
computers

Article

Processing Analysis of Swift Playgrounds in a Children’s
Computational Thinking Course to Learn Programming

Guo-Ming Cheng * and Chia-Pin Chen

����������
�������

Citation: Cheng, G.-M.; Chen, C.-P.

Processing Analysis of Swift

Playgrounds in a Children’s

Computational Thinking Course to

Learn Programming. Computers 2021,

10, 68. https://doi.org/10.3390/

computers10050068

Academic Editors: Carlos Vaz de

Carvalho and Antonio Coelho

Received: 30 March 2021

Accepted: 10 May 2021

Published: 20 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industry Technology Education, National Kaohsiung Normal University, 62, Shenjhong Rd.,
Yanchao District, Kaohsiung 82446, Taiwan; chen.c0902@gmail.com
* Correspondence: t3791@mail.nknu.edu.tw

Abstract: Computational thinking courses can cultivate students’ ability to apply logic in the fields
of mathematics and information science. The new 12-year Basic Education Curriculum Guidelines
were implemented in Fall 2019 in Taiwan. Courses on computational thinking, problem solving,
and programming are contained in the technology education field in junior and senior high schools.
Swift Playgrounds is an innovative app for the iPad and Mac that makes learning Swift interactive
and fun. No programming knowledge is required to use Swift Playgrounds, making it very suitable
for beginners. This study was carried out by letting elementary school teachers and students
participate in Swift Playgrounds computational thinking courses. By trying this app, teachers of
different disciplines attempted to realize more learning situations. Students learned how to cope
with functions and loop skills by playing with “Byte”, which is a character in Swift Playgrounds.
There were three purposes for this study: first, designing a computational thinking course for the
most basic part, “Hello! Byte”, in Swift Playgrounds; second, assigning elementary school teachers
to assess the qualitative analysis of tasks in Swift Playgrounds; and third, assigning elementary
school students to do the tasks and assign a difficulty index in Swift Playgrounds after learning
with this app. The results show that most teachers considered this approach to be able to improve
logical thinking and inferential capability after assessing, and most students considered functions
and loops quite difficult after using the app. According to the students’ indices, about 86 percent
of students considered that adding commands is easy, and about 37 percent of students considered
that functions are easy. On the other hand, about 24 percent of students considered that applying the
Slotted Stairways is difficult, and about 34 percent of students considered that using loops is hard. It
is suggested that more instructions for the course or extendibility for classes is required.

Keywords: computational thinking; Swift Playgrounds; 12-year Basic Education; Bebras; programming

1. Introduction

Computational thinking through programming is attracting increased attention, as it
is considered an ideal pathway for the development of 21st-century skills; this has led to
K-12 initiatives around the world and a rapid increase in relevant research studies [1,2].
Computational thinking is considered an ideal skill for future development [3,4]. Educating
future generations in programming and computational thinking is not trivial, and many
different platforms and teaching approaches can be used for this purpose [5–7]. Swift is
one tool for learning programming, and it is a development tool specially designed for
designing iOS applications [8,9]. Swift Playgrounds, announced at the Apple Worldwide
Developers Conference (WWDC) in June 2016, is an innovative and powerful app and
an exceptionally simple way to build user interfaces across all Apple platforms using the
power of Swift. It provides several-hour programming courses, suitable for children and
beginners learning programming, and can build user interfaces for any Apple device using
just one set of tools and APIs. Beginners can grasp the basic concept of using Swift through
tasks, and the strong multitouch function allows easier learning of programming with Swift

Computers 2021, 10, 68. https://doi.org/10.3390/computers10050068 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-6824-6347
https://www.mdpi.com/article/10.3390/computers10050068?type=check_update&version=1
https://doi.org/10.3390/computers10050068
https://doi.org/10.3390/computers10050068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10050068
https://www.mdpi.com/journal/computers


Computers 2021, 10, 68 2 of 12

Playgrounds. Simply by touching and dragging commands or inputting text and numbers,
the users can interact with the game’s role for programming and further learn the basic
and solid grammar components of Swift, such as functions, loops, variables, parameters,
and arrays [10].

Computational thinking is becoming more important in global information science and
information curricula, and methods for including it in curricula are being sought [11–13].
More than 50 countries now participate in the Bebras challenge, which began in 2004. Its
thematic short questions allow students from elementary schools through to senior high
schools to solve problems online; the problem-solving time for each is about 3–5 min. Some
computational thinking skills, e.g., mathematics, abstract making, computational thinking,
problem solving, and estimation and induction, are also included. Bebras questions cover
algorithms, data structures, programming, the Internet, databases, and social and moral
issues [14].

In the experimental class in this study, 29 G5 students attended the 2018 Bebras
International Challenge on Informatics and Computational Thinking in the first term and
participated in the Swift Playgrounds computational thinking curriculum in the second
term of the 2018 academic year. Practice with Bebras questions could train students’
computational thinking capabilities, including programming capability, problem solving
skills, decomposition of complicated tasks into simple components, algorithm design, and
pattern recognition, to conform to the Curriculum Guidelines of 12-Year Basic Education—
Technology, covering data representation, processing, analysis, algorithms, and information
technology applications [15].

Consequently, this study aimed to (1) design a six-session Swift Playgrounds iPad
app computational thinking course for elementary schools, (2) arrange for nine elementary
school teachers to assess the tasks in the Swift Playgrounds iPad app and to provide
qualitative analysis, and (3) arrange for 29 elementary school G5 students to provide
difficulty analyses of task learning with the Swift Playgrounds iPad app.

2. Literature Review

Computational thinking [16,17] includes data collection, data analysis, pattern search-
ing, abstract making, data resolution, modeling, and algorithms. Computational thinking
can be applied in real life to break down problems, make complicated problems into simpler
ones, and follow the context to solve problems and gain more information [18,19]. Its appli-
cation to each subject is similar to including computational thinking in the technology field,
in 12-year Basic Education [15]. A transnational study on robotics education between China
and the USA developed a tool to evaluate elementary school G5 students’ computational
thinking capability, to assist students in learning problem challenges and computational
thinking capability [20]. The Swedish government introduced digital computational think-
ing capability training courses and included them in the K-9 programming curriculum in
2018. More than 100,000 teachers had to learn programming and computational thinking
instruction in a short period [21]. Such a changing trend of thought is unprecedented; even
the 2019 12-year Basic Education Curriculum Guidelines in Taiwan stressed the teaching of
a computational thinking curriculum.

