate to the degree of incorporated approximation [21,22]. Therefore, an
optimum approximation has to be determined to strike an acceptable compromise between
maximizing the savings in design metrics and ensuring the good quality of results (here, the
quality of DIP results). Based on an extensive trial-and-error, a 32-bit approximate adder
comprising a 10-bit inexact part was found to be acceptable for the DIP application [22],
and this was adopted for this work. The images reconstructed using different approximate
adders such as LOA [19], LOAWA [29], APPROX5 [30], HEAA, OLOCA [31], HOERAA,
HOAANED, HERLOA [32], and M-HERLOA were compared with the original image
on the basis of two well-known figures of merit, namely the peak signal to noise ratio
(PSNR) [33] and the structural similarity index metric (SSIM) [34]. PSNR (in dB) varies
from zero to infinity, and SSIM varies from 0 to 1 decimal. A higher PSNR indicates low
noise or distortion, and a higher SSIM indicates greater structural similarity between the
reference (original) image and the target image. The image reconstructed using the accurate
adder had a PSNR of infinity and SSIM of 1 since no noise was introduced in the accurate
computation of FFT and IFFT, and the original image was faithfully reconstructed. On the
contrary, the images reconstructed using approximate adders did not have ideal PSNR and
SSIM values since noise was introduced during the approximate computation of FFT and
IFFT. Figures 2–4 show example DIP results obtained for ‘lena’, ‘cameraman’, and ‘woman
with dark hair’ images.
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Figure 4. Image processing result for ‘woman with dark hair’ image obtained using accurate and
approximate adders: (a) accurate adder; (b) LOA; (c) LOAWA; (d) APPROX5; (e) HEAA; (f) OLOCA;
(g) HOERAA; (h) HOAANED; (i) HERLOA; (j) M-HERLOA.

Figures 2a, 3a and 4a show the images reconstructed using the accurate adder, and
Figure 2b–j, Figures 3b–j and 4b–j show the images reconstructed using different approxi-
mate adders. The PSNR and SSIM values of images reconstructed using different approxi-
mate adders are given above the respective images for a quick comparison. In Figures 2–4,
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it can be noticed that among the approximate adders, HOAANED achieved greater PSNR,
and HERLOA and M-HERLOA achieved relatively greater SSIM.

2.3. Error Calculation for Approximate Adders

As mentioned previously, 32-bit approximate adders with a 10-bit inexact part were
found to be acceptable for the DIP application [22]. Hence, we performed error analyses
of approximate adders by considering the same sizes. We generated one million random
vectors for the adder inputs and supplied them to the accurate and approximate adders
to perform error analysis. To calculate the error, the sum produced by each approximate
adder was compared with the sum produced by the accurate adder for every input applied.
Two popular error metrics used in approximate computing, namely mean absolute error
(MAE) and root mean square error (RMSE) were calculated for the approximate adders,
and they are given by Equations (1) and (2), respectively. RMSE better characterizes the
extent of signal degradation in a digital signal processing application [35]. In Equations (1)
and (2), L represents the number of random input vectors, which is equal to 1 million. The
adder inputs are represented by xi and yi, Accurate_Sum signifies the sum output by the
accurate adder, and Approximate_Sum denotes the sum output by an approximate adder.

MAE =
1
L

L

∑
i=1
|Approximate_Sum(xi, yi)− Accurate_Sum(xi, yi) | (1)

RMSE =

√√√√ 1
L

L

∑
i=1

(Approximate_Sum(xi, yi)− Accurate_Sum(xi, yi))
2 (2)

The MAE and RMSE calculated for the approximate adders are given in Table 1, which
shows that M-HERLOA presented lesser MAE and RMSE compared to its counterparts.
With respect to the random inputs applied, the respective error magnitudes of our pro-
posed approximate adders, namely HEAA, HOERAA, HOAANED, and M-HERLOA, were
captured in the form of an error characteristic plot, which is shown in Figure 5. In Figure 5,
the error magnitudes are plotted along the X-axis, and the corresponding percentage of the
error occurrence is plotted along the Y-axis. The plot legends shown in Figure 5, i.e., the
green square and the black diamond, indicate the positions of MAE and RMSE, respectively,
in the error characteristic plot. It can be observed that among our approximate adders,
HOAANED presented an almost a symmetric and near-normal error distribution.

Table 1. Error metrics (MAE and RMSE) of approximate adders. The adders are of size 32 bits and
have a 10-bit inexact part.

Approximate Adder MAE RMSE

LOA 191.96 256.10
LOAWA 255.70 361.74

APPROX5 256.22 295.71
HEAA 127.71 180.80

OLOCA 208.07 276.63
HOERAA 127.96 165.18

HOAANED 128.00 165.24
HERLOA 87.71 129.15

M-HERLOA 84.46 124.56
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2.4. Design Metrics of Accurate and Approximate Adders

For an FPGA-based implementation, Approximator was used to automatically gener-
ate behavioral descriptions of our approximate adders HEAA, HOERAA, HOAANED, and
M-HERLOA in Verilog HDL. The accurate adder and other approximate adders, i.e., LOA,
LOAWA, APPROX5, OLOCA, and HOERAA, were manually described behaviorally in Ver-
ilog HDL. The addition operator was used to describe the accurate adder and the exact parts
of approximate adders. This paved the way for the utilization of fast carry logic inherent in
an FPGA slice to realize addition in a high-speed fashion upon synthesis. The accurate and
approximate adders were synthesized and implemented on a Xilinx Artix-7 FPGA (device:
xc7a100tcsg324-3) using Vivado 2018.3 design tool. In the accurate adder code and the
approximate adder codes meant for FPGA-based implementation, a pair of registers was
provisioned before the adder inputs to avoid unnecessary input–output (IO) routing delay
from dominating the clock period, following a standard FPGA design practice. A register
was present following the adder outputs. Thus, the adder was sandwiched between a set
of input and output registers, which were driven by the same clock. For synthesis, the
Flow_AreaOptimized_high strategy was used, and for implementation, the default strategy
was used. Table 2 presents the FPGA design parameters such as minimum clock period,
number of look-up tables (LUTs) and flip-flops (FFs), and total on-chip power consumption
of accurate and approximate adders, which were estimated after place and route.

