
computers

Article

Product Lifecycle Management with the Asset
Administration Shell

Andreas Deuter * and Sebastian Imort

����������
�������

Citation: Deuter, A.; Imort, S.

Product Lifecycle Management with

the Asset Administration Shell.

Computers 2021, 10, 84. https://

doi.org/10.3390/computers10070084

Academic Editor: Stefan Bosse

Received: 23 April 2021

Accepted: 16 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department Production Engineering and Wood Technology, OWL University of Applied Sciences and Arts,
Campusallee 12, 32657 Lemgo, Germany; sebastian.imort@th-owl.de
* Correspondence: andreas.deuter@th-owl.de; Tel.: +49-5261-702-5305; Fax: +49-5261-702-85305

Abstract: Product lifecycle management (PLM) as a holistic process encompasses the idea generation
for a product, its conception, and its production, as well as its operating phase. Numerous tools
and data models are used throughout this process. In recent years, industry and academia have
developed integration concepts to realize efficient PLM across all domains and phases. However,
the solutions available in practice need specific interfaces and tend to be vendor dependent. The
Asset Administration Shell (AAS) aims to be a standardized digital representation of an asset (e.g., a
product). In accordance with its objective, it has the potential to integrate all data generated during
the PLM process into one data model and to provide a universally valid interface for all PLM phases.
However, to date, there is no holistic concept that demonstrates this potential. The goal of this
research work is to develop and validate such an AAS-based concept. This article demonstrates
the application of the AAS in an order-controlled production process, including the semi-automatic
generation of PLM-related AAS data. Furthermore, it discusses the potential of the AAS as a standard
interface providing a smooth data integration throughout the PLM process.

Keywords: product lifecycle management (PLM); application lifecycle management (ALM); require-
ments interchange format (ReqIF); PLM extensible markup language (PLM XML); open services for
lifecycle collaboration (OSLC); asset administration shell (AAS)

1. Introduction

Products and systems are becoming increasingly digitized. Most people are aware of
examples from the consumer market, such as self-driving cars or smart homes. However,
many industrial products that have been equipped with software in recent years are also
part of this trend, for example, power supplies or connectors. The holistic organization
of the product lifecycle of these products and systems based on methodical and organi-
zational measures using IT systems is called product lifecycle management (PLM). PLM
is a significant enhancement of the concept of product data management (PDM), which
includes the organization of CAD drawings; the management of product data, such as
the bill of materials (BOM); and the application of corresponding project management
processes [1].

In practice, numerous PLM tools have become established. However, none of these
tools manage all product information or, in operational practice, several systems are
used, such as CAD systems and simulation systems [2]. This heterogeneity of the IT
landscape makes a continuous data chain in product lifecycle management difficult, since
the implementation of such data chain between the different IT systems requires a lot
of effort. Although there are standards for a subset of the data, such as STEP or JT, the
outlined situation still poses challenges to companies, including the following, according
to [3]:

1. Due to individual item naming in the systems, different interpretations of an artefact
occur within companies.

Computers 2021, 10, 84. https://doi.org/10.3390/computers10070084 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-6529-6215
https://doi.org/10.3390/computers10070084
https://doi.org/10.3390/computers10070084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10070084
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10070084?type=check_update&version=4

Computers 2021, 10, 84 2 of 18

2. Different data formats are used for the same processes.
3. Data should be accessible in such a way that it can also be used in areas for which

it was not intended when it was created. This also includes independence from the
location as well as from the company.

4. The completeness of data cannot be guaranteed because it is often stored in different
data repositories or even exists as documents in digital or paper form.

5. Data access is hindered by data security requirements.
6. Effort is needed to make the data of one PLM system accessible to other systems.

In addition to these points, the PLM processes of digitized products face another
challenge: traditional PLM systems are not designed to manage the creation of the software
of digitized products and systems. Therefore, software engineers have developed so-
called application lifecycle management (ALM) processes and tools in parallel to the PLM
concept. The goal of ALM is to provide a comprehensive technical solution for monitoring,
controlling, and managing software development throughout the application lifecycle [4].

Since digitized products and systems require PLM and ALM to work together, many
activities and discussions in research and industry are currently actively targeting smooth
PLM/ALM integration [5–7]. For example, the authors were members of a research
team that developed use cases for PLM/ALM integration in an industrial case study [8].
However, solutions such as those described above involve PLM/ALM solutions from only
one vendor. Although the Open Services for Lifecycle Collaboration (OSLC) standard [9]
was used in the case study, the solution remained vendor specific. However, the engineering
and production of digitized products require PLM/ALM integration between tools from
different vendors. Today, to achieve this goal, custom interfaces are required (e.g., [10]).

In addition, the emergence of the Digital Twin concept makes the smooth integration
of data and tools throughout the PLM phases, including the production process, even more
necessary. There are a variety of definitions of Digital Twin that differ in scope and level of
detail [11]. However, the opinion that the data of the Digital Twin should be merged in an
automated way across all PLM phases is consolidating [12].

To address these challenges, this work proposes an approach based on the Asset
Administration Shell (AAS). The result is a concept in which the data generated during the
engineering and production of a digitized product or system is managed in the AAS. This
makes the data available to all PLM phases in a standardized manner. A particular focus of
this work is the integration of ALM data into the PLM process.

This article is structured as follows: Section 2 explains the concept of the AAS and
other relevant background information. Section 3 outlines the major research goals and
the research method. Section 4 describes the concept for using the AAS in the engineering
process. Section 5 extends the AAS-based data integration to the production process,
reusing data of the engineering process. Section 6 discusses the achievement of the major
research goals and the success factors of the AAS-based strategy. The article concludes
with suggestions for further research topics and a final discussion.

2. Related Background
2.1. PLM and Systems Engineering

PLM is a comprehensive term, which generates numerous opinions. According to [1],
it is “the business activity of managing, in the most effective way, a company’s products all
the way across their lifecycles; from the very first idea for a product all the way through
until it is retired and disposed of”. The overall objective is to increase revenue by reducing
product-related costs and lead-times.

PLM is related to the research field of systems engineering. There are many defini-
tions of systems engineering. However, it is generally considered as an interdisciplinary
approach that enables the successful implementation of systems [13]. It is obvious that the
product lifecycle management of digitized products and systems also involves multiple
disciplines or domains. A difference between these terms can be seen in terms of the
importance of IT tools: systems engineering is rather a set of methods that are independent

Computers 2021, 10, 84 3 of 18

of concrete IT tools, while PLM includes a strong focus on IT tools. Nevertheless, any
activity aiming for improved, standardized data integration throughout the PLM process
contributes to systems engineering research.

2.2. Digital Twin

The Digital Twin is seen as a major tool for increasing the productivity in PLM
processes in the age of industrial digitalization. Therefore, a number of publications are
focusing on this concept, creating several definitions of the term [11]. However, these are
not always of value in the practical implementation of Digital Twins in PLM processes.
Although contradictory definitions do not hinder an investigation of the development of
Digital Twins in PLM processes, the authors presented an alternative approach to deal with
Digital Twins. The so-called Digital Twin theory was proposed during the work on the
TeDZ project (see section “funding”). Therefore, it is only briefly explained here. Despite
this focused view, the reader should be aware that a tremendous amount of research on
Digital Twins has been conducted in recent years and continues to be carried out.

Digital Twin theory assumes that throughout the PLM process there are multiple stake-
holders with different perspectives on the digital representation of products and systems
who are working with this digital representation at the same time. These assumptions form
the basis of several hypotheses of a Digital Twin, namely [14]:

1. A Digital Twin is a digital representation of an asset.
2. A Digital Twin is located in several places simultaneously.
3. A Digital Twin has multiple states.
4. The Digital Twin has a context-specific state in a specific interaction situation.
5. The information model for Digital Twins is infinitely large. It is called the real

information model.
6. The real information model can be finitely approximated for a specific application

scenario, becoming a rational information model.
7. The rational information model cannot be stored in a single place.
8. The rational information model is never completely visible.

For an explanation of these hypotheses, the reader is referred to the original article.
However, Figure 1 shows some of the elements named in the hypotheses and their relation
to the PLM process.