For the challenge of computational thinking, the Italy Bebras official website [22] has
provided services to teachers and students since 2015 to support task preparation and
train students in solving problems; it manages about 25,000 teams and training courses.
Lithuania and the UK have supported curriculum teaching and practice for the Bebras
challenge, using the Bebras platform [14] to encourage students in information technology
and computational thinking and educators in taking the computational thinking syllabus
into account. The Bebras challenge provides creative and interesting tasks. Previous
research [23] analyzed the Bebras task performance of 115,400 G3–G12 students in Italy,
Australia, Finland, Lithuania, South Africa, Switzerland, and Canada; Bebras task per-
formance data were collected and analyzed to reflect learning in computational thinking
challenges. Algorithm and data representation questions dominated the performance of



Computers 2021, 10, 68 3 of 12

challenge tasks, comprising about 75–90%. For this reason, when providing teachers with
a computational thinking curriculum, algorithm and data representation questions could
be listed as the main points, and abstract, parallel, and question resolution items should be
supplemental [24]. The author of [25] arranged for elementary school G5 students to par-
ticipate in the 2017 Bebras International computational thinking challenge and discussed
questions for elementary school students via Padlet and team discussion; the technology
acceptance model tool was used for 333 students filling in feedback on the “perceived
usefulness” of Padlet, and 74.4% of them considered it helpful.

In the Everyone Can Code plan in Chicago [26], the curriculum in the full-featured
app was designed by Apple, allowing students to construct personal designs by exploring
basic coding concepts. It provided all G3–G12 students with opportunities for coding
education, as well as volunteers and students with opportunities for practicing program-
ming in local enterprises to expand opportunities for students cultivating coding skills
and inquiring into career development. KIBO’s programming kit [27] was composed of
21 unique cards to assemble complicated sequences, including loops and conditional and
embedded statements. Furthermore, in order to enhance interdisciplinary integration of
STEAM, the tool contained various art creation materials for children making personalized
products. Falloon indicated in research in 2016 [28] that the Scratch Jnr coding curriculum
for students aged 5 and 6 in New Zealand provided an important method to train stu-
dents in complicated computational thinking and critical thinking ability, and it provided
critical evidence for teachers of the students’ thinking processes in computational tasks.
Regarding the coding curriculum in elementary schools in Italy [29], vocational high school
students, in the theoretical framework provided in computational thinking, taught junior
high school and elementary school students to use the App Inventor to create apps on
smartphones in an Android environment; this formed an interesting cooperation pattern
between elementary schools and high schools.

3. Research Method and Results

A survey research method was utilized in this study. The researcher instructed a
G5 computer class. The designed teaching process contained 6 sessions, with 1 session
(40 min) per week practiced in the computer class. Nine teachers from different fields were
invited to try out and assess the “Hello! Byte” computational thinking curriculum on Swift
Playgrounds, and 29 students learnt the “Hello! Byte” computational thinking course on
Swift Playgrounds. After participating in the experiential learning, teachers and students
responded to a Google form to explain their qualitative analysis and difficulty analysis of
the computational thinking curriculum. In Figure 1, the Google Form of the feedback for
the degree of difficulty is shown in the screenshot. In Figure 2, the screenshot on the left is
the role of “Byte” in the Swift Playground app, and the one on the right presents the scene
of the task for the coding game.

3.1. Teaching Process Design and Feedback Analysis after Students’ Learning of Swift Playgrounds
Computational Thinking

A Google form was used to collect difficulty feedback from the 29 elementary school
G5 students after they learned the Swift Playgrounds computational thinking curriculum,
from Task I to Task VIII, for six sessions (240 min). The feedback was analyzed using a
Google form linear scale (the most difficult tasks were given a score of 1, the easiest tasks
were given 10). The researcher proposed a linear difficulty scale of 1–3 as difficult, 4–7 as
moderate, and 8–10 as easy, as shown in Figures 3–12.



Computers 2021, 10, 68 4 of 12
Computers 2021, 9, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. The Google Form of the feedback for the degree of difficulty was shown in the screen-
shot. The Chinese meaning of this picture is the feedback of the degree of difficulty for Task I “Is-
suing Commands”. 

 
Figure 2. The Screenshot of the Swift Playground app presents the role of “Byte” and the scene of 
the task for the coding game (Retrieved 13 October 2020, from https://www.apple.com/swift/play-
grounds, accessed on 13 October 2020). 

3.1. Teaching Process Design and Feedback Analysis after Students’ Learning of Swift 
Playgrounds Computational Thinking 

A Google form was used to collect difficulty feedback from the 29 elementary school 
G5 students after they learned the Swift Playgrounds computational thinking curriculum, 
from Task I to Task VIII, for six sessions (240 min). The feedback was analyzed using a 
Google form linear scale (the most difficult tasks were given a score of 1, the easiest tasks 
were given 10). The researcher proposed a linear difficulty scale of 1–3 as difficult, 4–7 as 
moderate, and 8–10 as easy, as shown in Figures 3–12. 

  

Figure 1. The Google Form of the feedback for the degree of difficulty was shown in the screenshot. The Chinese meaning
of this picture is the feedback of the degree of difficulty for Task I “Issuing Commands”.

Computers 2021, 9, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. The Google Form of the feedback for the degree of difficulty was shown in the screen-
shot. The Chinese meaning of this picture is the feedback of the degree of difficulty for Task I “Is-
suing Commands”. 

 
Figure 2. The Screenshot of the Swift Playground app presents the role of “Byte” and the scene of 
the task for the coding game (Retrieved 13 October 2020, from https://www.apple.com/swift/play-
grounds, accessed on 13 October 2020). 

3.1. Teaching Process Design and Feedback Analysis after Students’ Learning of Swift 
Playgrounds Computational Thinking 

A Google form was used to collect difficulty feedback from the 29 elementary school 
G5 students after they learned the Swift Playgrounds computational thinking curriculum, 
from Task I to Task VIII, for six sessions (240 min). The feedback was analyzed using a 
Google form linear scale (the most difficult tasks were given a score of 1, the easiest tasks 
were given 10). The researcher proposed a linear difficulty scale of 1–3 as difficult, 4–7 as 
moderate, and 8–10 as easy, as shown in Figures 3–12. 

  

Figure 2. The Screenshot of the Swift Playground app presents the role of “Byte” and the scene of the task for the coding
game (Retrieved 13 October 2020, from https://www.apple.com/swift/playgrounds, accessed on 13 October 2020).

https://www.apple.com/swift/playgrounds


Computers 2021, 10, 68 5 of 12

Computers 2021, 9, x FOR PEER REVIEW 5 of 13 
 

 

3.1.1. Coding Command (80 min) 
Task I: Preceding the “Issuing Commands” task in “Hello! Byte” on Swift Play-

grounds, the teacher displays the iPad picture, prompts task goals, touches it with their 
finger, and writes to add commands moveForward() and collectGem(). After adding the 
commands and pressing “execute my code” on the picture, the “Byte” moves forward 3 
steps (1 step for going up/down the stairs), collects jewels, and reaches the destination. In 
Figure 3, the result of the difficulty analysis for class students learning Task I: “Issuing 
Commands”, 24 students, among the 29, considered the degree of ease to be 10 (82.8%), 1 
student considered the degree of ease to be 9 (3.4%), and 2 students considered the degree 
of ease to be 8 (6.9%). In total, 27 students (93.1%) considered Task I: “Issuing Commands” 
to be easy. 

