
computers

Article

An Experimental Study on Centrality Measures
Using Clustering

Péter Marjai 1 , Bence Szabari 1 and Attila Kiss 1,2,*

����������
�������

Citation: Marjai, P.; Szabari, B.;

Kiss, A. An Experimental Study on

Centrality Measures Using Clustering.

Computers 2021, 10, 115. https://

doi.org/10.3390/computers10090115

Academic Editor: Paolo Bellavista

Received: 3 July 2021

Accepted: 12 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
g7tzap@inf.elte.hu (P.M.); n0qsdc@inf.elte.hu (B.S.)

2 Department of Informatics, J. Selye University, 94501 Komárno, Slovakia
* Correspondence: kiss@inf.elte.hu

Abstract: Graphs can be found in almost every part of modern life: social networks, road networks,
biology, and so on. Finding the most important node is a vital issue. Up to this date, numerous
centrality measures were proposed to address this problem; however, each has its drawbacks, for
example, not scaling well on large graphs. In this paper, we investigate the ranking efficiency and the
execution time of a method that uses graph clustering to reduce the time that is needed to define the
vital nodes. With graph clustering, the neighboring nodes representing communities are selected into
groups. These groups are then used to create subgraphs from the original graph, which are smaller
and easier to measure. To classify the efficiency, we investigate different aspects of accuracy. First, we
compare the top 10 nodes that resulted from the original closeness and betweenness methods with
the nodes that resulted from the use of this method. Then, we examine what percentage of the first n
nodes are equal between the original and the clustered ranking. Centrality measures also assign a
value to each node, so lastly we investigate the sum of the centrality values of the top n nodes. We also
evaluate the runtime of the investigated method, and the original measures in plain implementation,
with the use of a graph database. Based on our experiments, our method greatly reduces the time
consumption of the investigated centrality measures, especially in the case of the Louvain algorithm.
The first experiment regarding the accuracy yielded that the examination of the top 10 nodes is not
good enough to properly evaluate the precision. The second experiment showed that the investigated
algorithm in par with the Paris algorithm has around 45–60% accuracy in the case of betweenness
centrality. On the other hand, the last experiment resulted that the investigated method has great
accuracy in the case of closeness centrality especially in the case of Louvain clustering algorithm.

Keywords: centrality; betweenness; closeness; graph clustering; Markov algorithm; Louvain algo-
rithm; Paris algorithm; graph database

1. Introduction

In recent years, networks have become part of everyday life, and because of this, they
became of high interest to researchers. With the development of computer science, large
graphs took on essential roles in many scientific areas such as biology [1], chemistry [2],
computer science [3], social engineering [4,5], marketing [6,7] or controlling disease spread.
Nowadays, the use of graph databases is also becoming more common and popular,
since many areas can take advantage of the benefits provided by graph structure and
graph databases. Today’s popular social sites such as Facebook, Twitter, and Instagram
use graphs to model relationships, which greatly speeds up queries about individual
relationships, and network maintenance provides a unified interface for fast and efficient
storage of relations. Furthermore, they are playing an increasing role in other areas of IT,
such as telecommunications [8], road network infrastructure [9], and the organization of
public transport routes [10]. In addition, they are gaining ground, for example, in biology,
ref. [11] collected a large number of applications where significant breakthroughs have
been achieved in the use of graph databases in biology.

Computers 2021, 10, 115. https://doi.org/10.3390/computers10090115 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1462-5629
https://orcid.org/0000-0003-4054-7070
https://orcid.org/0000-0001-8174-6194
https://doi.org/10.3390/computers10090115
https://doi.org/10.3390/computers10090115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10090115
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10090115?type=check_update&version=1


Computers 2021, 10, 115 2 of 25

In this paper, we use a method that uses different clustering algorithms to improve the
computation of the mentioned centrality measures over large networks. Graph clustering
uses different attributes of a graph to find dense communities that belong to the same
group. Based on the clusters, the original graph can be divided into multiple subgraphs
that are smaller in extent. Using different centrality measures on such subgraphs results in
faster execution and less computation cost.

Related Work

Social network analysis and its applications is a fundamental and practical mathe-
matical topic at the moment. There are numerous subjects in this field such as finding
the shortest path between two nodes or finding k-dense subgraphs and so on. One of the
most researched aspects of network analysis is finding the most important nodes and do
it effectively. Since the idea of centrality was proposed, numerous methods have been
introduced to measure a node’s centrality and rank the nodes based on this value. Each of
these methods takes different aspects of the network to decide if a node is ’vital’ or not,
thus each method has its limitations and drawbacks. One such algorithm is betweenness
centrality [12], which is based on the number of shortest paths that go through a node.
Closeness centrality ranks the nodes based on the average length of the shortest path
between the node and all the other nodes in the network [13]. Another common measure
is Eigenvector centrality [14] where the score of a node is influenced by the scores of its
adjacents nodes based on the principle that nodes with high scoring neighbors have a larger
score. PageRank [15] is also a well-known measure. It assigns a weight to each document
based on the number of their incoming links. A bunch of algorithms was developed over
time to calculate these values efficiently [16]; however, these were not scaling well on
massive networks.

The identification of the vital nodes can be very time-consuming. Up to this point,
research was conducted to decrease the runtime of the centrality algorithms. In [17], the
authors propose parallel versions of betweenness and closeness centrality that can handle
dynamic graphs, where nodes and edges could change in every time step. To access this
problem they process a batch of updates in a parallel way. Another method was proposed
in [18] that approximates centrality values with the aid of machine learning and node
embedding. Their algorithm takes a set of features for each node and the adjacency matrix
as its input and uses them to estimate the centrality rank of each node. In [19], they
propose a lossy graph reduction approach that reduces the execution time of the centrality
algorithms. After our investigations in this field, we decided to extend our previous
research [20] and investigate the ranking efficiency and execution time of more centrality
measures using clustering methods. Markov clustering [21] is a popular algorithm that
is commonly used to cluster protein sequences in bioinformatics data [22]. It also can be
used in a distributed form [23]. It is based on the random walk principle, which means if
you randomly walk between nodes you are more likely to move around nodes in the same
cluster instead of crossing to other clusters. The Louvian [24] method was designed to
extract communities from large graphs. It is based on the idea of modularity optimization.
Modularity is a value between 1 and −0.5 that is used to measure the relative density of
the links in communities. The optimization of this value hypothetically results in the best
clustering of the nodes. Paris algorithm is a hierarchical clustering algorithm that was
proposed in [25]. It is an agglomerative method, which means that it performs a greedy
merge on the nodes based on their similarity.