Table 2 generally shows that the approximate adders were found to have reduced clock
periods, utilize fewer resources, and consume less power than the accurate FPGA adder.
Since the exact part of the approximate adders was only 22 bits compared to the accurate
adder, which comprised 32 bits, the critical path delay was less for the former; this led to
reductions in their minimum clock periods. The inexact part of the approximate adders had
reduced logic, and this led to reductions in the number of LUTs and/or FFs required for
implementing the approximate adders compared to the accurate adder. Consequently, the
approximate adders were found to consume less on-chip power compared to the accurate
FPGA adder.
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Table 2. FPGA-based design metrics of accurate 32-bit adder and approximate 32-bit adders with a
10-bit inexact part.

Adder Clock Period (ns) LUTs FFs Power (W)

Accurate FPGA Adder 2.10 32 97 0.209
LOA 1.89 27 97 0.198

LOAWA 1.86 27 97 0.198
APPROX5 1.84 22 88 0.200

HEAA 1.89 27 97 0.199
OLOCA 1.87 23 73 0.187

HOERAA 1.87 23 73 0.188
HOAANED 1.87 23 73 0.188

HERLOA 1.89 28 97 0.199
M-HERLOA 1.90 25 79 0.190

With respect to LOA, LOAWA, HEAA, and HERLOA, the logic of their inexact part
was less compared to the accurate FPGA adder logic, which led to savings in the number
of LUTs required for their implementation. However, the number of FFs required for
the inputs and outputs of LOA, LOAWA, HEAA, and HERLOA was the same as the
accurate FPGA adder. In the case of APPROX5, Y9 to Y0 are forwarded as sum bits S9 to
S0, respectively, and therefore no LUTs were required for realizing S9 to S0. This is the
reason why APPROX5 required only 22 LUTs compared to the accurate FPGA adder, which
required 32 LUTs. In APPROX5, X9 was given as the carry input to the exact part and X8 to
X0 were discarded, thus saving 9 FFs in total compared to the accurate FPGA adder. In the
case of OLOCA, the inexact part logic was reduced compared to the accurate FPGA adder
logic, and this led to a savings in the number of LUTs required for its implementation. S7
to S0 were assigned a constant 1 in OLOCA, and thus no FFs were required for X7 to X0,
Y7 to Y0, and S7 to S0 which resulted in a total savings of 24 FFs for OLOCA compared
to the accurate FPGA adder. With respect to HOERAA and HOAANED, in their inexact
parts, excepting SP−1 and SP−2, the rest of the sum bits SP−3 to S0 were tied to a constant
1, as seen in Figure 1c,d. Given that the inexact part comprised 10 bits for the considered
DIP application, 16 input bits, i.e., X7 to X0 and Y7 to Y0, were discarded and S7 to S0 were
assigned a constant 1—these led to a reduction of 24 FFs for HOERAA and HOAANED
compared to the accurate FPGA adder. In the case of M-HERLOA, S5 to S0 were assigned a
constant 1 and X5 to X0 and Y5 to Y0 were discarded—these led to the saving of 18 FFs for
M-HERLOA compared to the accurate FPGA adder.

In Section 2.2, HOAANED was found to enable greater PSNR, and HERLOA and
M-HERLOA were found to enable greater SSIM for the considered DIP application. Nev-
ertheless, M-HERLOA was found to be more optimized in logic compared to HERLOA
(as seen from Table 2) while having relatively reduced error metrics (as seen from Table 1).
Hence, M-HERLOA is preferable to HERLOA. Given these data, it can be noted in Table 2
that HOAANED achieved a 11% reduction in clock period, required 28% fewer LUTs and
25% fewer FFs, and consumed 10% less on-chip power compared to the accurate FPGA
adder. On the other hand, M-HERLOA achieved a 9.5% reduction in clock period, required
22% fewer LUTs and 19% fewer FFs, and consumed 9% less on-chip power compared to
the accurate FPGA adder.

For an ASIC-type standard cell-based implementation, Approximator was used to
automatically generate structural, i.e., gate-level descriptions, of our approximate adders
HEAA, HOERAA, HOAANED, and M-HERLOA while the accurate adder and other ap-
proximate adders (i.e., LOA, LOAWA, APPROX5, OLOCA, and HERLOA) were manually
coded in Verilog HDL at the gate-level. The accurate adder and the exact parts of approxi-
mate adders were described using the high-speed CLA architecture presented in [36]. For
an ASIC-type implementation, Approximator, by default, utilizes the CLA architecture
of [36] to describe the exact parts of approximate adders. The accurate 32-bit adder required
eight 4-bit CLAs, and the exact part of the approximate adders required five 4-bit CLAs
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and one 2-bit CLA. The accurate and approximate adders were synthesized by Synopsys
Design Compiler using a 32/28 nm CMOS standard cell library [37] with speed set as the
optimization goal. A typical case process, with a supply voltage of 1.05 V and an operating
temperature of 25 ◦C, was considered. The functional simulation of accurate and approxi-
mate adders was performed using Synopsys VCS by supplying a test bench that comprised
about a thousand random input vectors at a time period of 2 ns (500 MHz). Synopsys
PrimeTime and PrimePower were used to estimate critical path delay and total power
dissipation. The total area of the adder implementations included cell area and interconnect
area, which was estimated using Design Compiler. Wire loads were included by default
and a fanout-of-4 drive strength was assigned to all the sum bits. The ASIC-based design
metrics of accurate and approximate adders are given in Table 3. Table 3 reflects a similar
trend as Table 2 with the approximate adders reporting reduced delay, area, and power
compared to the accurate adder (here, CLA).

Table 3. ASIC-based design metrics of 32-bit accurate adder and 32-bit approximate adders with a
10-bit inexact part.