 
Figure 3. Difficulty analysis of Task I: “Issuing Commands”. 

Task II: Preceding the “Adding a New Command” task in “Hello! Byte” on Swift 
Playgrounds, the teacher demonstrates the iPad picture, prompts task goals, continues the 
previous task, and adds the command turnLeft(). After adding the command and pressing 
“execute my code” on the picture, the “Byte” moves forward 2 steps, turns left, moves 
forward 2 steps, and collects jewels to reach the destination. In Figure 4, the result of the 
difficulty analysis for class students learning Task II: “Adding a New Command”, 18 stu-
dents considered the degree of ease to be 10 (62.1%) and 7 students considered the degree 
of ease to be 9 (24.1%). In total, 25 students (86.2%) considered Task II: “Adding a New 
Command” to be easy. 

 
Figure 4. Difficulty analysis of Task II: “Adding a New Command”. 

Task III: Preceding the “Toggling a Switch” task in “Hello! Byte” on Swift Play-
grounds, the teacher displays the iPad picture, prompts task goals, continues the previous 
task, and adds the command toggleSwitch(). After adding the command and pressing 

Figure 3. Difficulty analysis of Task I: “Issuing Commands”.

Computers 2021, 9, x FOR PEER REVIEW 5 of 13 
 

 

3.1.1. Coding Command (80 min) 
Task I: Preceding the “Issuing Commands” task in “Hello! Byte” on Swift Play-

grounds, the teacher displays the iPad picture, prompts task goals, touches it with their 
finger, and writes to add commands moveForward() and collectGem(). After adding the 
commands and pressing “execute my code” on the picture, the “Byte” moves forward 3 
steps (1 step for going up/down the stairs), collects jewels, and reaches the destination. In 
Figure 3, the result of the difficulty analysis for class students learning Task I: “Issuing 
Commands”, 24 students, among the 29, considered the degree of ease to be 10 (82.8%), 1 
student considered the degree of ease to be 9 (3.4%), and 2 students considered the degree 
of ease to be 8 (6.9%). In total, 27 students (93.1%) considered Task I: “Issuing Commands” 
to be easy. 

 
Figure 3. Difficulty analysis of Task I: “Issuing Commands”. 

Task II: Preceding the “Adding a New Command” task in “Hello! Byte” on Swift 
Playgrounds, the teacher demonstrates the iPad picture, prompts task goals, continues the 
previous task, and adds the command turnLeft(). After adding the command and pressing 
“execute my code” on the picture, the “Byte” moves forward 2 steps, turns left, moves 
forward 2 steps, and collects jewels to reach the destination. In Figure 4, the result of the 
difficulty analysis for class students learning Task II: “Adding a New Command”, 18 stu-
dents considered the degree of ease to be 10 (62.1%) and 7 students considered the degree 
of ease to be 9 (24.1%). In total, 25 students (86.2%) considered Task II: “Adding a New 
Command” to be easy. 

 
Figure 4. Difficulty analysis of Task II: “Adding a New Command”. 

Task III: Preceding the “Toggling a Switch” task in “Hello! Byte” on Swift Play-
grounds, the teacher displays the iPad picture, prompts task goals, continues the previous 
task, and adds the command toggleSwitch(). After adding the command and pressing 

Figure 4. Difficulty analysis of Task II: “Adding a New Command”.

Computers 2021, 9, x FOR PEER REVIEW 6 of 13 
 

 

“execute my code” on the picture, the “Byte” moves forward 2 steps, turns left, moves 
forward, collects jewels, moves forward, turns left, moves forward, and performs a Tog-
gling a Switch to reach the destination. In Figure 5, the result of the difficulty analysis for 
class students learning Task III: “Toggling a Switch”, 14 students considered the degree 
of ease to be 10 (48.3%), 4 students considered the degree of ease to be 9 (13.8%), and 8 
students considered the degree of ease to be 8 (27.6%). In total, 26 students (89.7%) con-
sidered Task III: “Toggling a Switch” to be easy. 

 
Figure 5. Difficulty analysis of Task III: “Toggling a Switch”. 

Task IV: Preceding the “Portal Practice” task in “Hello! Byte” on Swift Playgrounds, 
the teacher demonstrates the iPad picture, prompts task goals, continues the previous 
task, and adds the command toggleSwitch(). After adding the command and pressing 
“execute my code” on the picture, the “Byte” moves forward 3 steps, turns left, moves 
forward 2 steps, does a Toggling a Switch, moves forward, enters the Portal, exits the 
Portal, moves forward, turns left, moves forward 2 steps, and collects jewels to reach the 
destination. In Figure 6, the result of the difficulty analysis for class students learning Task 
IV: “Portal Practice”, 7 students considered the degree of ease to be 10 (24.1%), 8 students 
considered the degree of ease to be 9 (27.6%), and 4 students considered the degree of ease 
to be 4 (13.8%). In total, 19 students (65.5%) considered Task IV: “Portal Practice” to be 
easy. 

 
Figure 6. Difficulty analysis of Task IV: “Portal Practice”. 

3.1.2. Building Functions (80 min) 
Task V: Preceding the “Composing a New Behavior” task in “Hello! Byte” on Swift 

Playgrounds, the teacher displays the iPad picture, prompts task goals, adds the following 
commands, and presses “execute my code” on the picture. The “Byte” moves forward 3 
steps, turns left 3 times (without the command to turn right), moves forward 3 steps, and 

Figure 5. Difficulty analysis of Task III: “Toggling a Switch”.

Computers 2021, 9, x FOR PEER REVIEW 6 of 13 
 

 

“execute my code” on the picture, the “Byte” moves forward 2 steps, turns left, moves 
forward, collects jewels, moves forward, turns left, moves forward, and performs a Tog-
gling a Switch to reach the destination. In Figure 5, the result of the difficulty analysis for 
class students learning Task III: “Toggling a Switch”, 14 students considered the degree 
of ease to be 10 (48.3%), 4 students considered the degree of ease to be 9 (13.8%), and 8 
students considered the degree of ease to be 8 (27.6%). In total, 26 students (89.7%) con-
sidered Task III: “Toggling a Switch” to be easy. 

 
Figure 5. Difficulty analysis of Task III: “Toggling a Switch”. 

