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Abstract: This research performs real-time measurements of Linux kernels with real-time support
provided by the PREEMPT_RT patch on embedded development devices such as BeagleBoard and
Raspberry Pi. The experimental measurements of the Linux real-time performance on these devices
are based on real-time software modules developed specifically for the purposes of this research.
Taking in consideration the constraints of the specific hardware platforms under investigation, new
measurements software was developed. The measurement algorithms are designed upon response
and periodic task models. Measurements investigate latencies of real-time applications at user and
kernel space. An outcome of this research is that the proposed performance measurements approach
and evaluation methodology could be applied and deployed on other Linux-based boards and
platforms. Furthermore, the results demonstrate that the PREEMPT_RT patch overall improves the
Linux kernel real-time performance compared to the standard one. The reduced worst-case latencies
on such devices running Linux with real-time support could make them potentially more suitable for
real-time applications as long as a latency value of about 160 µs, as an upper bound, is an acceptable
safety margin.

Keywords: Linux kernel; real-time; operating systems; latency; performance measurements

1. Introduction

The Linux kernel by standard successfully handles lightweight or soft real-time re-
quirements. Nevertheless, it does not provide full assurance for hard timing deadlines
required in safety-critical applications in industrial automation and control (e.g., robotics
control, aerospace and air traffic control, vehicles control). Linux is a general purpose
operating system that provides important features, such as process management, although
not all of them have strict timing constraints, e.g., the scheduler can cause unbounded
latencies which makes Linux not deterministic enough and cannot guarantee to meet the
task deadlines. However, safety-critical systems must be safe at all times. On the other
hand, PREEMPT_RT, a real-time preemption patch provided by Ingo Molnar and Thomas
Gleixner is a popular patch for the Linux kernel that transforms Linux into a hard real-time
operating system with deterministic and predictable behavior. This patch allows nearly
all of the kernel code to be preempted by higher priority kernel threads, and reduces the
maximum thread switching latency, although that depends on the system—that is, on
a combination of hardware and software. By way of example, not all microprocessors
have included a memory management unit (MMU), or it is not always enabled, even if
it is present. Currently, documentation is maintained on the Linux Foundation Wiki [1].
In addition, many other kernel developers and real-time experts have contributed with
significant contributions to the development of this patch too.

Open source operating systems such as Linux continue to evolve and have a significant
impact in many embedded systems for control applications. In particular, embedded
systems with real-time support are employed by a wide variety of applications ranging
from simple consumer electronics and home appliances to military weapons and space
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systems [2]. The fast growth of Industrial Internet of Things (IIoT) is accelerating the
move towards open source Linux in embedded market share. The increasing requirements
on the performance of real-time applications, and the need to reduce development costs
and time, led to an increase in the interest for employing COTS (commercial off-the-
shelf) hardware and software components in real-time applications [3–6]. However, their
reliable real-time performance is still under investigation. This is an objective of this work
research too. The real-time measurements are focused on real-time capabilities provided by
PREEMPT_RT patch in handling real-time tasks and operations in user and kernel space.
The experimental measurements platform is based upon ARM-based embedded devices,
such as Raspberry Pi (a Raspberry Pi3 referred from now on as RPi3) and BeagleBoard
microcontroller (a BeagleBone Black referred from now on as BBB), running in a master-
slave mode. Raspberry Pi was designed as an educational and experimental board [7].
However, it has already made the leap into industry, e.g., with the Compute Module 3 (CM3)
intended for industrial applications. Raspberry Pi applications are now part of industry 4.0
and the Internet of Things, e.g., the JanzTec emPC-A/RPI3+ Industrial Controller [8], and
the Kunbus Revolution Pi [9].