Adder Critical Path Delay (ns) Area (µm2) Power (µW)

Accurate CLA 1.17 564.60 94.33
LOA 0.96 428.36 71.77

LOAWA 0.96 413.37 68.86
APPROX5 0.96 424.58 73.54

HEAA 0.96 430.65 71.49
OLOCA 0.96 420.03 66.11

HOERAA 0.96 430.38 68.82
HOAANED 0.96 425.36 67.73

HERLOA 0.96 443.28 74.01
M-HERLOA 0.96 433.94 69.11

The accurate CLA was 32 bits in size, whereas the exact part of the approximate
adders was only 22 bits in size. Hence, the critical path delay of the latter was expected
to be less than the former, which is substantiated by the results given in Table 3. Since the
approximate adders had an exact part and an inexact part and because the inexact part had
reduced logic compared to the accurate CLA, the approximate adders occupied less area
than the accurate adder, as seen from Table 3. The reduced area of approximate adders
compared to the accurate adder resulted in reduced power, as noticed from Table 3. With
respect to an ASIC-type implementation, HOAANED presented a 18% reduction in critical
path delay, 25% less area, and 28% less power than the accurate CLA, while M-HERLOA
presented an 18% reduction in critical path delay, 23% less area, and 27% less power than
the accurate CLA.

3. Approximate Multipliers

In this section, how approximate array multipliers (AAMs) are derived from an
accurate array multiplier is firstly described by considering an example 8× 8 multiplication.
Secondly, the error metrics (MAE and RMSE) of different 8 × 8 AAMs are given. Thirdly,
the usefulness of 8 × 8 AAMs for a digital image blending (DIB) application is discussed,
and lastly, the design metrics of a directly synthesized high-speed accurate multiplier, an
accurate array multiplier, and AAMs corresponding to the DIB application are provided.

3.1. Approximate Array Multipliers—Architectures

The architecture of an accurate 8 × 8 array multiplier is shown in Figure 6, where
A7–A0 and B7–B0 represent the multiplier inputs and P15 to P0 denote the product bits.
Bits A7, B7, and P15 are most significant, while bits A0, B0, and P0 are least significant. As
shown in Figure 6, 2-input AND gates were used to realize the partial products ranging
from A0B0 to A7B7, and there was a total of 64 partial products. A carry save adder was
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embedded within the accurate array multiplier, which consisted of 8 half adders and 48
full adders.
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AAMs can be obtained by introducing vertical and/or horizontal cuts to an accurate
array multiplier [19]. It was shown in [24] that vertical cuts are preferable over horizontal
cuts since the former gradually eliminates partial products starting from the least significant
ones, whereas the latter tends to eliminate some significant partial products straightaway.
Hence, AAMs are better derived by making vertical cuts in an accurate array multiplier.
Figure 6 shows examples of vertical cuts labelled as V0 to V10, which are shown in red
dashed lines, any of which can be introduced into an accurate array multiplier to derive
an AAM.

Figure 7 illustrates the impact of a vertical cut V8 on the accurate array multiplier.
After introducing a vertical cut, the logic to the right side of the cut was eliminated, as
shown in light grey. As a result, product bits P8 to P0 were left dangling, which may have
been assigned binary 0 or 1. The five full adders highlighted in blue to the left side of V8
had some of their inputs cut, as shown in pink—these are called dangling internal inputs
and could be assigned binary 0 or 1. Based on a diverse assignment of binary values, four
AAM architectures were derived, namely AAM00 [38], AAM01 [25], AAM10 [25], and
AAM11 [25], and are described below.
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Figure 7. AAM architectures resulting from vertical cut V8 made on the accurate 8× 8 array multiplier
shown in Figure 6.

• AAM00—Binary 0 is assigned to dangling internal inputs and dangling product bits.
• AAM01—Binary 0 is assigned to dangling internal inputs and binary 1 is assigned to

dangling product bits.
• AAM10—Binary 1 is assigned to dangling internal inputs and binary 0 is assigned to

dangling product bits.
• AAM11—Binary 1 is assigned to dangling internal inputs and dangling product bits.

In Figure 7, the full adder shown in green dotted lines that produced product bit P9
earlier had two of its inputs cut, so it was eliminated, thus resulting in the full adder present
above it producing P9. Additionally, the full adder that produced product bit P10 earlier
had one of its inputs cut, so it was reduced to a half adder, as highlighted in orange in
Figure 7.

When the full adders highlighted in blue in Figure 7 were assigned binary 0, with
respect to the AAM00 and AAM01 architectures, they were reduced to half adders as shown
in Figure 8. On the other hand, if those full adders were assigned binary 1 with respect to
the AAM10 and AAM11 architectures, they were reduced to a combination of a 2-input
XNOR gate and a 2-input OR gate (as shown in Figure 9), with the former producing an
approximate sum output and the latter producing an approximate carry output.
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Table 4 shows the MAE and RMSE of different AAMs. The suffix ‘-V8′ is associated 
with the AAM00-V8, AAM01-V8, AAM10-V8, and AAM11-V8 AAMs to convey that the 
different AAMs were derived through a vertical cut V8 made on the accurate array mul-
tiplier. In [25], it was shown that the V8 cut is an acceptable approximation for the DIB 
application, so we considered the same here to provide an illustration. In Table 4, it can 
be seen that the AAM01 architecture had reduced MAE and RMSE compared to the other 
AAM architectures. It was shown in [24] that AAM01 consistently enabled reduced MAE 
and RMSE compared to the other AAM architectures for vertical cuts starting from V1. 
Hence, on the basis of error metrics, AAM01 is preferable to its counterparts.  

Figure 9. AAM10/AAM11 architectures. For the AAM10 architecture, product bits P8 to P0 were
assigned binary 0, and for the AAM11 architecture, product bits P8 to P0 were assigned binary 1.
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3.2. Error Analysis of Approximate Multipliers

For an image blending application that is discussed later, an 8 × 8 multiplier was
deemed sufficient and hence was considered here. An 8 × 8 multiplier has a total of
216 distinct inputs, and all the inputs were considered to accurately calculate the MAE and
RMSE of different AAMs. Equations (3) and (4) were used to calculate MAE and RMSE of
AAMs, respectively. In Equations (3) and (4), i and j denote the multiplicand and multiplier,
respectively; Accurate_Product(i, j) represents the product produced by the accurate array
multiplier; and AAM_Product(i, j) represents the product produced by an AAM.