Computers 2021, 10, x FOR PEER REVIEW 4 of 18

Figure 1. PLM infrastructure for Digital Twins. Adapted from ref. [14].

The AAS data model consists of three main classes: the asset class, the submodel
class, and the view class (see Figure 2). The asset class provides information on the kind
of asset (type or instance) and the asset identification submodel. The submodel class refers
to a well-defined domain or subject matter (e.g., the asset identification and drive param-
eters). Submodels can be considered the main information store of an AAS, as they pro-
vide the central data on an asset. There is no limit to the number of submodel classes.
When developing an AAS of an asset, any new submodel can be defined. This research
work used submodel classes to model PLM data, such as the bill of materials (BOM).

The view class provides a projection of the AAS model seen from a particular per-
spective, omitting entities that are not relevant to that perspective.

Figure 2. Excerpt from the AAS meta-model. Adapted from ref. [15].

In addition to these main classes, the AAS data model defines many more classes,
providing detailed information about the asset (e.g., data type classes). Furthermore, the
AAS specification defines the representation of the AAS data model in standard data in-
terchange formats, such as Extensible Markup Language (XML) and JavaScript Object No-
tation (JSON).

Figure 1. PLM infrastructure for Digital Twins. Adapted from ref. [14].

2.3. Asset Administration Shell (AAS)

Digital Twin theory is a theoretical concept. It does not indicate any guidelines for
creating Digital Twins. A central technology implementing Digital Twins can be seen in the

Computers 2021, 10, 84 4 of 18

Asset Administration Shell (AAS). However, there are many other technologies available
implementing Digital Twins.

The “Plattform Industrie 4.0”, a German consortium of politics, companies, and
research organizations, introduced and specified the concept of the AAS [15]. In order to
promote this concept, the Industrial Digital Twin Association (IDTA) was recently founded.
The AAS is a standardized digital representation of an asset. An asset is anything of value
and can be a physical or logical object (e.g., a product or a service). The AAS contains
digital models of various aspects of the asset in the form of submodels and describes the
asset’s technical functionality by displaying it via a standardized interface.

The AAS data model consists of three main classes: the asset class, the submodel class,
and the view class (see Figure 2). The asset class provides information on the kind of asset
(type or instance) and the asset identification submodel. The submodel class refers to a
well-defined domain or subject matter (e.g., the asset identification and drive parameters).
Submodels can be considered the main information store of an AAS, as they provide the
central data on an asset. There is no limit to the number of submodel classes. When
developing an AAS of an asset, any new submodel can be defined. This research work
used submodel classes to model PLM data, such as the bill of materials (BOM).

Computers 2021, 10, x FOR PEER REVIEW 4 of 18

Figure 1. PLM infrastructure for Digital Twins. Adapted from ref. [14].

The AAS data model consists of three main classes: the asset class, the submodel
class, and the view class (see Figure 2). The asset class provides information on the kind
of asset (type or instance) and the asset identification submodel. The submodel class refers
to a well-defined domain or subject matter (e.g., the asset identification and drive param-
eters). Submodels can be considered the main information store of an AAS, as they pro-
vide the central data on an asset. There is no limit to the number of submodel classes.
When developing an AAS of an asset, any new submodel can be defined. This research
work used submodel classes to model PLM data, such as the bill of materials (BOM).

The view class provides a projection of the AAS model seen from a particular per-
spective, omitting entities that are not relevant to that perspective.

Figure 2. Excerpt from the AAS meta-model. Adapted from ref. [15].

In addition to these main classes, the AAS data model defines many more classes,
providing detailed information about the asset (e.g., data type classes). Furthermore, the
AAS specification defines the representation of the AAS data model in standard data in-
terchange formats, such as Extensible Markup Language (XML) and JavaScript Object No-
tation (JSON).

Figure 2. Excerpt from the AAS meta-model. Adapted from ref. [15].

The view class provides a projection of the AAS model seen from a particular perspec-
tive, omitting entities that are not relevant to that perspective.

In addition to these main classes, the AAS data model defines many more classes,
providing detailed information about the asset (e.g., data type classes). Furthermore, the
AAS specification defines the representation of the AAS data model in standard data
interchange formats, such as Extensible Markup Language (XML) and JavaScript Object
Notation (JSON).

The AAS specification does not define how to implement an AAS. However, in order
to provide standardized implementations of the AAS from different vendors, several
initiatives are currently active, including the AASX Package Explorer. This is an open-
source software tool enabling a user to create, edit, and view an AAS [16]. Furthermore, it
provides access to the AAS via an Open Platform Communications Unified Architecture
(OPC UA) or Message Queuing Telemetry Transport (MQTT) interface. This work used
the AASX Package Explorer to demonstrate the submodels created for the purpose of the

Computers 2021, 10, 84 5 of 18

research. The second initiative to mention is the BaSys 4.0-Middleware, which provides an
open-source platform called BaSyx, supporting the implementation of a vendor-specific
AAS [17,18].

In order to provide PLM data in an AAS submodel structure, there must be the
corresponding data models. However, the “Plattform Industrie 4.0” has defined only a few
such AAS data models (e.g., digital nameplate). As none of these fit the purpose of this
work, which focused on a general strategy to enable data integration throughout the PLM
process with the AAS and not on the data models themselves, existing data models outside
the AAS specification were used. They are explained in the next section.

2.4. Selected Data Models in PLM Processes

There is no standardized all-encompassing PLM data model. However, there are phase-
specific and domain-specific standards, respectively. For example, Siemens, a market leader
in the area of PLM software, defined the PLM XML schema [19]. It is a Siemens internal
data model of its PLM tool Teamcenter to exchange data between two Teamcenter instances
using XML files. Furthermore, it supports application integration through workflows. PLM
XML is a very comprehensive model. However, it is a proprietary format, and there is no
widespread acceptance in practice.

Another example is derived from the ALM domain: there is no standardized data
model for ALM. However, as requirements engineering is an important task in ALM, there
is a so-called Requirements Interchange Format (ReqIF) [20], enabling the exchange of
requirements between different tools. Similarly to PLM XML, ReqIF enables data exchange
between IT tools using XML. ReqIF originated in the automotive industry. However, since
its standardization by the Object Management Group (OMG), it has also been applied in
other industries and fields. ReqIF covers requirements as well as the documents containing
these requirements. Furthermore, as requirements are normally written in natural language,
ReqIF is not limited to requirements but also supports other artefacts. For example, this
work uses ReqIF to exchange assembly instruction data containing text and pictures.

2.5. OSLC-Based Data Integration

When discussing the exchange of data throughout a product lifecycle, one cannot
neglect to mention the OSLC standard [9]. OSLC is designed to connect data and to create
a digital thread across domains, applications, and organizations. It uses the concept known
as the Resource Description Framework (RDF) for data exchange between different appli-
cations. In order to enable OSLC-based data exchange, the tools involved must provide
an appropriate interface. In theory, data exchange between OSLC consumers and OSLC
providers is tool independent. However, in reality, tool integration can contain vendor-
specific elements, meaning that only tools from a single vendor fit together optimally.
Furthermore, the OSLC standard is not designed to facilitate anything other than data
access between tools. For example, operational data (e.g., device temperature) from an
asset are not part of the OSLC design concept.

Although there is no all-encompassing PLM data model, tool vendors offer proprietary
solutions for PLM data integration throughout the PLM process, as shown in the following
example: As previously mentioned, the authors have already worked on concepts for
PLM/ALM integration [6]. These activities made use of the Siemens toolchain with
Teamcenter (PLM) and Polarion (ALM). Data exchange between these tools is based on
the OSLC standard (see Figure 3). In addition to various use cases from the industry, the
research team created several other use cases for the so-called “SmartLight”, which is a
simple mechatronic product involving the mechanical, electronic, and software domains
(depicted in Figure 6). Among the use cases under investigation was the assignment of a
requirement, managed in ALM, with a design element storing CAD data. Although these
CAD data are managed in Teamcenter, they can only be edited in the CAD tool Siemens NX.
The data integration between NX and Teamcenter is based on an internal Siemens interface.