Task IV: Preceding the “Portal Practice” task in “Hello! Byte” on Swift Playgrounds, 
the teacher demonstrates the iPad picture, prompts task goals, continues the previous 
task, and adds the command toggleSwitch(). After adding the command and pressing 
“execute my code” on the picture, the “Byte” moves forward 3 steps, turns left, moves 
forward 2 steps, does a Toggling a Switch, moves forward, enters the Portal, exits the 
Portal, moves forward, turns left, moves forward 2 steps, and collects jewels to reach the 
destination. In Figure 6, the result of the difficulty analysis for class students learning Task 
IV: “Portal Practice”, 7 students considered the degree of ease to be 10 (24.1%), 8 students 
considered the degree of ease to be 9 (27.6%), and 4 students considered the degree of ease 
to be 4 (13.8%). In total, 19 students (65.5%) considered Task IV: “Portal Practice” to be 
easy. 

 
Figure 6. Difficulty analysis of Task IV: “Portal Practice”. 

3.1.2. Building Functions (80 min) 
Task V: Preceding the “Composing a New Behavior” task in “Hello! Byte” on Swift 

Playgrounds, the teacher displays the iPad picture, prompts task goals, adds the following 
commands, and presses “execute my code” on the picture. The “Byte” moves forward 3 
steps, turns left 3 times (without the command to turn right), moves forward 3 steps, and 

Figure 6. Difficulty analysis of Task IV: “Portal Practice”.



Computers 2021, 10, 68 6 of 12

Computers 2021, 9, x FOR PEER REVIEW 7 of 13 
 

 

collects jewels to reach the destination. In Figure 7, the result of the difficulty analysis for 
class students learning Task V: “Composing a New Behavior”, 9 students considered the 
degree of ease to be 10 (31%), 6 students considered the degree of ease to be 9 (20.7%), and 
4 students considered the degree of ease to be 4 (13.8%). In total, 19 students (65.5%) con-
sidered Task V: “Composing a New Behavior” to be easy. 

 
Figure 7. Difficulty analysis of Task V: “Composing a New Behavior”. 

Task VI: Preceding the “Creating a New Funtion” task in “Hello! Byte” on Swift Play-
grounds, the teacher demonstrates the iPad picture, prompts task goals, and establishes a 
turnRight() function by adding the command turnLeft() 3 times in func turnRight(){ }, and 
subsequently uses the function to complete the program command and function, as 
shown in Figure 8. By pressing “execute my code” on the picture, the “Byte” moves for-
ward, turns left, moves forward, turns right, moves forward, turns right, moves forward, 
enters the Portal, exits the Portal, turns right, moves forward, turns left, moves forward, 
and does a Toggling a Switch to reach the destination. In Figure 9, the result of the diffi-
culty analysis for class students learning Task VI: “Creating a New Funtion”, 11 students 
(37.8%) considered Task VI to be easy (degree of ease 8–10), 16 students (55%) considered 
Task VI to be moderate (degree of ease 4–7), and 2 students (6.8%) considered Task VI to 
be difficult (degree of ease 1–3). 

 
Figure 8. Task VI: “Creating a New Funtion”. 

Figure 7. Difficulty analysis of Task V: “Composing a New Behavior”.

Computers 2021, 9, x FOR PEER REVIEW 7 of 13 
 

 

collects jewels to reach the destination. In Figure 7, the result of the difficulty analysis for 
class students learning Task V: “Composing a New Behavior”, 9 students considered the 
degree of ease to be 10 (31%), 6 students considered the degree of ease to be 9 (20.7%), and 
4 students considered the degree of ease to be 4 (13.8%). In total, 19 students (65.5%) con-
sidered Task V: “Composing a New Behavior” to be easy. 

 
Figure 7. Difficulty analysis of Task V: “Composing a New Behavior”. 

Task VI: Preceding the “Creating a New Funtion” task in “Hello! Byte” on Swift Play-
grounds, the teacher demonstrates the iPad picture, prompts task goals, and establishes a 
turnRight() function by adding the command turnLeft() 3 times in func turnRight(){ }, and 
subsequently uses the function to complete the program command and function, as 
shown in Figure 8. By pressing “execute my code” on the picture, the “Byte” moves for-
ward, turns left, moves forward, turns right, moves forward, turns right, moves forward, 
enters the Portal, exits the Portal, turns right, moves forward, turns left, moves forward, 
and does a Toggling a Switch to reach the destination. In Figure 9, the result of the diffi-
culty analysis for class students learning Task VI: “Creating a New Funtion”, 11 students 
(37.8%) considered Task VI to be easy (degree of ease 8–10), 16 students (55%) considered 
Task VI to be moderate (degree of ease 4–7), and 2 students (6.8%) considered Task VI to 
be difficult (degree of ease 1–3). 

 
Figure 8. Task VI: “Creating a New Funtion”. Figure 8. Task VI: “Creating a New Funtion”.

Computers 2021, 9, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 9. Difficulty analysis of Task VI: “Creating a New Funtion”. 

Task VII: Preceding the “Slotted Stairways” task in “Hello! Byte” on Swift Play-
grounds, the teacher displays the iPad picture and prompts the task picture and goals as 
in the following figure. The “Byte” repeatedly collects jewels back and forth. This major 
task can be decomposed into 3 minor tasks, which are simplified with functions or com-
mands for subsequent use of the Slotted Stairways. To practice the establishment of the 
collectGemTurnAround() function, in Figure 10, the commands to move forward 2 steps, 
collect jewels, turn left twice (turn backward), and move forward 2 steps are added in func 
collectGemTurnAround(){ }. To practice the establishment of the sloveRow(){} to complete 
the minor task of collecting 2 jewels, on the left of the figure, the commands col-
lectGemTurnAround() 2 times, turn left 3 times (turning right), move forward, and turn 
left are added in func sloveRow(){ }. By pressing “execute my code” on the picture, the 
“Byte” executes the different commands, functions, and Slotted Stairways. In Figure 11, 
the result of the difficulty analysis for class students learning Task VII: “Slotted Stair-
ways”, 5 students (17.1%) considered Task VII to be easy (degree of ease 8–10), 17 students 
(58.6%) considered Task VII to be moderate (degree of ease 4–7), and 7 students (24.1%) 
considered Task VII to be difficult (degree of ease 1–3). 

 
Figure 10. Task VII: “Slotted Stairways”. 

Figure 9. Difficulty analysis of Task VI: “Creating a New Funtion”.



Computers 2021, 10, 68 7 of 12

Computers 2021, 9, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 9. Difficulty analysis of Task VI: “Creating a New Funtion”. 