MAE =
1

216

28−1

∑
i=0

28−1

∑
j=0
|AAM_Product(i, j)− Accurate_Product(i, j) | (3)

RMSE =

√√√√ 1
216

28−1

∑
i=0

28−1

∑
j=0

(AAM_Product(i, j)− Accurate_Product(i, j))2 (4)

Table 4 shows the MAE and RMSE of different AAMs. The suffix ‘-V8′ is associated
with the AAM00-V8, AAM01-V8, AAM10-V8, and AAM11-V8 AAMs to convey that
the different AAMs were derived through a vertical cut V8 made on the accurate array
multiplier. In [25], it was shown that the V8 cut is an acceptable approximation for the
DIB application, so we considered the same here to provide an illustration. In Table 4, it
can be seen that the AAM01 architecture had reduced MAE and RMSE compared to the
other AAM architectures. It was shown in [24] that AAM01 consistently enabled reduced
MAE and RMSE compared to the other AAM architectures for vertical cuts starting from
V1. Hence, on the basis of error metrics, AAM01 is preferable to its counterparts.

Table 4. Error metrics of different AAMs calculated for 8 × 8 multiplication.

Approximate Array Multiplier MAE RMSE

AAM00-V8 896.25 1024.76
AAM01-V8 484.25 628.71
AAM10-V8 1664.76 1736.35
AAM11-V8 2174.80 2230.78

Figure 10 shows the error characteristic plots of AAMs, with error magnitudes plotted
along the X-axis and their frequency of occurrence in percentage plotted along the Y-axis.
The positions of MAE and RMSE on the error characteristic plots are also shown and
highlighted by the green square and the black diamond, respectively. In Figure 10, it can be
seen that AAM00-V8 had negative error magnitudes, while AAM10-V8 and AAM11-V8
had positive error magnitudes. The error magnitudes of AAM11-V8 were, however, greater
than AAM10-V8 due to over-approximation. AAM01-V8 had negative and positive error
magnitudes, although the errors appeared relatively more on the negative side than the
positive side. Nevertheless, this helps to balance the overall error for AAM01-V8, which
is beneficial and does not feature in other AAM architectures. We observed the same
phenomenon in multiple error analyses, performed by considering different vertical cuts
on the accurate array multiplier. AAM01-V8 presented reduced MAE and RMSE compared
to its counterparts, so, in general, it is preferable.
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3.3. Image Blending Application

To evaluate the performance of different AAMs, we considered a DIB application. To
perform blending, two digital images with a grayscale resolution of 8 bits and a spatial
resolution of 512 × 512 pixels were considered. An 8 × 8 multiplier is sufficient to perform
DIB, which involves the pixel-wise multiplication of the two images to obtain a blended
image with the same spatial resolution and a grayscale resolution of 16 bits. To perform
8 × 8 multiplication, we used an 8 × 8 accurate array multiplier and different 8 × 8 AAMs
discussed in the previous sub-section. For the DIB application, the vertical cut V8 was
found to be an optimum approximation [25]. To measure the quality of image blending,
PSNR and SSIM were used, as discussed in Section 2.2.

We considered blending of ‘lena’, ‘cameraman’, and ‘woman with dark hair’ images
individually with a ‘mask’ image, and the results of image blending based on accurate
and approximate multiplications are shown in Figures 11–13, respectively. Figures 11c,
12c and 13c show the accurately blended images. Figures 11d, 12d and 13d show the
images blended using AAM00-V8; Figures 11e, 12e and 13e show the images blended
using AAM01-V8; Figures 11f, 12f and 13f show the images blended using AAM10-V8; and
Figures 11g, 12g and 13g show the images blended using AAM11-V8. In Figures 11–13, it
can be observed that the AAM01 architecture (here, in particular AAM01-V8) consistently
enabled greater PSNR and SSIM for the blended images compared to the blended images
obtained using other AAMs such as AAM00-V8, AAM10-V8, and AAM11-V8. Hence, the
blending of images using the AAM01 architecture (here AAM01-V8) is preferable. The
reason for this could be the reduced MAE and RMSE of AAM01-V8, as seen in Table 4, as
well as some balancing in the error distribution achieved by AAM01-V8, as observed in
Figure 10.
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AAM01-V8; (f) images blended using AAM10-V8; (g) images blended using AAM11-V8.
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Figure 13. Blending of ‘woman with dark hair’ and ‘mask’ images: (a) ‘woman with dark hair’
image; (b) ‘mask’ image; (c) accurately blended images; (d) images blended using AAM00-V8;
(e) images blended using AAM01-V8; (f) images blended using AAM10-V8; (g) images blended using
AAM11-V8.

3.4. Design Metrics of Accurate and Approximate Multipliers

An accurate multiplier can be efficiently implemented using a DSP core for an FPGA-
based implementation, so the approximate implementation of multipliers using LUTs was
not considered. Rather, we considered an ASIC-type standard cell-based implementation of
accurate and approximate multipliers. An accurate 8 × 8 array multiplier and approximate
8 × 8 array multipliers corresponding to vertical cut V8 were structurally described in Ver-
ilog HDL. Nevertheless, the Verilog HDL code of AAM01-V8 was automatically generated
by Approximator. Additionally, an accurate 8 × 8 multiplier was behaviorally described
in Verilog HDL using the multiplication operator. The multipliers were synthesized by
Design Compiler for high-speed using a standard digital cell library [37], and their total
area including cells area and interconnect area was estimated. FO-4 drive strength was
applied on all the product bits, and the default wire load model was used. The same
library specification mentioned in Section 2.4 was adopted for simulation and synthesis.
To perform functional simulations using VCS, a test bench comprising about 1000 random
input vectors was supplied to the multipliers at a time period of 2.5 ns (400 MHz). Sub-
sequently, the switching activity information was obtained and used to estimate the total
power dissipation using PrimePower. The critical path delay of the synthesized multipliers
was estimated using PrimeTime. The design metrics of the multipliers are given in Table 5.

Table 5. ASIC-type standard cell-based design metrics of accurate and approximate 8 × 8 multipliers.