Computers 2021, 10, 84 6 of 18

Computers 2021, 10, x FOR PEER REVIEW 6 of 18

Teamcenter (PLM) and Polarion (ALM). Data exchange between these tools is based on
the OSLC standard (see Figure 3). In addition to various use cases from the industry, the
research team created several other use cases for the so-called “SmartLight”, which is a
simple mechatronic product involving the mechanical, electronic, and software domains
(depicted in Figure 6). Among the use cases under investigation was the assignment of a
requirement, managed in ALM, with a design element storing CAD data. Although these
CAD data are managed in Teamcenter, they can only be edited in the CAD tool Siemens
NX. The data integration between NX and Teamcenter is based on an internal Siemens
interface.

Figure 3. Teamcenter/Polarion interface (source: Siemens).

Figure 4 shows an actual view of the Polarion user interface as an example of the
PLM/ALM interface. The requirement “SLv2-69 Co_Modulhousing_Material” (ALM) is
linked to the design elements “SL-Bottom_piece” and “SL-Top_component_piece” (PLM).

To create such links, the Siemens toolchain provides specific dialogs. Furthermore,
with the so-called “Delegated UI” technology, Teamcenter data can be edited in Polarion
and vice versa. Such features are vendor specific and are not covered by the OSLC speci-
fication. Therefore, the authors perceive an increasing need for vendor-independent ap-
proaches to linking such data.

Figure 4. Example of a vendor-specific PLM/ALM data link (screenshot of Siemens Polarion).

3. Major Research Goals and Research Method
This research work addresses product lifecycle management in the sense of Industry

4.0. As there are many aspects of Industry 4.0, the research team set itself the task of fo-
cusing on the application scenarios defined in [21], namely:
 OCP—Order-Controlled Production;
 AF—Adaptable Factory;
 SAL—Self-organizing Adaptive Logistics;
 VBS—Value-based Service;

Figure 3. Teamcenter/Polarion interface (source: Siemens).

Figure 4 shows an actual view of the Polarion user interface as an example of the
PLM/ALM interface. The requirement “SLv2-69 Co_Modulhousing_Material” (ALM) is
linked to the design elements “SL-Bottom_piece” and “SL-Top_component_piece” (PLM).

Computers 2021, 10, x FOR PEER REVIEW 6 of 18

Teamcenter (PLM) and Polarion (ALM). Data exchange between these tools is based on
the OSLC standard (see Figure 3). In addition to various use cases from the industry, the
research team created several other use cases for the so-called “SmartLight”, which is a
simple mechatronic product involving the mechanical, electronic, and software domains
(depicted in Figure 6). Among the use cases under investigation was the assignment of a
requirement, managed in ALM, with a design element storing CAD data. Although these
CAD data are managed in Teamcenter, they can only be edited in the CAD tool Siemens
NX. The data integration between NX and Teamcenter is based on an internal Siemens
interface.

Figure 3. Teamcenter/Polarion interface (source: Siemens).

Figure 4 shows an actual view of the Polarion user interface as an example of the
PLM/ALM interface. The requirement “SLv2-69 Co_Modulhousing_Material” (ALM) is
linked to the design elements “SL-Bottom_piece” and “SL-Top_component_piece” (PLM).

To create such links, the Siemens toolchain provides specific dialogs. Furthermore,
with the so-called “Delegated UI” technology, Teamcenter data can be edited in Polarion
and vice versa. Such features are vendor specific and are not covered by the OSLC speci-
fication. Therefore, the authors perceive an increasing need for vendor-independent ap-
proaches to linking such data.

Figure 4. Example of a vendor-specific PLM/ALM data link (screenshot of Siemens Polarion).

3. Major Research Goals and Research Method
This research work addresses product lifecycle management in the sense of Industry

4.0. As there are many aspects of Industry 4.0, the research team set itself the task of fo-
cusing on the application scenarios defined in [21], namely:
 OCP—Order-Controlled Production;
 AF—Adaptable Factory;
 SAL—Self-organizing Adaptive Logistics;
 VBS—Value-based Service;

Figure 4. Example of a vendor-specific PLM/ALM data link (screenshot of Siemens Polarion).

To create such links, the Siemens toolchain provides specific dialogs. Furthermore,
with the so-called “Delegated UI” technology, Teamcenter data can be edited in Polar-
ion and vice versa. Such features are vendor specific and are not covered by the OSLC
specification. Therefore, the authors perceive an increasing need for vendor-independent
approaches to linking such data.

3. Major Research Goals and Research Method

This research work addresses product lifecycle management in the sense of Industry
4.0. As there are many aspects of Industry 4.0, the research team set itself the task of
focusing on the application scenarios defined in [21], namely:

• OCP—Order-Controlled Production;
• AF—Adaptable Factory;
• SAL—Self-organizing Adaptive Logistics;
• VBS—Value-based Service;
• TAP—Transparency and Adaptability of Delivered Products;
• OSP—Operator Support in Production;
• SP2—Smart Product development for Smart Production;
• IPD—Innovative Product Development.

Industrial experts and renowned researchers have identified these application scenar-
ios as enhancements of the current state of the art. Therefore, the intention of this work is

Computers 2021, 10, 84 7 of 18

to create results that allow their implementation in practice. When discussing the project
results in Section 6, descriptions of these application scenarios are given.

This research work is divided into the creation of the conceptual basis to solve the
problem, a practical implementation evaluation, and a theory building. It is based on
the methodological approach of Design Research (DR). DR analyses the application of
designed IT artefacts to understand, explain, and improve information systems. As there
are several definitions of DR, this work follows the explanations in [22]. DR consists of two
activities: the design of one or more IT artefacts and theory building. The IT artefacts (in
this work, these are the several AASs) and their contribution to an overall solution have a
local practical reference to the SmartLight, which is designed and produced in a research
and test factory. The local results obtained in the design of the IT artefacts are used to feed
the theorizing with the aim of forming generally applicable results from them. As this
research work is ongoing, the theorizing process is also ongoing.

The design of an IT artefact consists of the following phases: problem analysis, build-
ing, and evaluation. The building and evaluation phases can be repeated several times,
which was conducted in this work. Figure 5 shows the steps of the methodological ap-
proach and their assignment to the DR phases.

Computers 2021, 10, x FOR PEER REVIEW 7 of 18

 TAP—Transparency and Adaptability of Delivered Products;
 OSP—Operator Support in Production;
 SP2—Smart Product development for Smart Production;
 IPD—Innovative Product Development.

Industrial experts and renowned researchers have identified these application sce-
narios as enhancements of the current state of the art. Therefore, the intention of this work
is to create results that allow their implementation in practice. When discussing the project
results in Section 6, descriptions of these application scenarios are given.

This research work is divided into the creation of the conceptual basis to solve the
problem, a practical implementation evaluation, and a theory building. It is based on the
methodological approach of Design Research (DR). DR analyses the application of de-
signed IT artefacts to understand, explain, and improve information systems. As there are
several definitions of DR, this work follows the explanations in [22]. DR consists of two
activities: the design of one or more IT artefacts and theory building. The IT artefacts (in
this work, these are the several AASs) and their contribution to an overall solution have a
local practical reference to the SmartLight, which is designed and produced in a research
and test factory. The local results obtained in the design of the IT artefacts are used to feed
the theorizing with the aim of forming generally applicable results from them. As this
research work is ongoing, the theorizing process is also ongoing.

The design of an IT artefact consists of the following phases: problem analysis, build-
ing, and evaluation. The building and evaluation phases can be repeated several times,
which was conducted in this work. Figure 5 shows the steps of the methodological ap-
proach and their assignment to the DR phases.

Figure 5. Design research approach of this work.

4. AAS-Based Engineering Process
One focus of this work lies in the engineering process, especially in the PLM/ALM

integration. This section explains why and how the AAS is utilized in this context.

4.1. Requirements
When aiming to create a vendor-independent standardized concept of PLM/ALM

integration, the requirements for such a concept must be defined. The major requirements
identified by the research team are as follows:

Figure 5. Design research approach of this work.

4. AAS-Based Engineering Process

One focus of this work lies in the engineering process, especially in the PLM/ALM
integration. This section explains why and how the AAS is utilized in this context.

4.1. Requirements

When aiming to create a vendor-independent standardized concept of PLM/ALM
integration, the requirements for such a concept must be defined. The major requirements
identified by the research team are as follows:

• R1: The concept must be based on a standard in order to enable vendor-independent
integration.