Task VII: Preceding the “Slotted Stairways” task in “Hello! Byte” on Swift Play-
grounds, the teacher displays the iPad picture and prompts the task picture and goals as 
in the following figure. The “Byte” repeatedly collects jewels back and forth. This major 
task can be decomposed into 3 minor tasks, which are simplified with functions or com-
mands for subsequent use of the Slotted Stairways. To practice the establishment of the 
collectGemTurnAround() function, in Figure 10, the commands to move forward 2 steps, 
collect jewels, turn left twice (turn backward), and move forward 2 steps are added in func 
collectGemTurnAround(){ }. To practice the establishment of the sloveRow(){} to complete 
the minor task of collecting 2 jewels, on the left of the figure, the commands col-
lectGemTurnAround() 2 times, turn left 3 times (turning right), move forward, and turn 
left are added in func sloveRow(){ }. By pressing “execute my code” on the picture, the 
“Byte” executes the different commands, functions, and Slotted Stairways. In Figure 11, 
the result of the difficulty analysis for class students learning Task VII: “Slotted Stair-
ways”, 5 students (17.1%) considered Task VII to be easy (degree of ease 8–10), 17 students 
(58.6%) considered Task VII to be moderate (degree of ease 4–7), and 7 students (24.1%) 
considered Task VII to be difficult (degree of ease 1–3). 

 
Figure 10. Task VII: “Slotted Stairways”. Figure 10. Task VII: “Slotted Stairways”.

Computers 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 11. Difficulty analysis of Task VII: “Slotted Stairways”. 

3.1.3. Building Loops (80 min) 
Task VIII: Preceding the “Loop Jumper” task in “Hello! Byte” on Swift Playgrounds, 

the teacher demonstrates the iPad picture and prompts task pictures and goals. To find 
the step for repeatedly operating tasks on the picture, the part which is to be repeatedly 
executed can be searched on the task picture. After adding commands to move forward 2 
steps, collect jewels, turn right, move forward, turn left, move forward 2 steps, collect 
jewels, turn right, move forward, enter Portal, exit Portal, and turn left for i in 1 … 2 { }, 
“execute my code” in the picture is pressed to have the “Byte” move forward, turn left, 
repeat the above loop twice, move forward 2 steps, and collect jewels to reach the desti-
nation, in Figure 12. In Figure 13, the result of the difficulty analysis for class students 
learning Task VIII: “Loop Jumper”, 5 students (17.1%) considered Task VIII to be easy 
(degree of ease 8–10), 14 students (48.2%) considered Task VIII to be moderate (degree of 
ease 4–7), and 10 students (34.4%) considered Task VIII to be difficult (degree of ease 1–
3). 

 
Figure 12. Task VIII: “Loop Jumper”. 

Figure 11. Difficulty analysis of Task VII: “Slotted Stairways”.

Computers 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 11. Difficulty analysis of Task VII: “Slotted Stairways”. 

3.1.3. Building Loops (80 min) 
Task VIII: Preceding the “Loop Jumper” task in “Hello! Byte” on Swift Playgrounds, 

the teacher demonstrates the iPad picture and prompts task pictures and goals. To find 
the step for repeatedly operating tasks on the picture, the part which is to be repeatedly 
executed can be searched on the task picture. After adding commands to move forward 2 
steps, collect jewels, turn right, move forward, turn left, move forward 2 steps, collect 
jewels, turn right, move forward, enter Portal, exit Portal, and turn left for i in 1 … 2 { }, 
“execute my code” in the picture is pressed to have the “Byte” move forward, turn left, 
repeat the above loop twice, move forward 2 steps, and collect jewels to reach the desti-
nation, in Figure 12. In Figure 13, the result of the difficulty analysis for class students 
learning Task VIII: “Loop Jumper”, 5 students (17.1%) considered Task VIII to be easy 
(degree of ease 8–10), 14 students (48.2%) considered Task VIII to be moderate (degree of 
ease 4–7), and 10 students (34.4%) considered Task VIII to be difficult (degree of ease 1–
3). 

 
Figure 12. Task VIII: “Loop Jumper”. Figure 12. Task VIII: “Loop Jumper”.



Computers 2021, 10, 68 8 of 12

3.1.1. Coding Command (80 min)

Task I: Preceding the “Issuing Commands” task in “Hello! Byte” on Swift Playgrounds,
the teacher displays the iPad picture, prompts task goals, touches it with their finger, and
writes to add commands moveForward() and collectGem(). After adding the commands
and pressing “execute my code” on the picture, the “Byte” moves forward 3 steps (1 step
for going up/down the stairs), collects jewels, and reaches the destination. In Figure 3, the
result of the difficulty analysis for class students learning Task I: “Issuing Commands”,
24 students, among the 29, considered the degree of ease to be 10 (82.8%), 1 student
considered the degree of ease to be 9 (3.4%), and 2 students considered the degree of ease to
be 8 (6.9%). In total, 27 students (93.1%) considered Task I: “Issuing Commands” to be easy.

Task II: Preceding the “Adding a New Command” task in “Hello! Byte” on Swift
Playgrounds, the teacher demonstrates the iPad picture, prompts task goals, continues
the previous task, and adds the command turnLeft(). After adding the command and
pressing “execute my code” on the picture, the “Byte” moves forward 2 steps, turns left,
moves forward 2 steps, and collects jewels to reach the destination. In Figure 4, the result
of the difficulty analysis for class students learning Task II: “Adding a New Command”,
18 students considered the degree of ease to be 10 (62.1%) and 7 students considered the
degree of ease to be 9 (24.1%). In total, 25 students (86.2%) considered Task II: “Adding a
New Command” to be easy.

Task III: Preceding the “Toggling a Switch” task in “Hello! Byte” on Swift Playgrounds,
the teacher displays the iPad picture, prompts task goals, continues the previous task, and
adds the command toggleSwitch(). After adding the command and pressing “execute
my code” on the picture, the “Byte” moves forward 2 steps, turns left, moves forward,
collects jewels, moves forward, turns left, moves forward, and performs a Toggling a
Switch to reach the destination. In Figure 5, the result of the difficulty analysis for class
students learning Task III: “Toggling a Switch”, 14 students considered the degree of ease
to be 10 (48.3%), 4 students considered the degree of ease to be 9 (13.8%), and 8 students
considered the degree of ease to be 8 (27.6%). In total, 26 students (89.7%) considered Task
III: “Toggling a Switch” to be easy.

Task IV: Preceding the “Portal Practice” task in “Hello! Byte” on Swift Playgrounds,
the teacher demonstrates the iPad picture, prompts task goals, continues the previous task,
and adds the command toggleSwitch(). After adding the command and pressing “execute
my code” on the picture, the “Byte” moves forward 3 steps, turns left, moves forward
2 steps, does a Toggling a Switch, moves forward, enters the Portal, exits the Portal, moves
forward, turns left, moves forward 2 steps, and collects jewels to reach the destination. In
Figure 6, the result of the difficulty analysis for class students learning Task IV: “Portal
Practice”, 7 students considered the degree of ease to be 10 (24.1%), 8 students considered
the degree of ease to be 9 (27.6%), and 4 students considered the degree of ease to be
4 (13.8%). In total, 19 students (65.5%) considered Task IV: “Portal Practice” to be easy.