We investigate the runtime of the methods with and without the use of clustering
algorithms. We also compare the top 10 nodes produced by the centrality measures on the
original and the clustered graphs to gain insight into the accuracy of our method. The more
the top nodes are alike, the more the result is similar to the original method. The use of
graph databases can significantly reduce the runtime of calculations related to graphs. For
example, researchers found out using a graph database over a relational database can find the
best scoring path between two proteins approximately a thousand times faster and obtain



Computers 2021, 10, 115 3 of 25

the shortest paths significantly quicker; therefore, the conclusion is that the graph databases
are ready for bioinformatics and can provide essential speedups on selected problems over
relational databases. Accordingly, we considered it important to implement our method using
graph databases as well, to make suggestions for problems that arise during implementation
and use, and how to store different graphs in a database. Because of this, we also investigate
if the runtime can be further accelerated via the use of a graph database.

2. Basic Concepts and Algorithms

In this section, we detail the used centrality measures. A high-level overview of the
graph clustering algorithms can be also found here.

2.1. Betweenness Centrality

Betweenness centrality was introduced in [12] and is based on the shortest paths. It is
defined as follows:

bi = ∑
s 6=i 6=t∈V

σst(i)
σst

. (1)

where bi is the betweenness centrality value of node i, σst is the total number of the shortest
paths from node s to node t and σst(i) is the number of those paths that pass through node i.

2.2. Closeness Centrality

Alex Bavelas (1950) [13] defined closeness as the reciprocal of the farness. It indicates
the average length of shortest paths between a node and all the other nodes is a graph. It is
defined as:

ci =
N

∑N
j d(i, j)

(2)

where ci is the closeness centrality score of node i and d(i, j) is the distance between nodes
i and j, which is the number of edges in a shortest path that connects them.

2.3. Graph Clustering

With the use of graph clustering, the nodes of an enormous graph can be divided
into multiple clusters based on different attributes such as neighborhood similarity or
connectivity. With the use of graph clustering methods, densely connected groups or
natural groupings of nodes can be found. A brief overview of the used algorithms can be
read below.

2.4. Louvain Algorithm

Modularity was defined by Newman and Girvan in [26]. It is a scalar value between
−1/2 and 1 that is used to measure to compare the links between communities with the
density of links inside communities. More formally,

Q =
1

2m ∑
i,j

[
Aij −

kik j

2m

]
δ(Ci, Cj) (3)

where m is the sum of all of edge weights in the graph, ki and k j are the sum of the weights
of the edges attached to nodes i and j, respectively, Aij represents the edge weight between
nodes i and j, Ci and Cj are the communities of the nodes and δ is Kronecker delta function
(δ(x, y) = 1 if x = y, 0 otherwise).

The nature of partitions that were collected by different methods can be compared
with the use of modularity. Louvain clustering is capable of discovering partitions with
high modularity. Other than that, it can also unfold the network’s complete hierarchical
composition. Louvain algorithm consists of two steps that are repeated after one another.
The algorithm takes a weighted G graph with N nodes as its input. First, every node is
assigned to a different community, which results in N communities. Next, the modularity



Computers 2021, 10, 115 4 of 25

gain is calculated for each i node. It is achieved by deleting i from its community and
assigning it to a community of j where j is a neighboring node to i. The modularity gain is
calculated as follows:

∆Q =

[
∑in +ki,in

2m
−
(

∑tot +ki
2m

)2
]
−
[

∑in
2m
−
(

∑tot
2m

)2
−
(

ki
2m

)2
]

(4)

where ∑in is the sum of the weights of the links inside community C, ki,in is the sum of the
weights of the links from i to nodes in C and m is the sum of the weights of all links in the
network, ∑tot is the sum of the weights of the links incident to nodes in C and ki is the sum
of the weights of the links incident to node i.

After this is calculated for all communities that contain i, it is reassigned to the com-
munity that achieved the largest modularity increase. Node i stays in its own community
if there is no other community with a modularity increase. The process is applied for all
nodes of G and repeated until no modularity increase can be accomplished.

The second step groups each community’s nodes and creates a new network, from
the nodes inside a group. The edges between nodes in the same group are represented
as self-loops, while weighted edges between the communities are used to indicate links
between nodes that are in different communities.

2.5. Markov Algorithm

A matrix A is a Markov matrix if its entries are greater or equal to zero and the sum of
each column’s entries is one. In this matrix, each entry represents transition probabilities
from one state to another. Let G be a graph. Now let us place an object at vertex vj. At each
iteration, the object has to move to a neighboring node. The probability that it moves to
vertex vi is denoted as:

mij =

{
1

deg(vj)
if (vj, vi) is an edge in G

0 otherwise
(5)

where mij represents the probability that a random walk of length k starting at vertex vj,
ends at vertex vi, where the length is the number of edges. Random walk is a special case of
the Markov chain, using transition probability matrices. With the use of random walks on
a graph positions where flow converge can be found. Such positions indicate the existence
of a cluster. All of the graph clustering algorithms are based on this principle. An example
Markov matrix can be seen in Figure 1.

1

6

2
3

5

4
M =


0 0.33 0 0 0 0.33

0.5 0 0.5 0.25 0 0
0 0.33 0 0.25 0 0
0 0.33 0.5 0 0.5 0.33
0 0 0 0.25 0 0.33

0.5 0. 0 0.25 0.5 0


Figure 1. Example of a Markov matrix.

Let r be a non-negative number, and let M ∈ Rk×l , M ≥ 0 be the initial Markov matrix.
With the re-scaling of every column of M with the power coefficient r we acquire an τr M.
The inflation operator with power coefficient r is denoted as τr. The re-scaling is based
on τr : Rk×l −→ Rk×l and (τr M)pq = (Mpq)r/ ∑k

i=1 (Miq)
r. We use the inflation operator

to weaken and strengthen the flow. The intensity of these effects is determined by the r
parameter. There is another parameter, called expansion, which allows the flow to reach
different regions of the graph. Expansion is calculated as M×M. Markov chains and their
transition matrix can be used to find different parts of the graph. The algorithm converges
to a “doubly idempotent” matrix. This matrix only contains one value in each column and
is considered to be in a steady state. Based on their relation to each other, nodes could be in



Computers 2021, 10, 115 5 of 25

two states. It can either attract other nodes or be attracted to another node. The nodes that
attract others must have at least one positive value in their row in the final matrix. These
nodes attract the other nodes in their row. Nodes that attract each other are considered to
be in the same cluster.

In summary, an adjacency matrix is created, which is then altered by the probability
matrices. After that, the matrix is inflated with the parameter r. These steps are repeated
until a steady state is found. From this state, the clusters are obtained.