Multiplier Critical Path Delay (ns) Area (µm2) Power (µW)

Accurate Multiplier (Using
multiplication operator) 1.75 474.39 144.20

Accurate Array Multiplier 2.00 509.47 183.80
AAM00-V8 and AAM01-V8 1.58 187.11 50.90
AAM10-V8 and AAM11-V8 1.53 179.99 57.68
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The accurate multiplier, behaviorally described using the multiplication operator in
Verilog HDL, was automatically synthesized for high-speed using Design Compiler, and its
design metrics were found to be better optimized compared to the structurally described
accurate array multiplier synthesized using Design Compiler, as seen from Table 5. In
Figure 6, it can be observed that the critical path of the accurate array multiplier schematic
consisted of a 2-input AND gate (that realizes a partial product), two half adders, and
twelve full adders. On the other hand, the critical paths of AAM00-V8 and AAM01-V8
comprised one 2-input AND gate, two half adders, and eight full adders, as seen in Figure 8.
Except for the constant binary assignment to the dangling product bits, the logic of AAM00
and AAM01 architectures is the same, so their critical paths are the same. Based on the
same explanation, the critical paths of AAM10 and AAM11 architectures are also the same.
The critical paths of AAM10-V8 and AAM11-V8 comprised one 2-input AND gate, one
2-input OR gate, one half adder, and eight full adders. Since the number of gates traversed
in the critical path of AAMs was less than the number of gates traversed in the critical
path of the accurate array multiplier, they had a reduced critical path delay compared to
the accurate multiplier described using the multiplication operator and the structurally
described accurate array multiplier, as noted in Table 5.

The difference between AAM00-V8 and AAM01-V8 was that in the former, product
bits P8 to P0 were assigned a constant 0 by tying them to ground using tie-to-low (TIEL)
standard cells, and in the latter P8 to P0 were assigned a constant 1 by tying them to supply
using tie-to-high (TIEH) standard cells. The characteristics of TIEL and TIEH standard
cells in the library [37] are the same, so AAM00-V8 and AAM01-V8 had the same area and
power, as mentioned in Table 5. The same explanation fits the combination of AAM10-V8
and AAM11-V8, which also had the same area and power.

AAM10-V8 and AAM11-V8 were slightly better optimized in terms of the design
metrics compared to AAM00-V8 and AAM01-V8, but in Sections 3.2 and 3.3, it was noted
that the AAM01 architecture was preferable to its counterparts. Accordingly, from Table 5,
AAM01-V8 was found to achieve a 9.7% reduction in critical path delay, a 60.6% reduction
in area, a 64.7% reduction in power compared to the directly synthesized high-speed
accurate multiplier, as well as a 21% reduction in critical path delay, a 63.3% reduction in
area, and a 72.3% reduction in power compared to the accurate array multiplier.

4. Automated Generation of Approximate Arithmetic Circuits

In this section, we describe the software tool Approximator, developed to automat-
ically generate HDL codes of approximate adder and multiplier architectures discussed
in the previous section, which may be of any size. This tool eliminates the need for a
manual coding of approximate arithmetic circuits, which would become cumbersome
even for a medium-size specification, especially when the approximation may have to
be varied depending on the target application. Approximator is able to perform error
analysis depending on user-specified inputs or on the basis of randomly generated inputs.
Approximator is also able to provide information about the accuracy of results produced
by approximate adders and multipliers. Approximator is made available in a GUI form
that is simple, interactive, and convenient to use, so a user does not have to bother with
the internal details. Moreover, the source code of Approximator has been made open for
access on GitHub [26], which will allow for the further development or modification of the
tool to suit a user’s requirement, thus paving the way for future advancement. The GUI
version of Approximator was developed following the SOLID principles of object-oriented
programming [39].

Approximator is able to generate FPGA-based and ASIC-based Verilog HDL codes of
approximate adders such as HEAA, HOERAA, HOAANED, and M-HERLOA of any size
with an exact part and an inexact part, according to a user’s specification. In the FPGA-
based codes, the adder remains sandwiched between a pair of input and output registers
that are driven by a common clock, and two sets of input registers are provisioned prior to
the adder logic to eliminate unnecessary IO routing delay from dominating the critical path
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delay; this is in line with a standard FPGA-based design practice. In ASIC-based codes, the
approximate adder logic is alone generated, as this may subsequently be used as a part
of a sub-system or a system, so the clock can be separately determined. Approximator is
also able to generate ASIC-based Verilog HDL codes of the approximate array multiplier
AAM01 of any size for any specified (and permissible) vertical cut. The size of AAM01
could be any M × N, where M may or may not be equal to N. Additionally, the tool can
be used to perform error and accuracy analyses of approximate adders and approximate
multipliers. The features of Approximator are given in Table 6.

Table 6. Features of Approximator.

Tool Feature Adder/Multiplier Name of Approximate Arithmetic Circuit

Verilog code generation

ASIC-based adder

HEAA
HOERAA

HOAANED
M-HERLOA

ASIC-based
multiplier AAM01 with V-cut

FPGA-based adder

HEAA
HOERAA

HOAANED
M-HERLOA

Error analysis

Approximate
adders

HEAA
HOERAA

HOAANED
M-HERLOA

Approximate
multiplier AAM01 with V-cut

Accuracy analysis

Approximate
adders

HEAA
HOERAA

HOAANED
M-HERLOA

Approximate
multiplier AAM01 with V-cut

The GUI version of Approximator is wrapped on top of a command line tool (CMD
tool) that was developed during the initial stage. Both GUI and CMD versions of Ap-
proximator were developed and tested in Python version 3.7.3 using multiple open-source
projects. ‘Pyverilog’ [40] was combined with ‘Veriloggen’ [40] for the automatic generation
of Verilog HDL code, NumPy [41] was used for array evaluations in error and accuracy
analysis, and PySimpleGUI [42] was used to create a base GUI framework. The full list of
dependencies is given in Table 7.

Table 7. List of software dependencies and versions used.