3.1.2. Building Functions (80 min)

Task V: Preceding the “Composing a New Behavior” task in “Hello! Byte” on Swift
Playgrounds, the teacher displays the iPad picture, prompts task goals, adds the following
commands, and presses “execute my code” on the picture. The “Byte” moves forward
3 steps, turns left 3 times (without the command to turn right), moves forward 3 steps,
and collects jewels to reach the destination. In Figure 7, the result of the difficulty analysis
for class students learning Task V: “Composing a New Behavior”, 9 students considered
the degree of ease to be 10 (31%), 6 students considered the degree of ease to be 9 (20.7%),
and 4 students considered the degree of ease to be 4 (13.8%). In total, 19 students (65.5%)
considered Task V: “Composing a New Behavior” to be easy.

Task VI: Preceding the “Creating a New Funtion” task in “Hello! Byte” on Swift
Playgrounds, the teacher demonstrates the iPad picture, prompts task goals, and establishes
a turnRight() function by adding the command turnLeft() 3 times in func turnRight(){ }, and
subsequently uses the function to complete the program command and function, as shown



Computers 2021, 10, 68 9 of 12

in Figure 8. By pressing “execute my code” on the picture, the “Byte” moves forward,
turns left, moves forward, turns right, moves forward, turns right, moves forward, enters
the Portal, exits the Portal, turns right, moves forward, turns left, moves forward, and
does a Toggling a Switch to reach the destination. In Figure 9, the result of the difficulty
analysis for class students learning Task VI: “Creating a New Funtion”, 11 students (37.8%)
considered Task VI to be easy (degree of ease 8–10), 16 students (55%) considered Task VI
to be moderate (degree of ease 4–7), and 2 students (6.8%) considered Task VI to be difficult
(degree of ease 1–3).

Task VII: Preceding the “Slotted Stairways” task in “Hello! Byte” on Swift Play-
grounds, the teacher displays the iPad picture and prompts the task picture and goals
as in the following figure. The “Byte” repeatedly collects jewels back and forth. This
major task can be decomposed into 3 minor tasks, which are simplified with functions
or commands for subsequent use of the Slotted Stairways. To practice the establishment
of the collectGemTurnAround() function, in Figure 10, the commands to move forward
2 steps, collect jewels, turn left twice (turn backward), and move forward 2 steps are added
in func collectGemTurnAround(){ }. To practice the establishment of the sloveRow(){} to
complete the minor task of collecting 2 jewels, on the left of the figure, the commands
collectGemTurnAround() 2 times, turn left 3 times (turning right), move forward, and turn
left are added in func sloveRow(){ }. By pressing “execute my code” on the picture, the
“Byte” executes the different commands, functions, and Slotted Stairways. In Figure 11, the
result of the difficulty analysis for class students learning Task VII: “Slotted Stairways”,
5 students (17.1%) considered Task VII to be easy (degree of ease 8–10), 17 students (58.6%)
considered Task VII to be moderate (degree of ease 4–7), and 7 students (24.1%) considered
Task VII to be difficult (degree of ease 1–3).

3.1.3. Building Loops (80 min)

Task VIII: Preceding the “Loop Jumper” task in “Hello! Byte” on Swift Playgrounds,
the teacher demonstrates the iPad picture and prompts task pictures and goals. To find
the step for repeatedly operating tasks on the picture, the part which is to be repeatedly
executed can be searched on the task picture. After adding commands to move forward
2 steps, collect jewels, turn right, move forward, turn left, move forward 2 steps, collect
jewels, turn right, move forward, enter Portal, exit Portal, and turn left for i in 1 . . . 2 { },
“execute my code” in the picture is pressed to have the “Byte” move forward, turn left, re-
peat the above loop twice, move forward 2 steps, and collect jewels to reach the destination,
in Figure 12. In Figure 13, the result of the difficulty analysis for class students learning
Task VIII: “Loop Jumper”, 5 students (17.1%) considered Task VIII to be easy (degree of
ease 8–10), 14 students (48.2%) considered Task VIII to be moderate (degree of ease 4–7),
and 10 students (34.4%) considered Task VIII to be difficult (degree of ease 1–3).

Computers 2021, 9, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 13. Difficulty analysis of Task VIII: “Loop Jumper”. 

The students are requested to fill in the Google form “student feedback on iPad Swift 
Playgrounds learning”. 

3.2. Qualitative Feedback Analysis after Teachers’ Assessments of Swift Playgrounds 

Nine teachers—2 gifted education program teachers, 2 English teachers, 2 ICT teach-
ers, 2 science teachers, and 1 art teacher—were asked to assess the Swift Playgrounds iPad 
app. During the Professional Learning Community (PLC) gathering time, lasting about 2 
h, they learned computational thinking and programming on their own and then filled in 
the Google form. From Table 1, which presents qualitative feedback analysis of the teach-
ers’ assessments of the computational thinking curriculum, most teachers considered that 
the basic course “Hello! Byte” on the Swift Playgrounds iPad app could train logical think-
ing and reasoning ability to largely help beginners learn a basic programming. 

Table 1. Qualitative feedback analysis after teachers’ assessments of Swift Playgrounds. 

Teacher Subject The Most Impressive? Importance of Programming to the Future? 

Teacher 
A 

gifted education 
program 

The picture is exquisite and cute and the 
instruction steps are clear for self-learning. 

Helps students dismantle problems, think of 
problem-solving steps, and write the steps 

with a specific execution sequence. 

Teacher 
B 

gifted education 
program 

A fun program. Hopefully, I can continue to 
play and learn at home.  

Everything could be controlled with 
programs. It allows me to realize that there 

are still many things to invent.  

Teacher 
C 

English 
It is interesting to combine English with 

coding, and would be motivating for 
learning English. 

Trains logic thinking, reasoning, 
computation, and, of course, English ability. 

Teacher 
D 

information 
technology 
education 

It teaches programming with a drag-and-
drop app and is presented with text, 

allowing students to get into the 
programming world earlier. It is impressive. 

The app could train personal logic and allow 
oneself to better organize both programs and 

life. It is an excellent app.  

Teacher 
E 

science and 
technology 

It combines complete space and logic 
concepts to easily attract learners practicing 
the course step by step. It is a good teaching 

material.  

Nil 

Teacher 
F 

English After comprehending the hierarchical 
learning process, it is easy to execute.  

It allows for learning different languages and 
cultivating logic reasoning capability.  

Figure 13. Difficulty analysis of Task VIII: “Loop Jumper”.



Computers 2021, 10, 68 10 of 12

The students are requested to fill in the Google form “student feedback on iPad Swift
Playgrounds learning”.