2.6. Paris

To understand the Paris algorithm, let us introduce some essential concept. A G
graph’s weighted adjacency matrix A is a non-negative, symmetric matrix. If there is an
edge between i and j then the corresponding aij value in the matrix is the weight of the
edge e ∈ E that is between i and j. The weight wi of node i is:

wi = ∑
j∈V

Aij, (6)

which is the sum of the weights of its incident edges. The cumulative weight of G’s nodes is:

w = ∑
i∈V

wi = ∑
i,j∈V

Aij. (7)

The weights can be used as a probability distribution on node pairs

∀i, j ∈ V, p(i, j) =
Aij

w
, (8)

and also on nodes
∀i ∈ V, p(i) = ∑

j∈V
p(i, j) =

wi
w

. (9)

The distance of nodes i and j can be calculated with the use of the node pair sampling
ratio

d(i, j) =
p(i)p(j)

p(i, j)
. (10)

The node distance can be defined with the following conditional probability as well

∀i, j ∈ V, p(i|j) = p(i, j)
p(j)

=
Aij

wj
, (11)

which means that the distance between nodes i and j can be calculated as

d(i, j) =
p(i)

p(i|j) =
p(j)

p(j|i) . (12)

Let us consider a cluster C on the graph G, and let a and b be two different clusters.
All of the above equation applies to clusters as well, which means that the distance of a
and b can be defined as

d(a, b) =
p(a)

p(a|b) =
p(b)

p(b|a) . (13)

Paris algorithm merges the closest clusters based on this distance.
The algorithm works in the same way as the Louvain algorithm. First, a cluster

is created for each node in G. The algorithm merges the two closest clusters until no
modularity gain can be achieved. Probability can also be applied to the modularity defined
in Section 2.4:

Q(C) = ∑
i,j∈V

(p(i, j)− p(i)p(j)δC(i, j)) = ∑
a∈C

(p(a, a)− p(a)2). (14)



Computers 2021, 10, 115 6 of 25

In [27], it was stated that the maximization of modularity has a resolution limit. The
resolution γ was introduced in [25]. This modifies the modularity as follows:

Qγ(C) = ∑
i,j∈V

(p(i, j)− γp(i)p(j))δC(i, j) (15)

3. The Algorithm

In this section, we explain our algorithm that we proposed in [20] and is used in our
experiments. Let G be an undirected graph with N nodes. The algorithm consists of two
main stages. First, the clusters of G are created via the use of a clustering algorithm. The
output is a mapping for each node Ci −→ [id1, · · · idn] where the keys represent the cluster
labels, and the values represent the nodes that are associated with that cluster. The cluster
mappings are saved in a JSON format, so they can be reused in experiments in the future.

In the second phase, we create sub-graphs C1, . . . , Cm of the original G graph based on
the clusters that were created in the previous step. The betweenness and closeness centrality
are then calculated on these sub-graphs. After the calculation of the centrality values on the
sub-graphs, the values are assigned to the nodes of the original graph. Because that these
sub-graphs are smaller in magnitude than the original G graph, the use of the centrality
measures becomes a cost-effective subproblem.

Due to the loss of the edges between sub-graphs, our algorithm only gives an approxi-
mate solution of the measures compared to the calculation on the whole graph; therefore,
the centrality values calculated by our method might differ from the values obtained by
centrality algorithms on the complete graph. Our experiments yielded that the proposed
algorithm in [20] is accurate in the case of closeness centrality, scales well, and is able to
determine influential nodes up to 20 times faster than traditional centrality measures.

It is crucial to know that the Markov clustering highly depends on its expansion and
inflation parameter. Because of that, we experimented with values between [1.5, 2.5] to find
an ideal value for the algorithm.

In this paper, we expanded the range of the centrality algorithms, which were exam-
ined previously. Since graph databases could store and process graph data more efficiently,
we also proposed a solution on how to apply this technique in a Neo4j Graph Database us-
ing Cypher queries. The experiments we conducted proved that our algorithm can be used
to reduce the execution time of the centrality measures significantly; however, it has only
around 45–60% accuracy in the case of betweenness centrality if the top n are compared. If
the sum of the values of the nodes is being examined, the investigated method used with
Louvain clustering properly approximates the original closeness centrality measure.

4. Graph Databases

A graph database is a database management system that has the standard CRUD
(Create, Read, Update, Delete) operations, and uses graph structures that consist of nodes,
edges, and properties to represent and store data. The same structure is used for semantic
queries. Graph databases are NoSQL databases, which are optimized for transactional
performance and engineered with transactional integrity and availability in mind. There
are two properties that might differ in graph databases: the underlying storage and
the processing engine. Some graph databases use relational databases, object-oriented
databases, or even some general-purpose data storage systems to serialize and store the
graph data, while others use native graph storage that is optimized and designed for not
just storing but managing graphs. Numerous graph databases use native graph processing
engines that rely on the index-free adjacency property that enforces the nodes to have a
direct physical RAM address and physically point to other adjacent nodes resulting in a
fast traversal of the graph. For our experiments we used Neo4j; in the next subsection, we
go through its fundamental concepts.



Computers 2021, 10, 115 7 of 25

4.1. Neo4J

The Neo4J (Network Exploration and Optimization 4 Java) is a graph database man-
agement system that offers ACID-compliant transactions and native graph data storage
and processing. Neo4J uses the property graph model to store information. The entities are
called nodes that can hold an arbitrary number of properties which are key–value pairs. A
node can have multiple labels indicating the role of the node. With the use of these labels,
constraints and indices can be created.

In Neo4j, relationships are represented as directed connections between two nodes.
These links must have a type, a start node, and an end node. Similar to nodes, relationships
can also have properties. Between two nodes, there can be any number or type of relation-
ship without performance loss. Despite the directed relationships, relationships can be
traversed efficiently in either direction. Figure 2 visualizes a property graph. A to K are the
nodes, and “:LINK” represents the connection between two nodes. To avoid congestion,
only three “:LINK” are printed out in the figure; however, each edge without “:LINK” is a
full value connection.

Figure 2. A property graph: nodes, relationships, and properties.

4.2. Cypher

Cypher is a declarative graph query language that enables expressive and powerful
querying of data on a property graph. The language was designed to be easily read and
understood by the user while keeping the power and capability of SQL (standard query
language). Cypher allows running queries to find data that match a specific pattern. The
language’s syntax is based on ASCII art, which makes the queries readable and very visual.
Cypher, such as other query languages contains several keywords to define patterns, filter
patterns, and return results. The most common keywords are MATCH, WHERE, and
RETURN, which act differently than the usual SELECT, . . ., WHERE statement, although
they have a similar purpose.