Package Version Used

Jinja2 2.11.2
MarkupSafe 1.1.1

NumPy 1.19.3
Ply 3.11

PySimpleGUI 4.33.0
Pyverilog 1.3.0

Veriloggen 1.9.0
Yapf 0.30.0
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4.1. GUI Version of Approximator

Figure 14 shows a flowchart that visually describes the steps to be followed by a user
while using the GUI version of Approximator. The user should install the packages listed
in Table 7 to be able to use the GUI version of Approximator. After installing the packages,
the user should run the ‘GUIMainToolCode.py’ Python file. A window titled ‘Approximate
Computing Tool’, as shown in Figure 15, then appears. The window has three tabs, and a
user can select the appropriate tab (‘Verilog Code Generator’, ‘Error Analysis’, or ‘Accuracy
Analysis’) depending upon the requirement. For an illustration, important sections of the
‘Verilog Code Generator’ tab are labeled in red from 1 to 6. Label 1 uses radio buttons
to allow the user to select the Type of Verilog code. Label 2 allows the user to select the
number of adder bits for ASIC-based adder and FPGA-based adder. In the case of the
ASIC-based Multiplier, Label 2 takes in two inputs, namely the number of multiplicand bits
and the number of multiplier bits. Label 3 uses a slider to determine the number of bits for
the accurate and inaccurate parts of the approximate adder. For the approximate multiplier,
Label 3 uses a text box for the user to specify the position of the vertical cut (V-cut). Label 4
allows the user to select the required approximate adder or multiplier architecture. Label 5
shows how a user can specify a path for storing the Verilog file that will be generated
corresponding to the specified approximate arithmetic circuit. The user can choose to
generate either a Verilog code or exit from the GUI—this is indicated by Label 6. The GUI
tool ensures that the user inputs are within permissible limits. An error message, as shown
in Figure 16, is invoked if a user input does not satisfy the input constraints, as shown in
Tables 8–10 for Verilog code generation, error analysis, and accuracy analysis, respectively.
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Table 8. Specification of Verilog code generator constraints in Approximator.

Verilog Code Generated Approximate Adder
or Multiplier Total Number of Bits

# Bits for Inaccurate Part of
Approximate Adder or V-Cut
for Approximate Multiplier

ASIC (based)
adder

HEAA

4 ≤ total bits ≤ 32 3 ≤ inaccurate bits ≤ total
bits—1

HOERAA
HOAANED
M-HERLOA

FPGA (based)
adder

HEAA

4 ≤ total bits ≤ 32 3 ≤ inaccurate bits ≤ total
bits—1

HOERAA
HOAANED
M-HERLOA

ASIC (based)
multiplier AAM01 with V-cut 3 ≤multiplicand/multiplier

bits ≤ 32
0 ≤ V-cut ≤ (multiplicand bits

+ multiplier bits—3)

Table 9. Constraints associated with the error analysis of approximate arithmetic circuits in Approximator.

Error Analysis Approximate Adder or
Multiplier Total Number of Bits

# Bits for Inaccurate Part of
Approximate Adder or V-Cut
for Approximate Multiplier

Approximate adder

HEAA

4 ≤ total bits ≤ 32 3 ≤ inaccurate bits ≤ total
bits—1

HOERAA
HOAANED
M-HERLOA

Approximate multiplier AAM01 with V-cut 3 ≤multiplicand/multiplier
bits ≤ 32

0 ≤ V-cut ≤ (multiplicand bits
+ multiplier bits—3)

Table 10. Constraints associated with the accuracy analysis of approximate arithmetic circuits
in Approximator.

Accuracy
Analysis

Approximate Adder or
Multiplier Total Number of Bits

Number of Inaccurate
Bits for Approximate
Adder or V-Cut for

Approximate
Multiplier

First and Second
Unsigned Decimal

Number

Approximate
adder

HEAA

4 ≤ total bits ≤ 32 3 ≤ inaccurate bits ≤
total bits−1

0 ≤ number ≤
2total bits − 1#

HOERAA
HOAANED
M-HERLOA

Approximate
multiplier

AAM01
with V-cut

3 ≤multiplicand/multiplier
bits ≤ 32

0 ≤ V-cut ≤
(multiplicand bits +
multiplier bits—3)

1 ≤ multiplicand ≤
2multiplicand bits − 1
1 ≤ multiplier ≤

2multiplier bits − 1
# Both numbers cannot be zero simultaneously.

0 ≤ number ≤ 2total bits − 11 ≤ multiplicand ≤ 2multiplicand bits − 11 ≤
multiplier ≤ 2multiplier bits − 1

4.2. Developer Perception of Approximator GUI

The modular structure of the GUI version of Approximator allows for the logical break-
down of modules, which facilitates the inclusion of any new functionalities into the tool by
a future developer. Figure 17 portrays the tree layout of files used in the GUI. A user may
run the ‘GUIMainToolCode.py’ file, which uses files in the ‘GUI.Layout’ module to define
the layout, placement, and style of the GUI elements such as text boxes, radio buttons, slider,
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tabs, windows, and drop-down lists. Once the layout is defined, the ‘GUIMainToolCode.py’
runs an appropriate file inside the ‘GUI.Logic’ module depending on the application tab
selected by the user. A suitable function in ‘VerilogCodeGeneratorTabLogic.py’, ‘Erro-
rAnalysisTabLogic.py’, or ‘AccuracyAnalysisTabLogic.py’ is then called depending on
whether the user selects the ‘Verilog Code Generator’ (default selection), ’Error Analysis’,
or ‘Accuracy Analysis’ tab in the GUI window.
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The files inside the ‘GUI.Logic’ module consider the user inputs, make the appropriate
functionality of the tool visible to the user based on the specified inputs, and forward the
inputs to the ‘GUI.Validator’ module. Based on the application tab selected by the user,
the relevant functions in the ‘VerilogCodeGeneratorTabValidator.py’, ‘ErrorAnalysisTab-
Validator.py’, and ‘AccuracyAnalysisTabValidator.py’ files in the ‘GUI.Validator’ module
verify whether the respective constraints given in Tables 8–10 are satisfied. The information
regarding the same is returned to the appropriate function in the ‘GUI.Logic’ module. If
the input constraints are not satisfied, an error prompt is raised; an example is shown in
Figure 16. If the input constraints are satisfied, the application requested by the user is
executed, which is explained in the forthcoming subsections.
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4.2.1. Verilog Code Generation for Approximate Arithmetic Circuits