• R2: The underlying data model must provide comprehensive access to all data created
for or by an asset in order to include data other than PLM/ALM data.

As well as these high-level requirements, the concept should fulfil specific require-
ments for PLM/ALM integration. However, these requirements are often user specific. In
order to discuss the validity of the concept described in this article, several requirements
developed in the industrial case study described in [8] were adopted as references. Given

Computers 2021, 10, 84 8 of 18

that Teamcenter is the PLM tool and Polarion is the ALM tool, the following requirements
must be fulfilled:

• R3: It must be possible to link a Polarion work item with a Teamcenter item and
vice versa.

• R4: It must be possible to link a Teamcenter item with a Polarion document.
• R5: It must be possible to access the data of any attribute of a Polarion work item from

the linked Teamcenter item and vice versa.
• R6: It must be possible to link more than one Polarion work item with one Teamcenter

item in a single action.
• R7: When creating a traceability report in Polarion, all linked Teamcenter items must

be included and vice versa.
• R8: The status of a Polarion work item can only be changed if the status of the linked

Teamcenter item has a dedicated status.

Further requirements are described in [8]. However, they are highly specific to the
industrial case study. As this work aims to provide a new general strategy for data
integration in a PLM process, such specific requirements must be validated in the future.

4.2. Design and Implementation

Figure 6 shows the general design concept for providing PLM/ALM data to an AAS
data model, which is explained using SmartLight.

Computers 2021, 10, x FOR PEER REVIEW 8 of 18

 R1: The concept must be based on a standard in order to enable vendor-independent
integration.

 R2: The underlying data model must provide comprehensive access to all data cre-
ated for or by an asset in order to include data other than PLM/ALM data.
As well as these high-level requirements, the concept should fulfil specific require-

ments for PLM/ALM integration. However, these requirements are often user specific. In
order to discuss the validity of the concept described in this article, several requirements
developed in the industrial case study described in [8] were adopted as references. Given
that Teamcenter is the PLM tool and Polarion is the ALM tool, the following requirements
must be fulfilled:
 R3: It must be possible to link a Polarion work item with a Teamcenter item and vice

versa.
 R4: It must be possible to link a Teamcenter item with a Polarion document.
 R5: It must be possible to access the data of any attribute of a Polarion work item

from the linked Teamcenter item and vice versa.
 R6: It must be possible to link more than one Polarion work item with one Teamcenter

item in a single action.
 R7: When creating a traceability report in Polarion, all linked Teamcenter items must

be included and vice versa.
 R8: The status of a Polarion work item can only be changed if the status of the linked

Teamcenter item has a dedicated status.
Further requirements are described in [8]. However, they are highly specific to the

industrial case study. As this work aims to provide a new general strategy for data inte-
gration in a PLM process, such specific requirements must be validated in the future.

4.2. Design and Implementation
Figure 6 shows the general design concept for providing PLM/ALM data to an AAS

data model, which is explained using SmartLight.

Figure 6. The design concept for PLM/ALM mapping to AAS.

The PLM data were exported from the PLM tool using the PLM XML data format.
The same was carried out for the ALM data using the ReqIF data format. Both sets of
information were stored in separate XML files.

In the next step, the research team created an AAS for SmartLight using the AASX
Package Explorer. To provide exported PLM/ALM data to the SmartLight AAS, the re-
search team developed two so-called “importers”, enabling the importation of the data to
the AASX Package Explorer. The PLM data were imported as a PLM submodel, while the
ALM data were imported as an ALM submodel. After importing these data, elements of

Figure 6. The design concept for PLM/ALM mapping to AAS.

The PLM data were exported from the PLM tool using the PLM XML data format.
The same was carried out for the ALM data using the ReqIF data format. Both sets of
information were stored in separate XML files.

In the next step, the research team created an AAS for SmartLight using the AASX
Package Explorer. To provide exported PLM/ALM data to the SmartLight AAS, the
research team developed two so-called “importers”, enabling the importation of the data
to the AASX Package Explorer. The PLM data were imported as a PLM submodel, while
the ALM data were imported as an ALM submodel. After importing these data, elements
of both submodels could be related to each other. For this, the AAS RelationshipElement
class was used. This class contains the members first and second, which are known as
referable elements.

Figure 7 shows an example of an AAS-based PLM/ALM relation. For a better com-
parison, this is the same example as that described in Figure 4; namely, it demonstrates
the properties of the SmartLight requirement “Co_Modulhousing_Material”, which is part
of the requirements specification managed in the ALM tool. All the properties of this
requirement were created during the ReqIF import.

Computers 2021, 10, 84 9 of 18

Computers 2021, 10, x FOR PEER REVIEW 9 of 18

both submodels could be related to each other. For this, the AAS RelationshipElement
class was used. This class contains the members first and second, which are known as
referable elements.

Figure 7 shows an example of an AAS-based PLM/ALM relation. For a better com-
parison, this is the same example as that described in Figure 4; namely, it demonstrates
the properties of the SmartLight requirement “Co_Modulhousing_Material”, which is
part of the requirements specification managed in the ALM tool. All the properties of this
requirement were created during the ReqIF import.

Figure 7. Excerpt of ALM AAS submodel (screenshot of AASX Package Explorer).

As shown in Figure 8, the requirement contains two instances of the RelationshipEl-
ement class. The first element is the requirement itself. The second element is the PLM
data item “SL-Bottom_piece”. The semantics of this relation are part of the description
and have the following meaning: the requirement “Co_Modulhousing_Material” is im-
plemented by the design element “SL_Bottom_piece”.

Figure 8. AAS PLM/ALM link with viewpoint ALM (screenshot of AASX Package Explorer).

The same relationship was also added to the PLM submodel element, which was im-
ported by the PLM XML importer (see Figure 9). The differences to the instance of the
RelationshipElement class, which is part of the ALM item, are that the first and second
elements are swapped and the semantic meaning is changed. The relationship from the
viewpoint of the PLM item has the following meaning: the design element “SL_Bot-
tom_piece” implements the requirement “Co_Modulhousing_Material”. It can be seen

Figure 7. Excerpt of ALM AAS submodel (screenshot of AASX Package Explorer).

As shown in Figure 8, the requirement contains two instances of the RelationshipEle-
ment class. The first element is the requirement itself. The second element is the PLM data
item “SL-Bottom_piece”. The semantics of this relation are part of the description and have
the following meaning: the requirement “Co_Modulhousing_Material” is implemented by
the design element “SL_Bottom_piece”.

Computers 2021, 10, x FOR PEER REVIEW 9 of 18

both submodels could be related to each other. For this, the AAS RelationshipElement
class was used. This class contains the members first and second, which are known as
referable elements.

Figure 7 shows an example of an AAS-based PLM/ALM relation. For a better com-
parison, this is the same example as that described in Figure 4; namely, it demonstrates
the properties of the SmartLight requirement “Co_Modulhousing_Material”, which is
part of the requirements specification managed in the ALM tool. All the properties of this
requirement were created during the ReqIF import.

Figure 7. Excerpt of ALM AAS submodel (screenshot of AASX Package Explorer).

As shown in Figure 8, the requirement contains two instances of the RelationshipEl-
ement class. The first element is the requirement itself. The second element is the PLM
data item “SL-Bottom_piece”. The semantics of this relation are part of the description
and have the following meaning: the requirement “Co_Modulhousing_Material” is im-
plemented by the design element “SL_Bottom_piece”.

Figure 8. AAS PLM/ALM link with viewpoint ALM (screenshot of AASX Package Explorer).

The same relationship was also added to the PLM submodel element, which was im-
ported by the PLM XML importer (see Figure 9). The differences to the instance of the
RelationshipElement class, which is part of the ALM item, are that the first and second
elements are swapped and the semantic meaning is changed. The relationship from the
viewpoint of the PLM item has the following meaning: the design element “SL_Bot-
tom_piece” implements the requirement “Co_Modulhousing_Material”. It can be seen

Figure 8. AAS PLM/ALM link with viewpoint ALM (screenshot of AASX Package Explorer).