4.3. Graph Data Science Library

Graph Data Science (GDS) library [28] is a graph processing framework. GDS provides
parallel versions of graph algorithms for Neo4j, exposed as Cypher procedures. The library
already has efficiently implemented the betweenness and closeness algorithms that we
applied in our solution. To run these algorithms, the GDS library uses a specially designed
in-memory graph format to represent the graph data. This means that the data from the
database need to be loaded into an in-memory graph catalog. Regulation of the amount
of data loaded by graph projections is possible, which allows filtering on nodes and
relationships based on a property or a label. We use the latter to filter the nodes that
have the same cluster ID and create the corresponding subgraph. The projections of the
subgraphs are stored in memory using compressed data structures that are optimized for



Computers 2021, 10, 115 8 of 25

topology and property lookup operations. GDS has two variants of projecting a graph
from the database to the memory: native projection and Cypher projection. The native
projection provides better performance since under the hood it uses the internal Neo4J API,
which results in faster graph loading; however, it is limited only to specifying node labels
and relationship types. Due to this limitation, it is not suitable for our proposed algorithm.
Cypher projection, on the other hand, is a more flexible, expressive approach that supports
all the features of the Cypher query language and can be used to filter nodes that belong to
the same group.

By default, for the Cypher projection, the graph must have a name for later reuse;
however, due to the clustering algorithm, we might need to create several subgraphs
that would only be used when the algorithm is running, and there is no need for reuse;
GDS provides so-called anonymous graphs to remedy this. The anonymous graph can be
specified with two parameters: nodeQuery and relationship Query. These parameters are
used to create constraints on the nodes and relationships. This enables us to select specific
parts of the graph.

Once a graph is loaded into the database the implemented centrality measures can be
used. They calculate the values on the projection of the subgraph. In the end, we aggregate
the partial results to obtain the centrality values for the whole graph.

5. Clusters and Parameters
5.1. Cluster Creation

For our experiments, we selected three graph clustering methods, namely Louvain,
Markov, and Paris, which, although based on different methods, have a common goal:
finding communities within a large graph. These clustering algorithms usually have
parameters that notably influence the output of an algorithm. Choosing the optimal
parameters is not always trivial or even possible, however, the algorithms are highly
sensitive to the choice of their parameter values. The goal of these parameters was to resolve
complications that were introduced by structural properties such as varying densities.
From the selected algorithms, the Markov algorithm has parameters that can fine-tune the
outcome of the algorithm. The Louvain and Paris algorithms do not require any parameters.
It is important to know that, in the case of large graphs, trying out clustering parameter
values is not computationally feasible. Because of this, we give a brief overview of our
parameter selection that is based on the researcher’s recommendations.

5.2. Markov Parameters

As we explained in Section 2.5, the Markov algorithm has two major parameters:
inflation and expansion. Inflation has a correlation with the granularity of the resulting
output. A higher r value can result that the flow will reach longer distances in the input
graph; therefore, inflation is the key parameter of the algorithm, while the expansion
parameter is responsible for allowing the flow to connect different regions of the network.

Modularity is a generally used metric to measure how effectively a network can be
partitioned into communities, thus it can be used to optimize clustering parameters. Before
we finalized our parameter selection, we performed multiple runs of the Markov algorithm
using different inflation values from 1.5 to 2.5 inspired by [29]. To illustrate these processes,
we will show the experimental results on the fb-combined social network, that consists of
4039 nodes and 88,234 edges.

As shown in Table 1, the inflation value of 1.8 produced the highest modularity
value, which suggests higher clustering quality; therefore, we used this value in our final
experiments. In the next phase, we focused on the expansion parameter, so we applied
the same testing method where we picked values from 2 to 5 for the expansion, and we
set the previously calculated inflation value. We obtained our results with the use of the
NetworkX library, which by default produces a result with the precision of seven decimal
places. Based on our experiments we experienced that in the case of large networks, the
modularity values can be very similar, so examination of all these digits is necessary.



Computers 2021, 10, 115 9 of 25

Table 1. Modularity for different inflation values.

Inflation Modularity

1.5 0.8298429
1.6 0.8301530
1.7 0.8302311
1.8 0.8302620
1.9 0.8301715
2 0.8300583

2.1 0.8300583
2.2 0.8300735
2.3 0.8301639
2.4 0.8301789
2.5 0.8301936

Table 2 shows that we were able to obtain the highest modularity score with the value of
2. With this knowledge, we obtained 10 clusters from the facebook_combined network using
the Markov clustering algorithm. Each color represents a separate cluster in the graph.

Table 2. Modularity for different expansion values.

Expansion Modularity

2 0.8302620
3 0.8294250
4 0.7876173
5 0.7880002

In summary, to partition our graph data sets, we did a pre-analysis to choose pa-
rameters where it was needed to obtain the optimal clustering from each algorithm. A
visualization of the original graph, and the clusters created by the different algorithms can
be seen in Figures 3–6. Each cluster is represented with a different color in a gradient style.

Figure 3. Social network: fb-combined.



Computers 2021, 10, 115 10 of 25

Figure 4. Markov clusters on fb network.

Figure 5. Louvain clusters on fb network.

Figure 6. Paris clusters on fb network.

6. Results

For our experiments, four actual networks were chosen to evaluate the ranking ef-
ficiency and the execution time of the examined method in the case of large networks.
Most of the datasets are based on social sites since they consist of numerous nodes and
edges. Due to the limitations of our equipment, we selected four graphs that are different



Computers 2021, 10, 115 11 of 25

in magnitude, to gain more insight. The selected graphs for facebook_combined has
4039 nodes and 88,234 edges [30], the deezer-europe network contains 28,281 nodes and
92,752 edges [31], the soc-gemsec-HU graph has 47,538 nodes and 222,887 edges [32], and
the soc-google-plus network has 211,187 nodes and 1,506,896 edges [33]. These networks
can be acquired from NetworkRepository [34] and SNAP [35].

To evaluate the efficiency of the examined method, we conducted several experiments
with different scenarios on different platforms. As we mentioned earlier, betweenness
and closeness centrality was chosen as the focus of the study. We compare the values
resulted from these algorithms with the values presented by the investigated method. The
execution time of the investigated method and the original centrality measures are also
examined. The investigated method used Louvain, Markov, and Paris clustering. We
then compared the behavior of centrality measures on subgraphs created by clustering
algorithms. The execution time of the investigated method contains both the execution
time of the clustering and the centrality measure. The experiments are divided into three
parts and are explained below. In the first experiment, we inspected the relation between
the top ten nodes selected with no clustering and different clustering methods. In the
second experiment, we examined how the algorithms behave compared to plain centrality
algorithms when implemented on clusters, using the igraph library [36]. Finally, we looked
at how the proposed method performs on a Neo4j graph database using GDS.