3.2. Qualitative Feedback Analysis after Teachers’ Assessments of Swift Playgrounds

Nine teachers—2 gifted education program teachers, 2 English teachers, 2 ICT teachers,
2 science teachers, and 1 art teacher—were asked to assess the Swift Playgrounds iPad
app. During the Professional Learning Community (PLC) gathering time, lasting about 2 h,
they learned computational thinking and programming on their own and then filled in the
Google form. From Table 1, which presents qualitative feedback analysis of the teachers’
assessments of the computational thinking curriculum, most teachers considered that the
basic course “Hello! Byte” on the Swift Playgrounds iPad app could train logical thinking
and reasoning ability to largely help beginners learn a basic programming.

Table 1. Qualitative feedback analysis after teachers’ assessments of Swift Playgrounds.

Teacher Subject The Most Impressive? Importance of Programming to the Future?

Teacher A gifted education
program

The picture is exquisite and cute
and the instruction steps are clear

for self-learning.

Helps students dismantle problems, think of
problem-solving steps, and write the steps

with a specific execution sequence.

Teacher B gifted education
program

A fun program. Hopefully, I can
continue to play and learn at home.

Everything could be controlled with programs.
It allows me to realize that there are still many

things to invent.

Teacher C English
It is interesting to combine English

with coding, and would be
motivating for learning English.

Trains logic thinking, reasoning, computation,
and, of course, English ability.

Teacher D information technology
education

It teaches programming with a
drag-and-drop app and is presented
with text, allowing students to get

into the programming world earlier.
It is impressive.

The app could train personal logic and allow
oneself to better organize both programs and

life. It is an excellent app.

Teacher E science and technology

It combines complete space and
logic concepts to easily attract

learners practicing the course step
by step. It is a good
teaching material.

Nil

Teacher F English
After comprehending the

hierarchical learning process, it is
easy to execute.

It allows for learning different languages and
cultivating logic reasoning capability.

Teacher G art and humanities It is quite interesting and needs
time for solving problems.

It could be combined with information
technology to enhance students’ learning

interests.

Teacher H information technology
education

It has a rich picture/text interface to
largely help beginners learn basic

programming design.

Basic logic concept establishment and simple
programming applications.

Teacher I science and technology
It could train logical thinking and

reasoning capability. Tasks
are interesting.

Structured learning.

4. Conclusions and Suggestions

In the 12-year Basic Education practiced in 2019, the technology field reinforced
problem solving and programming in computational thinking. This study re-wrote a lesson
plan for technology pilot schools in the 2018 academic year into a paper. Computational
thinking skills are becoming essential in all aspects of work and life and have become a part
of the K-12 curriculum around the world [30]. For the many different program languages
and computational thinking courses, the use of different training and learning tools has



Computers 2021, 10, 68 11 of 12

essential learning effectiveness [20,31–33]. In the study, a Swift Playgrounds computational
thinking curriculum, lasting six sessions, was first developed, and nine elementary school
teachers were asked to assess Swift Playgrounds. It was discovered that the tool could train
students in logical thinking and reasoning capability. After the research, most teachers
considered the tool as being able to train logical thinking and reasoning capability. Analysis
of the students’ learning feedback showed that 86% and 37% of students regarded adding
commands and functions, respectively, as being easy, while 24% and 34% of students
considered applying the unit step function and using loops, respectively, as being difficult.
It is suggested that the curriculum should be explained in detail, or the schedule extended
to allow most students to keep up with the schedule.

Before the end of the course, the teacher announced the codes for all tasks. This
allowed students to build the learning scaffold and complete task operations more fluently
during self-learning. All students were asked to fill in their feedback on a Google form in
the last session, for summative evaluation. Swift Playgrounds is an iOS app. It can only
be learned on an iPad, and most schools in the nation could not furnish each student, or
even each class, with an iPad for this learning experience. A class was therefore arranged
for trial teaching in this study. For a second class, we would need to establish students
in different classes but with the same seat number on Swift Playgrounds for the “Hello!
Byte” course. These restrictions might be factors that adversely affect the popularity of the
course. Apple could release the app for different platforms to allow access to more teachers
and students for learning.

Author Contributions: Data curation, G.-M.C.; validation, C.-P.C.; writing—original draft, G.-M.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Joly, M.; Rondó, P.H. The future of computational biomedicine: Complex systems thinking. Math. Comput. Simul. 2017, 132, 1–27.

[CrossRef]
2. Tikva, C.; Tambouris, E. Mapping computational thinking through programming in K-12 education: A conceptual model based

on a systematic literature Review. Comput. Educ. 2021, 162, 104083. [CrossRef]
3. Grover, S.; Pea, R. Computational thinking in K–12: A review of the state of the field. Educ. Res. 2013, 42, 38–43. [CrossRef]
4. Lye, S.Y.; Koh, J.H.L. Review on teaching and learning of computational thinking through programming: What is next for K-12?

Comput. Hum. Behav. 2014, 41, 51–61. [CrossRef]
5. Carlborg, N.; Tyrén, M.; Heath, C.; Eriksson, E. The scope of autonomy when teaching computational thinking in primary school.

Int. J. Child-Comput. Interact. 2019, 21, 130–139. [CrossRef]
6. Durak, H.Y.; Saritepeci, M. Analysis of the relation between computational thinking skills and various variables with the structural

equation model. Comput. Educ. 2018, 116, 191–202. [CrossRef]
7. Fidai, A.; Capraro, M.M.; Capraro, R.M. “Scratch”-ing computational thinking with Arduino: A meta-analysis. Think. Ski. Creat.

2020, 38, 100726. [CrossRef]
8. Bhatt, A.J.; Gupta, C.; Mittal, S. iABC: Towards a hybrid framework for analyzing and classifying behaviour of iOS applications

using static and dynamic analysis. J. Inf. Secur. Appl. 2018, 41, 144–158. [CrossRef]
9. Seliverstov, Y.; Starichenkov, A.; Nikitin, K. Using mobile applications to evaluate quality of road networks and transport mobility.

Transp. Res. Procedia 2020, 50, 636–646. [CrossRef]
10. Hanson, J. Not Just Another Coding App. Sch. Libr. J. 2016, 62, 18–20.
11. Hou, H.-Y.; Agrawal, S.; Lee, C.-F. Computational thinking training with technology for non-information undergraduates. Think.