The same relationship was also added to the PLM submodel element, which was im-
ported by the PLM XML importer (see Figure 9). The differences to the instance of the Rela-
tionshipElement class, which is part of the ALM item, are that the first and second elements
are swapped and the semantic meaning is changed. The relationship from the viewpoint of
the PLM item has the following meaning: the design element “SL_Bottom_piece” imple-
ments the requirement “Co_Modulhousing_Material”. It can be seen that two instances
of the RelationshipElement class for one relation are required, which may be considered
an unnecessary double data entry. However, a RelationshipElement class describes the
relation from the viewpoint of one item. For example, there is a significant difference
between an “implements” relationship and an “implemented by” relationship. Therefore,
as there are two viewpoints on one relation, two instances of the RelationshipElement class
are needed.

Computers 2021, 10, 84 10 of 18

Computers 2021, 10, x FOR PEER REVIEW 10 of 18

that two instances of the RelationshipElement class for one relation are required, which
may be considered an unnecessary double data entry. However, a RelationshipElement
class describes the relation from the viewpoint of one item. For example, there is a signif-
icant difference between an “implements” relationship and an “implemented by” rela-
tionship. Therefore, as there are two viewpoints on one relation, two instances of the Re-
lationshipElement class are needed.

Figure 9. AAS PLM/ALM link with viewpoint PLM (screenshot of AASX Package Explorer).

This concept allows an AAS data model to be enriched with PLM/ALM data and
means that relations between these data can be created. However, this strategy is just an
initial starting point to enable PLM/ALM integration with an AAS. The following require-
ment validation explains this statement.

4.3. Requirements Validation
The concept fulfils the main requirement R1 (see Section 4.1). As previously men-

tioned, the AAS was developed by a number of companies and organizations. As it is
designed to provide all digital data for an asset, R2 is also fulfilled. It has the potential to
go well beyond the current most popular strategy for life cycle integration using OSLC.

The explanations in Section 4.2 demonstrate that the concept can fulfil requirement
R3: links can be set between any submodel elements, including between elements that
represent ALM requirements and PLM design revision items.

As the ReqIF standard allows exporting not only single requirements but also docu-
ments containing requirements, a document can be imported as a submodel element into
an AAS. As a submodel element, it can be linked with any other element, including a PLM
item. Therefore, requirement R4 is fulfilled.

A user can configure the item attributes (e.g., author and status), which should be
included in a ReqIF or PLM XML export. Therefore, the properties of the imported sub-
model elements depend on the specific user configuration. Thus, requirement R5 is ful-
filled.

Requirements R6, R7, and R8 cannot be validated without explanatory comments.
The AAS data model does not prevent these requirements from being fulfilled. However,
the implementation of these requirements depends on tool support. The AAS data model
is simply the data storage of the information on an asset. The graphical views on this data

Figure 9. AAS PLM/ALM link with viewpoint PLM (screenshot of AASX Package Explorer).

This concept allows an AAS data model to be enriched with PLM/ALM data and
means that relations between these data can be created. However, this strategy is just
an initial starting point to enable PLM/ALM integration with an AAS. The following
requirement validation explains this statement.

4.3. Requirements Validation

The concept fulfils the main requirement R1 (see Section 4.1). As previously mentioned,
the AAS was developed by a number of companies and organizations. As it is designed
to provide all digital data for an asset, R2 is also fulfilled. It has the potential to go well
beyond the current most popular strategy for life cycle integration using OSLC.

The explanations in Section 4.2 demonstrate that the concept can fulfil requirement
R3: links can be set between any submodel elements, including between elements that
represent ALM requirements and PLM design revision items.

As the ReqIF standard allows exporting not only single requirements but also docu-
ments containing requirements, a document can be imported as a submodel element into
an AAS. As a submodel element, it can be linked with any other element, including a PLM
item. Therefore, requirement R4 is fulfilled.

A user can configure the item attributes (e.g., author and status), which should be
included in a ReqIF or PLM XML export. Therefore, the properties of the imported
submodel elements depend on the specific user configuration. Thus, requirement R5
is fulfilled.

Requirements R6, R7, and R8 cannot be validated without explanatory comments.
The AAS data model does not prevent these requirements from being fulfilled. However,
the implementation of these requirements depends on tool support. The AAS data model
is simply the data storage of the information on an asset. The graphical views on this
data model depend on the tools using the data model. This research work used the AASX
Package Explorer to view the data. Although it provides basic editing functionality, it is
not designed to be a tool for real-world scenarios. Therefore, to fulfil these requirements,
the PLM/ALM tools should implement the corresponding functionalities. To illustrate
a possible graphical user interface, Figure 10 shows a vendor-specific implementation of
requirement R7. This is the same example as that in Figure 4 and shows trace links between
Teamcenter and Polarion.

Computers 2021, 10, 84 11 of 18

Computers 2021, 10, x FOR PEER REVIEW 11 of 18

model depend on the tools using the data model. This research work used the AASX Pack-
age Explorer to view the data. Although it provides basic editing functionality, it is not
designed to be a tool for real-world scenarios. Therefore, to fulfil these requirements, the
PLM/ALM tools should implement the corresponding functionalities. To illustrate a pos-
sible graphical user interface, Figure 10 shows a vendor-specific implementation of re-
quirement R7. This is the same example as that in Figure 4 and shows trace links between
Teamcenter and Polarion.

Figure 10. View on PLM/ALM trace links (screenshot of Siemens Teamcenter).

5. AAS-Based Production Infrastructure
After the presentation of how the AAS can be used in engineering processes, this

section discusses the potential role of the AAS in future production environments. In the
TeDZ research project (see section “funding”), infrastructure for order-controlled produc-
tion of the aforementioned SmartLight based on the AAS was designed and implemented.
The associated production facilities are located in the SmartFactoryOWL, which is an In-
dustry 4.0 research and test factory jointly operated by the Fraunhofer Application Centre
IOSB-INA and the OWL University of Applied Sciences and Arts in Lemgo, Germany.

5.1. Requirements of the AAS-Based Production Infrastructure
First, an overview of the identified requirements for a working environment for an

AAS-based production infrastructure is given. These requirements relate to a scenario in
which a customer orders a specific variant of SmartLight and in which the production
facility autonomously selects an appropriate assembly workstation. In order to gain an
improved understanding of the requirements, the following aspects must be considered:
The project team agreed that the AAS could be seen as a synonym for the Digital Twin,
because the AAS meets many characteristics of the Digital Twin. In particular, it is a useful
means to prove the hypotheses of Digital Twin theory (see Section 2.2). The project team
identified the following requirements:
 R10 (automatic creation of a Digital Twin): during the ordering process, an instance

AAS must be created automatically based on a template.
 R11 (extend/change a Digital Twin): since a server hosts the AAS and communication

protocols are implemented, the AAS must be changed and/or extended.
 R12 (versioning a Digital Twin): two different types of the same product must be

created to demonstrate how to manage the production of different products.
 R13 (views on the AAS): to protect certain information, types and instances must be

implemented. Instance information shows only selected information of that type.
 R14 (production based on AAS data): the manufacturing process must use instance

and type data when producing an asset.
 R15 (automatic production data): the production process manufacturing information

must be entered to create the “Digital Nameplate” (see Section 2.3).

Figure 10. View on PLM/ALM trace links (screenshot of Siemens Teamcenter).

5. AAS-Based Production Infrastructure

After the presentation of how the AAS can be used in engineering processes, this sec-
tion discusses the potential role of the AAS in future production environments. In the TeDZ
research project (see section “funding”), infrastructure for order-controlled production of
the aforementioned SmartLight based on the AAS was designed and implemented. The as-
sociated production facilities are located in the SmartFactoryOWL, which is an Industry 4.0
research and test factory jointly operated by the Fraunhofer Application Centre IOSB-INA
and the OWL University of Applied Sciences and Arts in Lemgo, Germany.

5.1. Requirements of the AAS-Based Production Infrastructure

First, an overview of the identified requirements for a working environment for an
AAS-based production infrastructure is given. These requirements relate to a scenario in
which a customer orders a specific variant of SmartLight and in which the production
facility autonomously selects an appropriate assembly workstation. In order to gain an
improved understanding of the requirements, the following aspects must be considered:
The project team agreed that the AAS could be seen as a synonym for the Digital Twin,
because the AAS meets many characteristics of the Digital Twin. In particular, it is a useful
means to prove the hypotheses of Digital Twin theory (see Section 2.2). The project team
identified the following requirements:

• R10 (automatic creation of a Digital Twin): during the ordering process, an instance
AAS must be created automatically based on a template.