6.1. Clusters

Out of the employed clustering algorithms, only the Markov algorithm is not a
parameter-free algorithm; before defining the Markov clusters, it was necessary to select
the inflation and expansion parameters per graph that produced the highest modularity
value. The final parameter values are shown in Table 3.

Table 3. The inflation and expansion parameter choice under the networks.

Graph Inflation Expansion

facebook_combined 1.8 2
deezer_europe 1.5 3
soc-gemsec-HU 1.2 2
soc-google-plus 1.1 3

It can be seen that the Louvain algorithm has the best results, while the other two
algorithms have detected a lower density of links inside communities. In Table 4, the
number of the clusters created by the different algorithms can be seen.

Table 4. The number of the clusters created by different clustering algorithms.

Graph Louvain Markov Paris

facebook_combined 15 10 6
deezer_europe 79 773 2
soc-gemsec-HU 24 239 8
soc-google-plus 2220 1714 1706

From the results, it can be seen that the Markov algorithm creates a lot of clusters in
the case of every network. Louvain creates considerably fewer clusters; however, the Paris
algorithm creates the least cluster.

6.2. Experiment 1: Ranking of the Nodes

In this experiment, we compared the ten most influential nodes extracted by the
centrality algorithms without the use of the investigated method and the nodes that were
the result of the investigated method. This indicates the node distribution in the clusters.



Computers 2021, 10, 115 12 of 25

For this experiment we used the facebook_combined (fb), deezer_europe (dz), and soc-
gemsec-HU (gm) graphs. The first column shows what rank a node has achieved, based
on each algorithm. The first row contains the ranks and the second column shows the
result of the basic centrality algorithms. These are followed by the results of the modified
version of the algorithms where the Louvain (ln), Markov (mv), and Paris (ps) clustering
methods were employed. Tables 5–7 show the results of the betweenness (bw) algorithm,
while Tables 8–10 contain the results of the closeness (cn) algorithm.

Table 5. Most influental nodes in facebook_combined network based on betweenness.

Rank fb_bw fb_bw_ln fb_bw_mv fb_bw_ps

1 107 3437 107 107
2 1684 1684 698 1684
3 3437 0 1085 1577
4 1912 1912 862 698
5 1085 107 414 1718
6 0 348 686 860
7 698 414 1405 348
8 567 686 0 414
9 58 483 1483 1085
10 428 1783 1465 862

Table 6. Most influental nodes in deezer_europe network based on betweenness.

Rank dz_bw dz_bw_ln dz_bw_mv dz_bw_ps

1 14,771 2644 1864 14,771
2 11,987 20,304 8413 21,925
3 21,925 2703 5336 28,044
4 28,044 6536 9144 11,599
5 4361 2961 569 4361
6 10,971 26,754 8190 3296
7 867 14,195 2709 20,841
8 3296 1037 23,269 23,914
9 23,143 15,558 6342 17,527
10 24,904 6371 4205 867

Table 7. Most influental nodes in soc-gemsec-HU network based on betweenness.

Rank gm_bw gm_bw_ln gm_bw_mv gm_bw_ps

1 14,900 38,301 1463 14,900
2 40,491 46,733 42,854 24,218
3 24,218 36,350 45,996 35,737
4 14,597 5285 32,324 14,082
5 15,724 19,306 1912 32,622
6 19,081 44,985 9560 14,570
7 7471 35,737 16,517 15,724
8 38,301 32,114 23,900 1397
9 1397 6758 12,987 5772
10 42,899 32,582 16,952 19,081



Computers 2021, 10, 115 13 of 25

Table 8. Most influental nodes in facebook_combined network based on closeness.

Rank fb_cn fb_cn_ln fb_cn_mv fb_cn_ps

1 107 584 0 0
2 58 3980 56 1912
3 428 1912 67 56
4 563 107 271 67
5 1684 1684 322 271
6 171 3437 25 322
7 348 0 26 25
8 483 662 277 26
9 414 661 252 277
10 376 659 21 252

Table 9. Most influental nodes in deezer_europe network based on closeness.

Rank dz_cn dz_cn_ln dz_cn_mv dz_cn_ps

1 14,771 7109 9547 17,605
2 2518 25,373 28,219 19,721
3 23,143 25,105 27,457 3454
4 24,904 25,051 25,748 17,468
5 867 23,819 25,360 16,782
6 5989 20,512 24,108 13,530
7 20,162 17,690 20,398 20,230
8 10,971 15,774 20,397 11,643
9 21,079 10,703 19,770 418
10 6832 10,657 14,222 5310

Table 10. Most influental nodes in soc-gemsec-HU network based on closeness.

Rank gm_cn gm_cn_ln gm_cn_mv gm_cn_ps

1 14,900 36,365 44,157 14,900
2 40,491 18,432 43,794 24,218
3 24,218 6346 40,596 35,737
4 38,301 10,085 20,939 14,570
5 15,724 17,688 21,401 23,076
6 14,597 46,926 24,031 32,622
7 19,081 6252 27,277 609
8 42,899 21,488 25,776 15,851
9 7471 17,615 19,884 35,950
10 18,877 14,082 16,302 19,081

The ranking of the nodes and the similarity between the rankings can be used as an
indicator for accuracy. It can be seen that in the case of the used networks, occasionally, the
investigated method returns the same nodes as the top 10 nodes as the original centrality
measures, however it is not good enough. Because of this, we conducted two more
experiments to further evaluate the ranking accuracy of the investigated method. First, we
examined that how many nodes of the original methods’ top n ranking could be found
in the top n ranking of the investigated method. The results can be seen in Figures 7–12.
The x axis represents the number of the top nodes that were examined, while the y axis
represents the accuracy.



Computers 2021, 10, 115 14 of 25

Figure 7. Investigated methods’ accuracy in the case of closeness centrality on fb.

Figure 8. Investigated methods’ accuracy in the case of betweenness centrality on fb.

Figure 9. Investigated methods’ accuracy in the case of closeness centrality on dz.



Computers 2021, 10, 115 15 of 25

Figure 10. Investigated methods’ accuracy in the case of betweenness centrality on dz.

Figure 11. Investigated methods’ accuracy in the case of closeness centrality on gm.

Figure 12. Investigated methods’ accuracy in the case of betwenness centrality on gm.