The ’VerilogCodeGeneratorTabLogic.py’ in the ‘GUI.Logic’ module calls the appropri-
ate method in the ‘VerilogGenerator.py’ file present in the ’GUI.VerilogGenerators’ module.
This method passes information regarding the type of Verilog code (FPGA-based Adder,
ASIC-based Adder, or ASIC-based Multiplier) required by the user to a method in the ‘Ver-
ilogGeneratorFactory.py’. Based on this information, either ‘FPGA_Based_VerilogAdder_
Generator.py’, ‘ASIC_Based_VerilogAdder_Generator.py’, or ‘ASIC_Based_VerilogMultiplier_
Generator.py’ is run, which use the Pyverilog and Veriloggen packages to generate the
Verilog code for FPGA-based adder, ASIC-based adder, or ASIC-based multiplier, respec-
tively. The generated Verilog file adheres to the user specifications such as the type of
specified approximate adder or multiplier architecture, i.e., whether HEAA, HOERAA,
HOAANED, M-HERLOA, or AAM01 with V-cut, number of input bits for the adder or
multiplier, and the extent of approximation desired. The generated Verilog file is saved
in the path specified by the user. The ‘FileSaver.py’ in the ‘GUI.Utils’ module is used for
naming the saved Verilog file. Figure 18 shows a sequence diagram to visualize describe
the steps followed for Verilog code generation.
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4.2.2. Error Analysis of Approximate Arithmetic Circuits

Figure 19 shows the sequence diagram for error analysis. ’ErrorAnalysisTabLogic.py’
in the ‘GUI.Logic’ module uses the ‘AdderErrorAnalyzer.py’ and ‘MultiplierErrorAna-
lyzer.py’ files in the ‘GUI.Analyzers.ErrorAnalyzers’ module to perform error analysis
for approximate adders and approximate multipliers, respectively. These analyzers use
suitable functions in ‘ApproxAdders.py’ and ‘ApproxMultipliers.py’ to calculate sum and
product corresponding to approximate adders and multipliers, respectively.
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If the size of the approximate adder is less than or equal to 10 bits and the size of
the approximate multiplier is less than or equal to 10 bits × 10 bits, the error parameters
are accurately calculated; otherwise, the error parameters are approximately calculated by
supplying a million random input vectors internally generated. The generalized equation
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to estimate the average error (AE) of an approximate adder is given by Equation (5). The
generalized equations to calculate MAE and RMSE of approximate adders are given by
Equations (1) and (2) in Section 2.3. The generalized equations to calculate AE, MAE,
and RMSE of approximate multipliers are given by Equations (6)–(8), respectively. In
Equations (1)–(3) and (5)–(8), L represents the number of random input vectors supplied
to calculate the error parameters, and we considered L as 1 million. In Equations (1), (2),
and (5), xi and yi represent the augend and addend inputs with respect to addition, and in
Equations (6)–(8), xi and yi represent the multiplicand and the multiplier with respect to
multiplication.

AEapproximate_adder =
1
L

L

∑
i=1

(Approximate_Sum(xi, yi)− Accurate_Sum(xi, yi)) (5)

AEapproximate_multiplier =
1
L

L

∑
i=1

(AAM_Product(xi, yi)− Accurate_Product(xi, yi)) (6)

MAEapproximate_multiplier =
1
L

L

∑
i=1
|AAM_Product(xi, yi)− Accurate_Product(xi, yi) | (7)

RMSEapproximate_multiplier =

√
1
L

L
∑

i=1
(AAM_Product(xi, yi)− Accurate_Product(xi, yi))

2 (8)

AE, MAE, and RMSE values are printed in a separate debug window, specified in the
‘PrintToDebugWindow.py’ file in the ‘GUI.Utils’ module. An example calculation of error
parameters using the GUI for 32-bit approximate adders comprising a 10-bit inexact part is
shown in Figure 20, and a similar display for an 8 × 8 AAM01-V8 is shown in Figure 21.
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௜ୀଵ  (8) 

AE, MAE, and RMSE values are printed in a separate debug window, specified in the 
‘PrintToDebugWindow.py’ file in the ‘GUI.Utils’ module. An example calculation of error 
parameters using the GUI for 32-bit approximate adders comprising a 10-bit inexact part 
is shown in Figure 20, and a similar display for an 8 × 8 AAM01-V8 is shown in Figure 21. 

  
(a) (b) 

  
(c) (d) 

Figure 20. Example calculation and display of AE, MAE, and RMSE for 32-bit approximate adders 
with a 10-bit inaccurate part using Approximator GUI: (a) HEAA; (b) HOERAA; (c) HOAANED; 
(d) M-HERLOA. 

Figure 20. Example calculation and display of AE, MAE, and RMSE for 32-bit approximate adders
with a 10-bit inaccurate part using Approximator GUI: (a) HEAA; (b) HOERAA; (c) HOAANED;
(d) M-HERLOA.
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runs an appropriate function in the ‘AdderAccuracyAnalyzer.py’ and ‘MultiplierAccura-
cyAnalyzer.py’ files located in the ‘GUI.Analyzers.AccuracyAnalyzers’ module to ana-
lyze the accuracy of approximate adders and approximate multipliers, respectively. These 
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4.2.3. Accuracy Analysis

Besides error analysis, accuracy analysis is also incorporated into Approximator to
give information about the percentage accuracy of result produced by an approximate
adder or multiplier for a user specified input or randomly generated inputs. A sequence
diagram depicting the accuracy analysis of approximate arithmetic circuits in Approxima-
tor is shown in Figure 22. ‘AccuracyAnalysisTabLogic.py’ in the ‘GUI.Logic’ module runs
an appropriate function in the ‘AdderAccuracyAnalyzer.py’ and ‘MultiplierAccuracyAna-
lyzer.py’ files located in the ‘GUI.Analyzers.AccuracyAnalyzers’ module to analyze the
accuracy of approximate adders and approximate multipliers, respectively. These analyzers
use the functions given in ‘ApproxAdders.py’ and ‘ApproxMultipliers.py’ to calculate
the sum and product corresponding to approximate adders and approximate multipliers,
respectively.