• R11 (extend/change a Digital Twin): since a server hosts the AAS and communication
protocols are implemented, the AAS must be changed and/or extended.

• R12 (versioning a Digital Twin): two different types of the same product must be
created to demonstrate how to manage the production of different products.

• R13 (views on the AAS): to protect certain information, types and instances must be
implemented. Instance information shows only selected information of that type.

• R14 (production based on AAS data): the manufacturing process must use instance
and type data when producing an asset.

• R15 (automatic production data): the production process manufacturing information
must be entered to create the “Digital Nameplate” (see Section 2.3).

These requirements served as input of the design and implementation of the AAS-
based production infrastructure.

5.2. Design and Implementation

In order to understand the implementation of the production infrastructure and the
above requirements, the AAS model is explained in more detail. Regarding the AAS
specification [15], the step in order to follow the meta-model description is to separate the
information models into types and instances, as displayed in Figure 11. This separation is
important for manufacturing companies, since they aim to protect certain information from

Computers 2021, 10, 84 12 of 18

going public and must manage different versions of the product they produce. Therefore,
types contain all information from the engineering phase (e.g., the ALM data), including
proprietary data and files, whereas instances contain the data that are only related to
one specific instance of an asset (e.g., the production data and operation data). This
information is needed by companies that use the product but do not manufacture it. Since
the information provided by the types may be useful to the instance owner, a link to the
type is provided by each instance using the derivedFrom property, which is part of each
AAS. To secure proprietary data, the outside access via this link, types can be modified
to provide only public data. More information for the separation of data into types and
instances can be found in [15] (p. 29).

Computers 2021, 10, x FOR PEER REVIEW 13 of 18

Figure 11. Instance and type information according to the AAS specification [15].

If the customer chooses a configuration and orders a product, the ordering system
triggers a process creating a product instance. Furthermore, it adds certain properties into
submodels to control the production of the product. In this process, the instance AAS can
communicate with other AASs using their accompanying services. For example, an in-
stance can communicate with the production system to register as a product that has to
be manufactured. Whether the manufacturing process is possible or not is decided auton-
omously by comparing the production requirements with the workstation options. The
corresponding production requirements are based on the data imported from the PLM
system. If the result of this “dialog” is positive, the address of the instance AAS is added
to a production queue within the production system AAS.

By determining the address of a product instance, the AAS of the production system
can access type data by following the “Instance-Type” connection variable in the
derivedFrom property. In this way, it accesses the product’s assembly instructions and
can display them at the workstation to assist workers with manual assembly. Moreover,
the instance connection allows the production system to write production-related data
into the instance, for example, a digital nameplate, a user manual, or general production
data. After production is finished, the product and the AAS instance can be delivered to
the customer.

The video mentioned in the Supplementary Materials section demonstrates the AAS-
based order-controlled production process implemented in the SmartFactoryOWL.

Figure 11. Instance and type information according to the AAS specification [15].

The overall production and engineering infrastructure of SmartLight created in this
work contain the following elements:

1. PLM/ALM data and tools

a. To create the engineering data of the product (see Section 4).

2. Ordering System

a. To trigger the production of the asset by creating the instance(s).

3. Production System

a. System to produce the asset.

4. Several AAS

a. To store production, engineering, and operation data.

5. AAS Registry

a. Provides addresses for all AASs involved in the production.

The bill of materials (BOM) is provided by the PLM system as part of the PLM XML
data. Furthermore, the ALM system is used to store the instructions for the manual assem-
bly of SmartLight (step-by-step instructions including pictures). These data are imported
into an AAS type and are linked by the already explained Relationship Elements (see
Section 4). Moreover, the type AAS will be provided with a configuration submodel. This
submodel can offer, for example, different colours. To facilitate communication, all AAS
are equipped with submodels that provide the fundamental properties to communicate
using OPC UA, REST, and MQTT. Moreover, a so-called AAS registry application is added

Computers 2021, 10, 84 13 of 18

that can redirect communication by providing server addresses to all AASs based on their
unique identifier.

To complete the infrastructure, an additional AAS is added to represent the production
system. This AAS contains a list of addresses to the AAS instances of SmartLight that
can be manufactured using the corresponding production system. Figure 12 shows the
infrastructure model.

Computers 2021, 10, x FOR PEER REVIEW 13 of 18

Figure 11. Instance and type information according to the AAS specification [15].

If the customer chooses a configuration and orders a product, the ordering system
triggers a process creating a product instance. Furthermore, it adds certain properties into
submodels to control the production of the product. In this process, the instance AAS can
communicate with other AASs using their accompanying services. For example, an in-
stance can communicate with the production system to register as a product that has to
be manufactured. Whether the manufacturing process is possible or not is decided auton-
omously by comparing the production requirements with the workstation options. The
corresponding production requirements are based on the data imported from the PLM
system. If the result of this “dialog” is positive, the address of the instance AAS is added
to a production queue within the production system AAS.

By determining the address of a product instance, the AAS of the production system
can access type data by following the “Instance-Type” connection variable in the
derivedFrom property. In this way, it accesses the product’s assembly instructions and
can display them at the workstation to assist workers with manual assembly. Moreover,
the instance connection allows the production system to write production-related data
into the instance, for example, a digital nameplate, a user manual, or general production
data. After production is finished, the product and the AAS instance can be delivered to
the customer.

The video mentioned in the Supplementary Materials section demonstrates the AAS-
based order-controlled production process implemented in the SmartFactoryOWL.

Figure 12. Example production infrastructure based on several AASs.

The dynamic processes in this infrastructure are as follows: First, PLM and ALM data
are provided to the AAS type(s), where they are used by an ordering system to generate
orderable objects. Second, the configuration submodel is added, describing additional
product options that can be selected in the shop.

If the customer chooses a configuration and orders a product, the ordering system
triggers a process creating a product instance. Furthermore, it adds certain properties into
submodels to control the production of the product. In this process, the instance AAS
can communicate with other AASs using their accompanying services. For example, an
instance can communicate with the production system to register as a product that has
to be manufactured. Whether the manufacturing process is possible or not is decided
autonomously by comparing the production requirements with the workstation options.
The corresponding production requirements are based on the data imported from the PLM
system. If the result of this “dialog” is positive, the address of the instance AAS is added to
a production queue within the production system AAS.

By determining the address of a product instance, the AAS of the production sys-
tem can access type data by following the “Instance-Type” connection variable in the
derivedFrom property. In this way, it accesses the product’s assembly instructions and can
display them at the workstation to assist workers with manual assembly. Moreover, the
instance connection allows the production system to write production-related data into the
instance, for example, a digital nameplate, a user manual, or general production data. After
production is finished, the product and the AAS instance can be delivered to the customer.

The video mentioned in the Supplementary Materials section demonstrates the AAS-
based order-controlled production process implemented in the SmartFactoryOWL.

5.3. Requirements Validation

The usage of an AAS-based infrastructure provides a unique opportunity for compa-
nies to obtain a standardized digital interface to access any asset during a product lifecycle.
Although the described infrastructure is a simplified example of production infrastructure
in a research facility, it has the potential to serve as a template for real production environ-
ments. The following evaluation of the requirements described in Section 5.1 indicates that
this statement is justified:

Computers 2021, 10, 84 14 of 18

• R10 (automatic creation of a Digital Twin): the AAS is automatically created by the
ordering system when a customer orders a product.

• R11 (extend/change a Digital Twin): several AASs are integrated into the system. By
exchanging data, they mutually modify their data models. Additional information
can be added to a specific AAS at any time.

• R12 (versioning a Digital Twin): it is possible to order different configurations of the
same product. For each of these configurations, the production infrastructure creates
a separate AAS instance representing a specific product configuration.

• R13 (views on the AAS): Data access to the AAS type is restricted or can be controlled.
This ensures the protection of sensitive product-type data.

• R14 (production based on AAS data): as shown in Figure 11, the production infras-
tructure significantly uses the concept of the AAS, which is a major goal in this work.