It can be seen that in the case of closeness centrality, the investigated method does not
perform well, especially if the network is small in scale. Out of the clustering methods,
the Paris clustering has the best accuracy, however, in the best case its only 62.43%. The



Computers 2021, 10, 115 16 of 25

same could be told about betweenness centrality except that the investigated method is not
sensitive to networks size in this scenario.

Second, we use the values assigned to the nodes by the centrality measures to examine
the accuracy. We compare the sum of the top n value by the original centrality measures
and the sum of the top n node values by the investigated method. If the investigated
method has a high enough score then it approximates the traditional centrality measures
well. Figures 7–12 showcases the results of this experiment. The x axis represents the
number of the top nodes that were examined, while the y axis represents the accuracy.

Based on Figures 13–15 it can be said that the investigated method proves to be
not accurate enough if it is used to approximate the result of the betweenness centrality
measure. The Paris algorithm has the best result, however, the sum of its top values is only
about 25–40% of the sum of the original betweenness values.

On the other hand, Figures 16–18 showcase that the investigated methods sum of
values is almost always greater than the original methods when it is used with the Lou-
vain clustering algorithm. On average, its sum is 197.73% of the conventional centrality
algorithm, which demonstrates that the investigated method is able to approximate the
closeness centrality method.

Figure 13. Investigated methods’ sum accuracy in the case of betweenness centrality on fb.

Figure 14. Investigated methods’ sum accuracy in the case of betweenness centrality on dz.



Computers 2021, 10, 115 17 of 25

Figure 15. Investigated methods’ sum accuracy in the case of betwenness centrality on gm.

Figure 16. Investigated methods’ sum accuracy in the case of closeness centrality on fb.

Figure 17. Investigated methods’ sum accuracy in the case of closeness centrality on dz.



Computers 2021, 10, 115 18 of 25

Figure 18. Investigated methods’ sum accuracy in the case of closeness centrality on gm.

6.3. Experiment 2: Runtime without Graph Database

In this experiment, we evaluated the efficiency of the original centrality measures and
the investigated algorithm with the use of the execution time they achieved. The algorithms
were implemented in Python, using the python-igraph library. Due to the underlying C
library, igraph is more performant in terms of CPU time and memory usage than the
similar NetworkX library [37] which is a pure-Python implementation. The algorithms
were executed 25 times, and the average, minimum, and maximum execution times were
taken and are shown Figures 19–24. For all of our experiments, we used the same virtual
machine with Intel Core CPU (Haswell based) @ 2.40GHz that has 48 cores and 60 GB
RAM.

Figure 19. Centrality algorithms’ execution time on fb and dz.

Figures 19 and 20 show how the unmodified centrality algorithms perform on the
selected networks. It can be clearly seen that these values are very different, which means
that these algorithms do not scale well on large graphs. For example, on the soc-google-
plus, the calculation of the betweenness centrality takes an average of 1049.30 min, which is
approximately 17.5 h, while closeness on the same graph takes about 4.6 h. Figures 21–24
show a decrease in runtime if we run the previous algorithms on the subgraphs that are
created based on the clusters. In the case of smaller graphs, it decreases significantly, and
in the case of large graphs, a decrease of 12–20% can be observed. Among the clustering
algorithms, the number of subgraphs created by Louvain proved to be the most optimal,
the Markov method falls behind Louvain, while the Paris clustering is outstandingly
worse than the others. The reason behind this is, that the Paris clustering algorithm, as



Computers 2021, 10, 115 19 of 25

shown in Table 4, has formed a fairly small number of groups, so it is not worthwhile to
perform the division with such a low cluster number. In summary, a significant reduction
can be achieved in the calculation of centrality values using the igraph library with the
incorporation of the Louvain clustering algorithm.

Figure 20. Centrality algorithms’ execution time on gm and gl.

Figure 21. Betweenness algorithms’ execution time on fb and dz.

Figure 22. Betweenness algorithms’ execution time on gm and gl.



Computers 2021, 10, 115 20 of 25

Figure 23. Closeness algorithm’s execution time on fb and dz using ln, mv, and ps.

Figure 24. Closeness algorithm’s execution time on gm and gl using ln, mv, and ps.

6.4. Experiment 3: Runtime of Graph Database Implementation

In this scenario, similar to the previous one, the execution time of the algorithm with
the use of the Neo4j graph database and the Graph Data Science library with preloaded data
was examined. The graph database was used to examine how the method we proposed
earlier could be applied, what additional modifications are required, and how much it
is supported by the query language of the given database, and what overhead it entails.
Furthermore, we wanted to model the situation when the data are already coming from a
stored database. We applied the method to graphs that are already available in the database.
The library uses multiple CPU cores for graph projections, algorithm computation; however,
in our experiments, we used Neo4j Community Edition where the maximum concurrency
was limited to 4. The algorithms were executed 25 times, and the average, minimum, and
maximum execution times were taken as shown in Figures 25–30.

In the GDS environment, the decrease could still be observed in the case of between-
ness centrality. This decrease can be seen in Figures 27 and 28, while in the case of closeness
it could no longer decrease the execution time of the procedure, and in many cases even
deteriorated it. This could be because of the heavy optimization in the implementation
in the GDS library. On the large graphs, the Louvain algorithm continued to scale best,
while on the smaller ones, the clustering algorithms performed approximately the same.
For example, on the soc-google-plus network, the original betweenness centrality took
an average of 319 min (approximately 5.3 h), while Louvain clusters reduced this value



Computers 2021, 10, 115 21 of 25

to an average of only 13.8 min, which means a huge decrease in terms of execution time.
During the tests, we monitored the memory usage, which did not exceed 10 GB for the
largest graph, so it can be said that on this platform we have the possibility to run these
algorithms with a relatively small memory footprint thanks to the graph projection, and
with the use of clustering, the execution time can be further reduced.

Figure 25. Centrality algorithms’ execution time on fb and dz.

Figure 26. Centrality algorithms’ execution time on gm and gl.

Figure 27. Betweenness algorithms’ execution time on fb and dz.



Computers 2021, 10, 115 22 of 25

Figure 28. Betweenness algorithms’ execution time on gm and gl.

Figure 29. Closeness algorithm’s execution time on fb and dz using ln, mv, and ps.

Figure 30. Closeness algorithm’s execution time on gm and gl using ln, mv, and ps.