Percentage Accuracyapproximate_adder =

(
1− |Accurate_Sum(x, y)− Approximate_Sum(x, y)|

Accurate_Sum(x, y)

)
× 100 (9)

Percentage Accuracyapproximate_multiplier =

(
1− |Accurate_Product(x, y)− AAM_Product(x, y)|

Accurate_Product(x, y)

)
× 100 (10)

Equations (9) and (10) are used by the GUI to calculate the percentage accuracy
of results produced by the approximate adder and approximate multiplier. In these
equations, x and y represent the adder/multiplier inputs, respectively, which have to
be specified by a user for calculating the accuracy. In Equation (9), Accurate_Sum(x, y) and
Approximate_Sum(x, y) refer to the sum produced by the accurate adder and an approxi-
mate adder, respectively. In Equation (10), Accurate_Product(x, y) and AAM_Product(x, y)
refer to the product produced by the accurate multiplier and an approximate multiplier,
respectively. Since accurate sum and accurate product are present in the denominator in
Equations (9) and (10), it is important to ensure that they are not zero, because the result
would otherwise be undefined. As such, x = y = 0 is not permitted as a valid input for
accuracy analysis in Approximator, and this constraint is specified in Table 10.

The percentage accuracy of results is printed in a separate debug window, specified in
the ‘PrintToDebugWindow.py’ file in the ‘GUI.Utils’ module. An example accuracy calcu-
lation for 32-bit approximate adders (HEAA, HOERAA, HOAANED, and M-HERLOA)
comprising a 10-bit inexact part using Approximator GUI is shown in Figure 23, where the
augend was equal to 343,362 decimal and the value of addend was equal to 552,323 decimal.
An example accuracy calculation for an 8 × 8 AAM01-V8 approximate multiplier is shown
in Figure 24, where the multiplicand was equal to 235 decimal and the multiplier was equal
to 217 decimal.
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Equations (9) and (10) are used by the GUI to calculate the percentage accuracy of 
results produced by the approximate adder and approximate multiplier. In these equa-
tions, 𝑥  and 𝑦  represent the adder/multiplier inputs, respectively, which have to be 
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proximate multiplier, respectively. Since accurate sum and accurate product are present 
in the denominator in Equations (9) and (10), it is important to ensure that they are not 
zero, because the result would otherwise be undefined. As such, 𝑥 = 𝑦 = 0 is not permit-
ted as a valid input for accuracy analysis in Approximator, and this constraint is specified 
in Table 10. 

The percentage accuracy of results is printed in a separate debug window, specified 
in the ‘PrintToDebugWindow.py’ file in the ‘GUI.Utils’ module. An example accuracy 
calculation for 32-bit approximate adders (HEAA, HOERAA, HOAANED, and M-HER-
LOA) comprising a 10-bit inexact part using Approximator GUI is shown in Figure 23, 
where the augend was equal to 343,362 decimal and the value of addend was equal to 
552,323 decimal. An example accuracy calculation for an 8 × 8 AAM01-V8 approximate 
multiplier is shown in Figure 24, where the multiplicand was equal to 235 decimal and 
the multiplier was equal to 217 decimal. 
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Figure 23. Accuracy calculation of 32-bit approximate adders comprising a 10-bit inexact part using Approximator GUI: (a) HEAA; 
(b) HOERAA; (c) HOAANED; (d) M-HERLOA. Figure 23. Accuracy calculation of 32-bit approximate adders comprising a 10-bit inexact part using

Approximator GUI: (a) HEAA; (b) HOERAA; (c) HOAANED; (d) M-HERLOA.
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5. Conclusions 
This article presented a software tool for approximate computing called Approxima-

tor that can be used to automatically generate Verilog HDL codes of approximate adders 
and multipliers of any size, as well as perform error and accuracy analyses. The auto-
generated HDL codes can be used for synthesis in FPGA and ASIC design environments. 
The approximate adder types include HEAA, HOERAA, HOAANED, and M-HERLOA, 
and the approximate multiplier type includes AAM01—these approximate arithmetic cir-
cuit architectures have been proposed and validated by us. The usefulness of the approx-
imate adder architectures was demonstrated by considering a DIP application, and the 
usefulness of the approximate multiplier architecture was demonstrated by considering a 
DIB application. Approximator has been made available in a convenient GUI form for 
ease of use, and it can also be used as a CMD tool. The GUI version could be very useful 
given that it is interactive and easy to use. The associated software packages to be installed 
in conjunction with the tool have been mentioned, and the tool documentation is also pro-
vided for user reference. Example illustrations of Approximator functionalities covering 
HDL code generation, error analysis, and accuracy analysis have been provided in the 
form of screenshots that were captured during tool use. Approximator and its source code 
have been made open-access in GitHub for the benefit of the research community, thus 
contributing to the reproducibility of research and providing a scope for future develop-
ment of the tool to promote further effort in design automation for approximate compu-
ting.  
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5. Conclusions

This article presented a software tool for approximate computing called Approximator
that can be used to automatically generate Verilog HDL codes of approximate adders
and multipliers of any size, as well as perform error and accuracy analyses. The auto-
generated HDL codes can be used for synthesis in FPGA and ASIC design environments.
The approximate adder types include HEAA, HOERAA, HOAANED, and M-HERLOA,
and the approximate multiplier type includes AAM01—these approximate arithmetic
circuit architectures have been proposed and validated by us. The usefulness of the
approximate adder architectures was demonstrated by considering a DIP application, and
the usefulness of the approximate multiplier architecture was demonstrated by considering
a DIB application. Approximator has been made available in a convenient GUI form for
ease of use, and it can also be used as a CMD tool. The GUI version could be very useful
given that it is interactive and easy to use. The associated software packages to be installed
in conjunction with the tool have been mentioned, and the tool documentation is also
provided for user reference. Example illustrations of Approximator functionalities covering
HDL code generation, error analysis, and accuracy analysis have been provided in the
form of screenshots that were captured during tool use. Approximator and its source code
have been made open-access in GitHub for the benefit of the research community, thus
contributing to the reproducibility of research and providing a scope for future development
of the tool to promote further effort in design automation for approximate computing.
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