• R15 (automatic production data): The AAS of the assembly station enters production
data into the AAS instance of the product. In this way, it enriches the information
model delivered to the customer.

However, this is an initial assessment for a limited example. For a more in-depth
analysis, the example should be made more complex, and more requirements are needed.

6. Overall Evaluation and Solution Success Factors
6.1. Evaluation of Industry 4.0 Application Scenarios

As stated in Section 3, a major goal of this work was to find ways to implement
the Industry 4.0 application scenarios given in [22], which follows a discussion on the
achievement of this target.

OCP—Order-Controlled Production:

• Description [22]: “This application scenario revolves around orders and describes
how to dynamically organize the production resources required for the order”.

• Evaluation: The OCP is among the main aspects of the presented infrastructure in
Section 5. In the AAS-based infrastructure, an AAS is created for each order. This
“order AAS” communicates to the AAS of the production facilities to control the
manufacturing process.

AF—Adaptable Factory:

• Description [22]: “In contrast to the OCP scenario–which focuses on the order–this
application scenario focuses on a specific production resource and explains how
it can be made adaptable and how this affects both the resource supplier and the
system integrator.”

• Evaluation: The AF is another scenario that is fulfilled by the given infrastructure.
Since the AAS uses Industry 4.0-based communication protocols to determine whether
or not an assistance system is suitable for the production of the product, it is also
possible to use this technology for other production operations to further increase
AF capabilities.

SAL—Self-organizing Adaptive Logistics:

• Description [22]: “This application scenario is closely linked to the OCP application
scenario, but focuses on the entire inter-and intra-logistics structure.”

• Evaluation: Even if the presented infrastructure does not contain a logistic node, it is
highly adaptable for all kinds of self-driven processes. It is mentioned in Section 5 that
the given infrastructure can be enlarged by adding more AASs into it. These AASs do
not have to be production machinery but can also be representatives for materials or
an automated delivery system to deliver them to the place where they are needed.

VBS—Value-based Services:

• Description [22]: “This application scenario describes how service can be integrated
into the value network by making specific product and/or process information avail-
able on an IT platform.”

Computers 2021, 10, 84 15 of 18

• Evaluation: The AAS data model is based on the idea of collecting all information
connected to its asset. This also includes real-time data from production machinery
or from the product itself. This work previously discussed the problems around
the proprietary interfaces and vendor-dependent solutions for the gathering of such
information. Overcoming this interaction barrier could be the first step towards data
collection that is accessible for every service available to a company or customer.

TAP—Transparency and Adaptability of Delivered Products:

• Description [22]: “In contrast to the VBS scenario—which focuses on the value
network—this application scenario focuses on the product and how to use an IT
platform to ensure that products are transparent and adaptable.”

• Evaluation: Using the AAS distinction between types and instances, it is possible to
obtain a running digital representative in the hands of the customer, which still has a
connection to the vendor. Since the customer owns the instance, the customer has full
control over the data that are made accessible and those that are not. In this state, the
instance can be used to deliver software updates and live data analysis to guide and
help the customer to use the product to its full potential.

OSP—Operator Support in Production:

• Description [22]: “This application scenario describes how new technologies can
provide support for production operators.”

• Evaluation: The use of an assistance system in the given infrastructure (see Section 5)
addresses the OSP scenario. The assistance system uses engineering data automatically
to guide the operator in the assembly process in the most effective way.

SP2—Smart Product Development for Smart Production:

• Description [22]: “This application scenario describes collaborative product engineer-
ing, which is based on product requirements and is aimed at creating a seamless
engineering process and enabling production and service to access the information
they require.”

Evaluation: Data import from PLM and/or ALM systems into the AAS (see Section 4)
ensures that the data provided by the AAS is always up to date, accessible, and readable
by production resources.

IPD—Innovative Product Development:

• Description [22]: “This application scenario describes new methods and processes in
product development and is focused on the early phases of product development.”

• Evaluation: The solution presented in this work does not address this application
scenario. However, it does not prevent the realization of the IPD scenario.

In addition to this initial fundamentally positive assessment, there are other advan-
tages of using AAS throughout the PLM process: If companies implement AAS interfaces
in common software (CAD tools, ERP systems, etc.), the IT infrastructure can remain
almost unchanged, which would further increase the attractiveness of this new concept.
As the AAS technology is based on the idea of IoT, it supports the ongoing development of
Industry 4.0 towards an integrated horizontal supply chain. Companies using the AAS are
positioning themselves for the future. However, the potential success of this novel concept
depends on several factors.

6.2. Success Factors for AAS-Based Product Lifecycle Management

The AAS as the core of this concept is a relatively new development. Although it
has been around since the initial Industry 4.0 discussions, only the version 2.0 release
from November 2019 can be considered relevant in practice. Therefore, the success of this
research work will depend, among others, on the following factors:

1. Submodels for the AAS;
2. AAS market success;
3. Tool vendor support.

Computers 2021, 10, 84 16 of 18

1. Submodels for the AAS: Among the main problems to be solved is the definition of
standardized submodels (e.g., for PLM/ALM data). In this work, the existing PLM/ALM
data models PLM XML and ReqIF, respectively, were used. However, PLM XML in
particular cannot be considered as a universal data model for PLM. Moreover, ReqIF only
covers the requirements data of ALM. Although it can be used for elements other than
requirements elements, deeper discussions on its suitability as a generic ALM data format
are needed. In addition, the semantics of the relationship links between submodel elements
should be defined. Such semantics describe the meaning of the relationship (e.g., a PLM
design element “implements” an ALM requirement).

2. AAS market success: Another challenge lies in the success of the AAS itself. This
research work will only achieve practical significance if the concept of the AAS is successful.
To advance the AAS standard in practice, the Industrial Twin Association (IDTA, https:
//idtwin.org, accessed on 31 May 2021) was founded in March 2021. IDTA is supported by
major industrial companies. Therefore, the chances for the wide dissemination of the AAS
are good. However, a large amount of effort is still needed to achieve this. In particular, as
with any digitization measure, companies must consider the ROI when implementing an
AAS-based infrastructure.

3. Tool vendor support: Although the AAS is successful, the results of this work will
only gain practical importance if the PLM tool manufacturers support it. Tool vendor
support should provide much smoother handling than described in this article. Manual
data export and import should be avoided. In addition, editing of the AAS data model
should be conducted directly in the PLM tools and not in an additional tool, such as the
AASX Package Explorer. OSLC, however, targets similar requirements. It is currently more
widespread in practice than the AAS. Therefore, tool vendors will need viable reasons to
change today’s OSLC-based implementations. An important advantage of the AAS can
be seen in its much more generic concept, which supports more scenarios than simply the
data exchange between tools (e.g., the article described the scenario of an order-controlled
production process in detail).

Without significant action addressing these success factors, it will be challenging to
establish the proposed concept in practice, as practitioners need ready-to-use solutions.

7. Conclusions

The development of digitized products and services requires interdisciplinary devel-
opment approaches. The engineering domain (mechanics, electric/electronic, and software)
and the production domain should work together seamlessly in order to maintain efficiency
and effectiveness in a digitized industry. Product lifecycle management provides methods
and tools to enable cross-domain development. However, these solutions are often vendor
dependent and target the use of a single vendor’s toolchain. Although OSLC or other
existing standards are used as connecting technology, it is challenging to provide smooth
data integration throughout the holistic PLM process using tools of different vendors.

The Asset Administration Shell aims to establish a standard interface in Industry 4.0.
It is a comprehensive digital representation of an asset (e.g., the digitized product). This
work investigated the ability of the AAS to facilitate data integration throughout the PLM
process. In the engineering phase, it uses submodels to propagate PLM/ALM data to an
AAS. As there are no standardized PLM/ALM data models, this research work utilizes
the existing formats PLM XML and ReqIF. When importing such data in an AAS data
model, the relations between these data can be created. Hence, a central requirement of
any PLM/ALM integration can be met using the AAS.