Ski. Creat. 2020, 38, 100720. [CrossRef]
12. Lin, S.-Y.; Chien, S.-Y.; Hsiao, C.-L.; Hsia, C.-H.; Chao, K.-M. Enhancing Computational Thinking Capability of Preschool Children

by Game-based Smart Toys. Electron. Commer. Res. Appl. 2020, 44, 101011. [CrossRef]
13. Zhang, L.; Nouri, J. A systematic review of learning computational thinking through Scratch in K-9. Comput. Educ. 2019, 141,

103607. [CrossRef]

http://doi.org/10.1016/j.matcom.2015.06.010
http://doi.org/10.1016/j.compedu.2020.104083
http://doi.org/10.3102/0013189X12463051
http://doi.org/10.1016/j.chb.2014.09.012
http://doi.org/10.1016/j.ijcci.2019.06.005
http://doi.org/10.1016/j.compedu.2017.09.004
http://doi.org/10.1016/j.tsc.2020.100726
http://doi.org/10.1016/j.jisa.2018.07.005
http://doi.org/10.1016/j.trpro.2020.10.075
http://doi.org/10.1016/j.tsc.2020.100720
http://doi.org/10.1016/j.elerap.2020.101011
http://doi.org/10.1016/j.compedu.2019.103607


Computers 2021, 10, 68 12 of 12

14. Dagienė, V.; Sentance, S.; Stupurienė, G. Developing a two-dimensional categorization system for educational tasks in informatics.
Informatica 2017, 28, 23–44. [CrossRef]

15. Taiwan ministry of Education. Curriculum Guidelines of 12-Year Basic Education for Elementary, Junior High Schools and General Senior
High Schools-Technology; Taiwan ministry of Education: Taipei, Taiwan, 2020.

16. Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
17. Wing, J.M. Computational thinking and thinking about computing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2008, 366,

3717–3725.
18. Rowe, E.; Almeda, M.V.; Asbell-Clarke, J.; Scruggs, R.; Baker, R.; Bardar, E.; Gasca, S. Assessing implicit computational thinking

in Zoombinis puzzle gameplay. Comput. Hum. Behav. 2021, 120, 106707. [CrossRef]
19. Kert, S.B.; Erkoç, M.F.; Yeni, S. The effect of robotics on six graders’ academic achievement, computational thinking skills and

conceptual knowledge levels. Think. Skills Creat. 2020, 38, 100714. [CrossRef]
20. Chen, G.; Shen, J.; Barth-Cohen, L.; Jiang, S.; Huang, X.; Eltoukhy, M. Assessing elementary students’ computational thinking in

everyday reasoning and robotics programming. Comput. Educ. 2017, 109, 162–175. [CrossRef]
21. Heintz, F.; Mannila, L. Computational thinking for all: An experience report on scaling up teaching computational thinking to

all students in a major city in Sweden. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
Baltimore, MD, USA, 21–24 February 2018; ACM: Mew York, NY, USA, 2018; pp. 137–142.

22. Bellettini, C.; Carimati, F.; Lonati, V.; Macoratti, R.; Malchiodi, D.; Monga, M.; Morpurgo, A. A Platform for the Italian Bebras. In
Proceedings of the 2018 International Conference on Computer Supported Education, Madeira, Portugal, 15–17 March 2018; pp.
350–357.

23. Izu, C.; Mirolo, C.; Settle, A.; Mannila, L.; Stupuriene, G. Exploring Bebras Tasks Content and Performance: A Multinational
Study. Inform. Educ. 2017, 16, 39–59. [CrossRef]

24. Grossman, M.; Aziz, M.; Chi, H.; Tibrewal, A.; Imam, S.; Sarkar, V. Pedagogy and tools for teaching parallel computing at the
sophomore undergraduate level. J. Parallel Distrib. Comput. 2017, 105, 18–30. [CrossRef]

25. Chen, C.P. Using Padlet cooperative learning for computational thinking challenge in elementary schools. In Proceedings of the
TANET 2018 Taiwan Academic Network Conference, Taoyuan, Taiwan, 24–26 October 2018.

26. Coding Clubs. Everyone Can Code Chicago. Available online: https://www.eccchicago.org/everyone-can-code-chicago-coding-
clubs.html (accessed on 7 July 2017).

27. Bers, M.U.; González-González, C.; Armas-Torres, M.B. Coding as a playground: Promoting positive learning experiences in
childhood classrooms. Comput. Educ. 2019, 138, 130–145. [CrossRef]

28. Falloon, G. An analysis of young students’ thinking when completing basic coding tasks using Scratch Jnr. On the iPad. J. Comput.
Assist. Learn. 2016, 32, 576–593. [CrossRef]

29. Bruni, F.; Onofrio, L.; Nisdeo, M. Start App: A coding experience between primary and secondary school. Form@re Open J. Form.
Rete 2016, 16, 188–200.

30. Wei, X.; Lin, L.; Meng, N.; Tan, W.; Kong, S.-C. The effectiveness of partial pair programming on elementary school students’
computational thinking skills and self-efficacy. Comput. Educ. 2021, 160, 104023. [CrossRef]

31. Asbell-Clarke, J.; Rowe, E.; Almeda, V.; Edwards, T.; Bardar, E.; Gasca, S.; Baker, R.; Scruggs, R. The development of students’
computational thinking practices in elementary-and middle-school classes using the learning game, Zoombinis. Comput. Hum.
Behav. 2021, 115, 106587. [CrossRef]

32. Del Olmo-Muñoz, J.; Cózar-Gutiérrez, R.; González-Calero, J.A. Computational thinking through unplugged activities in early
years of Primary Education. Comput. Educ. 2020, 150, 103832. [CrossRef]

33. Lei, H.; Chiu, M.M.; Li, F.; Wang, X.; Geng, Y.-J. Computational thinking and academic achievement: A meta-analysis among
students. Child. Youth Serv. Rev. 2020, 118, 105439. [CrossRef]

http://doi.org/10.15388/Informatica.2017.119
http://doi.org/10.1145/1118178.1118215
http://doi.org/10.1016/j.chb.2021.106707
http://doi.org/10.1016/j.tsc.2020.100714
http://doi.org/10.1016/j.compedu.2017.03.001
http://doi.org/10.15388/infedu.2017.03
http://doi.org/10.1016/j.jpdc.2016.12.026
https://www.eccchicago.org/everyone-can-code-chicago-coding-clubs.html
https://www.eccchicago.org/everyone-can-code-chicago-coding-clubs.html
http://doi.org/10.1016/j.compedu.2019.04.013
http://doi.org/10.1111/jcal.12155
http://doi.org/10.1016/j.compedu.2020.104023
http://doi.org/10.1016/j.chb.2020.106587
http://doi.org/10.1016/j.compedu.2020.103832
http://doi.org/10.1016/j.childyouth.2020.105439

	Introduction 
	Literature Review 
	Research Method and Results 
	Teaching Process Design and Feedback Analysis after Students’ Learning of Swift Playgrounds Computational Thinking 
	Coding Command (80 min) 
	Building Functions (80 min) 
	Building Loops (80 min) 

	Qualitative Feedback Analysis after Teachers’ Assessments of Swift Playgrounds 

	Conclusions and Suggestions 
	References