7. Discussion and Conclusions

In this paper, we investigated the correctness based on the ranking efficiency, and
the execition time of a method that uses network clustering to reduce the calculation of
betweenness and closeness centrality measures. The method uses graph clustering algorithms,
to create clusters based on the graph. These clusters are then used to create subgraphs, which
are smaller in magnitude. The centrality measures are then applied to these smaller subgraphs.
The investigated method is based on Louvain, Markov, and Paris clustering algorithms. The



Computers 2021, 10, 115 23 of 25

efficiency of the method was investigated with the use of large social networks, namely
facebook_combined, deezer_europe, soc-gemsec-HU, and soc-google-plus. To evaluate the
correctness of the method based on the similarity between the top 10 nodes resulted from the
investigated method and between the original centrality measures. Our results yielded that
the examination of the top 10 nodes is not good enough to correctly evaluate the accuracy of
the investigated method. Based on this, we conducted two more experiments. In the first, we
used the nodes that are ranked into the top n by the original methods and the investigated
method, respectively. The results showed that in this aspect, the investigated method does not
perform well, its best results were around 45–60% when it was used with the Paris clustering
algorithm. The second experiment, where the sum of the top n was used to classify the
accuracy yielded that in the case of the closeness centrality the Louvain clustering method
achieved 197.73% of the original closeness centrality, which indicates that in this case, the
investigated method approximates the original centrality measure well. To compare the
runtime of the investigated method, we applied it in two different environments. One of
them was the igraph library’s implementation of the centrality values, while the other was
the popular Neo4j Graph Database in pair with the in-memory Graph Data Science library.
Based on our experiments, it could be said that the Louvain algorithm was able to create an
optimal number of clusters and has the least execution time. and properly approximates the
closeness centrality out of the three investigated graph clustering methods. In the case of GDS,
we observed that clustering brought improvement only in the calculation of betweenness.

Our paper only considers time consumption, and the similarity between the top
10 nodes for accuracy, and does not consider other indicators such as other types of
accuracy. Because of this, in the future, we are planning to perform more experiments to
gain more insight into the use of clustering methods. These experiments would evaluate
the memory usage, other aspects of accuracy, as well as the complexity of the centrality
measures if they are used together with a clustering algorithm.

Author Contributions: Conceptualization, P.M., B.S. and A.K.; methodology, P.M., B.S. and A.K.;
software, P.M. and B.S.; validation, P.M., B.S. and A.K.; investigation, P.M., B.S. and A.K.; writing—
original draft preparation, P.M., B.S. and A.K.; writing—review and editing, P.M., B.S. and A.K.;
supervision, A.K.; project administration, A.K. All authors have read and agreed to the published
version of the manuscript.

Funding: The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). This research was also supported by grants of
“Application Domain Specific Highly Reliable IT Solutions” project that has been implemented with
the support provided from the National Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found on http://networkrepository.com/ and https://snap.stanford.edu/data/ (accessed on 11
February 2021).

Acknowledgments: This publication is the partial result of the Research & Development Operational
Programme for the project “Modernisation and Improvement of Technical Infrastructure for Research
and Development of J. Selye University in the Fields of Nanotechnology and Intelligent Space”, ITMS
26210120042, co-funded by the European Regional Development Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

http://networkrepository.com/
https://snap.stanford.edu/data/


Computers 2021, 10, 115 24 of 25

bw Betweenness centrality
cn Closeness centrality
ln Louvian clustering
mv Markov clustering
ps Paris clustering
fb facebook_combined network (4039 nodes, 88,234 edges)
dz deezer-europe network (28,281 nodes, 92,752 edges)
gm soc-gemsec-HU network (47,538 nodes, 222,887 edges)
gl soc-google-plus network (211,187 nodes, 1,506,896 edges)
fb_cn Closeness centrality without clustering on facebook_combined
fb_cn_ln Closeness centrality with Louvain clustering on facebook_combined
fb_cn_mv Closeness centrality with Markov clustering on facebook_combined
fb_cn_ps Closeness centrality with Paris clustering on facebook_combined
fb_bw Betweenness centrality without clustering on facebook_combined
fb_bw_ln Betweenness centrality with Louvain clustering on facebook_combined
fb_bw_mv Betweenness centrality with Markov clustering on facebook_combined
fb_bw_ps Betweenness centrality with Paris clustering on the facebook_combined
dz_cn Closeness centrality without clustering on deezer-europe
dz_cn_ln Closeness centrality with Louvain clustering on deezer-europe
dz_cn_mv Closeness centrality with Markov clustering on deezer-europe
dz_cn_ps Closeness centrality with Paris clustering on deezer-europe
dz_bw Betweenness centrality without clustering on deezer-europe
dz_bw_ln Betweenness centrality with Louvain clustering on deezer-europe
dz_bw_mv Betweenness centrality with Markov clustering on deezer-europe
dz_bw_ps Betweenness centrality with Paris clustering on deezer-europe
gm_cn Closeness centrality without clustering on the soc-gemsec-HU
gm_cn_ln Closeness centrality with Louvain clustering on the soc-gemsec-HU
gm_cn_mv Closeness centrality with Markov clustering on the soc-gemsec-HU
gm_cn_ps Closeness centrality with Paris clustering on the soc-gemsec-HU
gm_bw Betweenness centrality without clustering on the soc-gemsec-HU
gm_bw_ln Betweenness centrality with Louvain clustering on the soc-gemsec-HU
gm_bw_mv Betweenness centrality with Markov clustering on the soc-gemsec-HU
gm_bw_ps Betweenness centrality with Paris clustering on the soc-gemsec-HU
ACID Atomicity, Consistency, Isolation, Durability
SNAP Stanford Network Analysis Project
CRUD Create, Read, Update, Delete
GDS Graph Data Science library

References
1. Pavlopoulos, G.A.; Kontou, P.I.; Pavlopoulou, A.; Bouyioukos, C.; Markou, E.; Bagos, P.G. Bipartite graphs in systems biology

and medicine: A survey of methods and applications. GigaScience 2018, 7, giy014. [CrossRef] [PubMed]
2. Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. SELFIES: A robust representation of semantically constrained

graphs with an example application in chemistry. arXiv 2019, arXiv:1905.13741.
3. Deo, N. Graph Theory with Applications to Engineering and Computer Science; Courier Dover Publications: Mineola, NY, USA, 2017.
4. Khlobystova, A.; Abramov, M.; Tulupyev, A. An approach to estimating of criticality of social engineering attacks traces. In

Proceedings of the International Conference on Information Technologies, Saratov, Russia, 7–8 February 2019; pp. 446–456.
5. Schaab, P.; Beckers, K.; Pape, S. Social engineering defence mechanisms and counteracting training strategies. Inf. Comput. Secur.

2017, 25, 206–222. [CrossRef]
6. Cuzzocrea, A.; Moscato, V.; Picariello, A.; Sperlí, G. Querying and Learning OSN Graphs for Advanced Viral Marketing

Applications. In Proceedings of the 2019 3rd International Conference on Cloud and Big Data Computing, Oxford, UK, 28–30
August 2019; pp. 117–121.

7. Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. Knowledge Graphs;
Springer: Berlin/Heidelberg, Germany, 2020.

8. Smidt, H.; Thornton, M.; Ghorbani, R. Smart application development for IoT asset management using graph database
modeling and high-availability web services. In Proceedings of the 51st Hawaii International Conference on System Sciences,
Hilton Waikoloa Village, HI, USA, 3–6 January 2018.

9. Chen, H.; Vasardani, M.; Winter, S.; Tomko, M. A graph database model for knowledge extracted from place descriptions. ISPRS
Int. J. Geo-Inf. 2018, 7, 221. [CrossRef]

http://doi.org/10.1093/gigascience/giy014
http://www.ncbi.nlm.nih.gov/pubmed/29648623
http://dx.doi.org/10.1108/ICS-04-2017-0022
http://dx.doi.org/10.3390/ijgi7060221


Computers 2021, 10, 115 25 of 25

10. Vela, B.; Cavero, J.M.; Cáceres, P.; Sierra-Alonso, A.; Cuesta, C.E. Using a NoSQL Graph Oriented Database to Store Accessible
Transport Routes. In Proceedings of the EDBT/ICDT Workshops, Vienna, Austria, 26 March 2018; pp. 62–66.

11. Da Silva, W.M.; Wercelens, P.; Walter, M.E.M.; Holanda, M.; Brígido, M. Graph databases in molecular biology. In Proceedings of
the Brazilian Symposium on Bioinformatics, Niterói, Brazil, 30 October–1 November 2018; pp. 50–57.

12. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
13. Bavelas, A. Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 1950, 22, 725–730. [CrossRef]
14. Zaki, M.J.; Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: Cambridge,

UK, 2014.
15. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford

InfoLab: Stanford, CA, USA, 1999.
16. Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [CrossRef]
17. Shukla, K.; Regunta, S.C.; Tondomker, S.H.; Kothapalli, K. Efficient parallel algorithms for betweenness-and closeness-centrality

in dynamic graphs. In Proceedings of the 34th ACM International Conference on Supercomputing, Barcelona, Spain, 29 June
2020; pp. 1–12.

18. Mendonça, M.R.F.; Barreto, A.M.S.; Ziviani, A. Approximating Network Centrality Measures Using Node Embedding and
Machine Learning. IEEE Trans. Netw. Sci. Eng. 2021, 8, 220–230. [CrossRef]

19. Chou, C.H.; Wang, S.; Shih, H.S.; Sheu, P.C. Scalable Computing of Betweenness Centrality based on Graph Reduction with a
Case Study on Breast Cancer Analytics. 2020. Available online: https://www.researchsquare.com/article/rs-72273/v1 (accessed
on 20 December 2020).

20. Szabari, B.; Kiss, A. Performance evaluation of betweenness centrality using clustering methods. Stud. Univ. Babes-Bolyai Inform.
2020, 65, 59–74. [CrossRef]

21. Van Dongen, S. Graph Clustering by Flow Simulation. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 2000.
22. Azad, A.; Pavlopoulos, G.A.; Ouzounis, C.A.; Kyrpides, N.C.; Buluç, A. HipMCL: A high-performance parallel implementation

of the Markov clustering algorithm for large-scale networks. Nucleic Acids Res. 2018, 46, e33. [CrossRef] [PubMed]
23. Szilágyi, L.; Szilágyi, S.M. Efficient Markov clustering algorithm for protein sequence grouping. In Proceedings of the 2013 35th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013;
pp. 639–642.

24. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, 2008, P10008. [CrossRef]

25. Bonald, T.; Charpentier, B.; Galland, A.; Hollocou, A. Hierarchical graph clustering using node pair sampling. arXiv 2018,
arXiv:1806.01664.

26. Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [CrossRef]
[PubMed]

27. Fortunato, S.; Barthelemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 2007, 104, 36–41. [CrossRef]
[PubMed]

28. Neo4j Graph Data Science Library. Available online: https://neo4j.com/docs/graph-data-science/current/ (accessed on 11
February 2021).

29. Brohee, S.; Van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 2006,
7, 1–19. [CrossRef] [PubMed]

30. McAuley, J.J.; Leskovec, J. Learning to discover social circles in ego networks. NIPS 2012, 2012, 548–556.
31. Rozemberczki, B.; Sarkar, R. Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric

Models. arXiv 2020, arXiv:cs.LG/2005.07959.
32. Rozemberczki, B.; Davies, R.; Sarkar, R.; Sutton, C. GEMSEC: Graph Embedding with Self Clustering. In Proceedings of the 2019

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2019, Vancouver, BC, Canada, 27
August 2019; pp. 65–72.

33. Fire, M.; Tenenboim, R.; Puzis, R.; Lesser, O.; Rokach, L.; Elovici, Y. Computationally Efficient Link Prediction in Variety of Social
Networks. ACM Trans. Intell. Syst. Technol. 2013, 5, 10. [CrossRef]

34. Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

35. Leskovec, J.; Krevl, A. SNAP Datasets: Stanford Large Network DFataset Collection. 2014. Available online: http://snap.
stanford.edu/data (accessed on 11 February 2021).

36. Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9.
37. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings

of the 7th Python in Science Conference, Pasadena, CA, USA, 21 August 2008; pp. 11–15.

http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1121/1.1906679
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1109/TNSE.2020.3035352
https://www.researchsquare.com/article/rs-72273/v1
http://dx.doi.org/10.24193/subbi.2020.1.05
http://dx.doi.org/10.1093/nar/gkx1313
http://www.ncbi.nlm.nih.gov/pubmed/29315405
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://dx.doi.org/10.1073/pnas.0605965104
http://www.ncbi.nlm.nih.gov/pubmed/17190818
https://neo4j.com/docs/graph-data-science/current/
http://dx.doi.org/10.1186/1471-2105-7-488
http://www.ncbi.nlm.nih.gov/pubmed/17087821
http://dx.doi.org/10.1145/2542182.2542192
http://snap.stanford.edu/data
http://snap.stanford.edu/data

	Introduction
	Basic Concepts and Algorithms
	Betweenness Centrality
	Closeness Centrality
	Graph Clustering
	Louvain Algorithm
	Markov Algorithm
	Paris

	The Algorithm
	Graph Databases
	Neo4J
	Cypher
	Graph Data Science Library

	Clusters and Parameters
	Cluster Creation
	Markov Parameters

	Results
	Clusters
	Experiment 1: Ranking of the Nodes
	Experiment 2: Runtime without Graph Database
	Experiment 3: Runtime of Graph Database Implementation

	Discussion and Conclusions
	References