Moreover, a production infrastructure based on the AAS was created. The AAS data
used in this infrastructure are provided in part by the engineering process, which enables
the semi-automatic reuse of engineering data in a production environment. The con-
cept was implemented and tested at the SmartFactoryOWL, producing a sample product
(SmartLight).

https://idtwin.org
https://idtwin.org

Computers 2021, 10, 84 17 of 18

However, the proposed concept requires more research work in order to assess the
potential of the AAS realistically in this context. Research working towards generic
PLM/ALM data models is required. Currently, the BasSysPLM research project (funded by
the German government) is investigating an AAS-compatible PLM data model [23]. More-
over, AAS-based data integration requires standardized semantics for the relationships
between AAS submodel elements.

Furthermore, although the AAS data model is standardized, the success of the AAS
in practice will depend, among other factors, on the support of tool vendors. Smooth
integration throughout the PLM process relies on ergonomic IT solutions allowing the
automatic reuse of PLM data in all PLM phases. This is not something that the data model
can provide.

Nevertheless, this work has demonstrated the fundamental suitability of the Asset
Administration Shell as a standardized data model for a holistic PLM process. As a
digitized industry requires a harmonized PLM toolchain based on standards, this work
contributes to this research area.

Supplementary Materials: The following are available online at https://youtu.be/eFBeVvk5bOA.
Video: So steuern Digitale Zwillinge die Produktion (accessed on 31 May 2021).

Author Contributions: Concepts and strategy of PLM/ALM integration, A.D.; concepts, strategy,
and implementation of the AAS-based production and implementation of PLM/ALM integration,
S.I. All authors have read and agreed to the published version of the manuscript.

Funding: The Land North Rhine-Westphalia (Germany) funds via the technology network Intelligent
Technical Systems OstWestfalenLippe (it’s OWL) the work described in this article. The work is
part of the research project “Technical Infrastructure for Digital Twins (TeDZ)”. The project, with
grant number 005-1807-0076, has a budget of 2.6 million euros and runs from 1 December 2018 to 30
September 2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors can confirm that all relevant data are included in the article.

Acknowledgments: This article is an extended version of “PLM/ALM integration with the Asset
Administration Shell” published at the 5th International Conference on System-Integrated Intelli-
gence: Intelligent, flexible, and connected systems in products and production (SysInt 2020). The
authors thank the organizers of SysInt 2020 for encouraging them to publish this extended version
at MDPI.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Stark, J. Product Lifecycle Management. In 21st Century Paradigm for Product Realisation; Springer: Berlin/Heidelberg, Germany,

2015; Volume 1.
2. Compare Product Lifecycle Management Software. Available online: https://www.capterra.com/product-lifecycle-management-

software, (accessed on 17 March 2021).
3. Sääksvuori, A.; Immonen, A. Product Lifecycle Management, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2008.
4. Lacheiner, H.; Ramler, R. Application Lifecycle Management as Infrastructure for Software Process Improvement and Evolution:

Experience and Insights from Industry. In Proceedings of the 37th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), Oulu, Finland, 30 August–2 September 2011; pp. 286–293.

5. Shilovitsky, O. Can We Unify PLM and ALM Models? 2018. Available online: http://beyondplm.com/2018/09/21/can-unify-
plm-alm-models (accessed on 17 March 2021).

6. Warner, J. Who Needs PLM-ALM Integration? 2019. Available online: https://www.kovair.com/blog/who-needs-plm-alm-
integration (accessed on 17 March 2021).

7. Prendeville, K.; Pitcock, J. Maximizing the Return On Your Billion-Dollar R&D Investment: Unified ALM-PLM. 2013. Avail-
able online: https://www.accenture.com/in-en/insight-outlook-maximizing-roi-unified-application-lifecycle-management
(accessed on 17 March 2021).

https://youtu.be/eFBeVvk5bOA
https://www.capterra.com/product-lifecycle-management-software,
https://www.capterra.com/product-lifecycle-management-software,
http://beyondplm.com/2018/09/21/can-unify-plm-alm-models
http://beyondplm.com/2018/09/21/can-unify-plm-alm-models
https://www.kovair.com/blog/who-needs-plm-alm-integration
https://www.kovair.com/blog/who-needs-plm-alm-integration
https://www.accenture.com/in-en/insight-outlook-maximizing-roi-unified-application-lifecycle-management

Computers 2021, 10, 84 18 of 18

8. Deuter, A.; Otte, A.; Ebert, M.; Possel-Dölken, F. Developing the Requirements of a PLM/ALM Integration. An Industrial Case
Study. In Product Lifecycle Management. The Case Studies; Stark, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 4,
pp. 125–143.

9. Open Services for Lifecycle Collaboration (OSLC). Available online: https://open-services.net (accessed on 17 March 2021).
10. Polarion Integration for Windchill. Available online: https://extensions.polarion.com/extensions/339-polarion-integration-for-

windchill (accessed on 17 March 2021).
11. Trauer, J.; Schweigert-Recksiek, S.; Engel, C.; Spreitzer, K.; Zimmermann, M. What is a Digital Twin? Definitions and Insights

from an industrial case study in technical product development. In Proceedings of the DESIGN Conference, Online, 26–29
October 2020; pp. 757–766.

12. Boschert, S.; Rosen, R. Digital Twin the Simulation Aspect. In Challenges and Solutions for Mechatronic Systems and their Designers;
Springer: Berlin/Heidelberg, Germany, 2016.

13. Walden, D.D.; Roedler, G.J.; Forsberg, K.; Hamelin, R.D.; Shortell, T.M. (Eds.) Systems Engineering Handbook: A Guide For System
Life Cycle Processes and Activities, 4th ed.; Wiley: Hoboken, NJ, USA, 2015.

14. Deuter, A.; Pethig, F. The Digital Twin Theory. Ind. Manag. 2019, 35, 27–30. [CrossRef]
15. Plattform Industrie 4.0: Details of Asset Administration Shell, Version 2.0.1. 2019. Available online: https://www.plattform-i40.

de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html (accessed on 31
May 2021).

16. AASX Package Explorer. Available online: https://github.com/admin-shell-io/aasx-package-explorer (accessed on 17 March
2021).

17. Basissystem Industrie 4.0. Available online: https://www.basys40.de (accessed on 17 March 2021).
18. Eclipse Basyx. Available online: https://www.eclipse.org/basyx (accessed on 17 March 2021).
19. PLMXML. Available online: https://www.plm.automation.siemens.com/global/de/products/plm-components/plm-xml.html

(accessed on 17 March 2021).
20. OMG: Requirements Interchange Format (ReqIF). Available online: https://www.omg.org/spec/ReqIF (accessed on 17 March

2021).
21. Plattform Industrie 4.0 Aspects of the Research Roadmap in Application Scenarios. Available online: https://www.plattform-i40.

de/PI40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html (accessed on 10 May 2021).
22. Goldkuhl, G. Action research vs. design research-using practice research as a lens for comparison and integration. In Proceedings

of the Workshop on IT Artefact Design & Workpractice Improvement (ADWI), Tilburg, The Netherlands, 5 June 2013.
23. BaSysPLM. Available online: https://www.softwaresysteme.pt-dlr.de/media/content/Projektblatt_BaSys_PLM.pdf (accessed

on 17 March 2021).

https://open-services.net
https://extensions.polarion.com/extensions/339-polarion-integration-for-windchill
https://extensions.polarion.com/extensions/339-polarion-integration-for-windchill
http://doi.org/10.30844/I40M_19-1_S27-30
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://github.com/admin-shell-io/aasx-package-explorer
https://www.basys40.de
https://www.eclipse.org/basyx
https://www.plm.automation.siemens.com/global/de/products/plm-components/plm-xml.html
https://www.omg.org/spec/ReqIF
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.softwaresysteme.pt-dlr.de/media/content/Projektblatt_BaSys_PLM.pdf

	Introduction
	Related Background
	PLM and Systems Engineering
	Digital Twin
	Asset Administration Shell (AAS)
	Selected Data Models in PLM Processes
	OSLC-Based Data Integration

	Major Research Goals and Research Method
	AAS-Based Engineering Process
	Requirements
	Design and Implementation
	Requirements Validation

	AAS-Based Production Infrastructure
	Requirements of the AAS-Based Production Infrastructure
	Design and Implementation
	Requirements Validation

	Overall Evaluation and Solution Success Factors
	Evaluation of Industry 4.0 Application Scenarios
	Success Factors for AAS-Based Product Lifecycle Management

	Conclusions
	References