The Linux kernel distributions for RPis and BBBs do not currently have any hard real-
time support. Therefore, it is an issue under investigation in using Linux for hard real-time
applications. However, it is possible to patch them with PREEMPT_RT, and hopefully in
the future it will be provided as the de facto standard option in the mainline kernel for
such microcontrollers. For the purposes of this research, specific software modules were
developed and applied to investigate and evaluate the real-time performance of Linux
kernels patched with PREEMPT_RT. Standard benchmark tools such as cyclictest [10]
could have also been used. However, this benchmark is difficult to extend and does not
combine different types of operations [11]. As a result, taking in consideration the specific
hardware platforms under investigation and the aimed real-time applications with certain
constraints and requirements (e.g., high priorities, locks of memory pages, high-resolution
timers, and specific metrics measurements), it was decided as the most optimal approach
to build our own new measurements software. The locking of memory pages is essential
in order to avoid page faults and even thrashing. However, this is an issue which needs
further investigation to ensure the most optimal memory usage. Currently, there is under
investigation an interesting approach provided by Reuven and Wiseman [12], specifically
for systems with very heavy memory usage, which propose thrashing minimization by
splitting the processes into a number of bins, using Bin Packing approximation algorithms.

Development platforms such as Raspberry Pi and BeagleBone are being extensively
used in IoT embedded applications, and even in Industrial IoT. Although their Linux kernel
distributions do not have any hard real-time support, this is possible with the installa-
tion and configuration of the PREEMPT_RT patch. However, there is still no sufficient
research work in the evaluation of the real-time performance of Linux kernels patched with
PREEMPT_RT on such development platforms. This was one of the major motivations to
investigate the real-time Linux kernels’ behavior with the real-time preemption patch.

This work provides experimental results on real-time latency metrics for Linux kernels
patched with PREEMPT_RT, on Raspberry Pi3 and BeagleBone Black development boards.
Response and periodic task models were introduced, upon which novel software real-time
measurement modules were designed. These modules take into consideration specific
critical real-time requirements, e.g., high priorities, locks of memory pages, and high-
resolution timers. In the majority of measurement cases, the worst-case maximum latency
was decreased down to values in the order of a few tens of microseconds. One of the
key findings is that a value of about 160 µs, as an upper bound, could be an acceptable
safety margin for such low frequencies in many real-time systems running in a master-
slave mode. Although that is a general outcome of several measurements under this
specific master-slave schema, it provides some evidence that it could be valid for real-time
embedded systems based on such devices and connected to various kinds of actuators,
which require fast response times below this threshold value. Taking into account that
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real-time capabilities of PREEMPT_RT patch and Linux mainline kernel continue to evolve,
together with other constant improvements of ARM-based microcontrollers, both in terms
of hardware and software, such systems can be another candidate for computing intensive
applications in hard real-time applications. Some of the important aspects and outcomes of
this research work are the following:

• Extends the measurements methodology presented in previous work by Brown and
Martin [13], by introducing new sets of experiments with additional measurement
metrics, applicable in a wider range of Linux kernels and distributions in ARM-based
platforms.

• Implements latency measurements based on software real-time measurement modules,
designed upon response and periodic task models.

• The same performance measurements approach and evaluation methodology could
be applied and deployed on other Linux-based boards.

This paper is structured as follows: Section 2 describes previous related work; Section 3
presents the key components of the methodology followed; Section 4 describes the per-
formance measurements algorithms and modules developed; Section 5 presents the setup
of the experimentation platform; Sections 6 and 7 present the results of the experimental
measurements of response and periodic tasks in user and kernel space; Section 8 presents a
discussion analysis on the research findings; Section 9 provides a summary of the research
results and draws conclusions.

2. Related Work

The real-time performance of operating systems and applications is analyzed with
many different approaches [14–16]. The tools and methods used rely upon the performance
metrics targeted, most commonly schedulability issues in real-time systems [17,18]. There
is also a number of interesting schedulability analysis tools, e.g., RTDruid, TimeWiz,
symTA/S, and chronVAL. Many different scheduling policies and algorithms exist, but
not all of them are adequate for real-time tasks. Scheduling policies for real-time systems
should ensure a number of factors, including first and foremost the timely response to
critical events, low task switching and interrupt latency, low worst-case execution times,
allowing for the preemption of any kind of task in the system, etc. In real-time operating
systems, the methods and approaches used have to guarantee that certain deadlines are
always met. The methods used to investigate predictability and timing characteristics of
such systems typically measure scheduling jitter and interrupt latency with benchmark
tools [19,20]. Tracing tools are also being used to identify latency issues [21,22]. Other
approaches introduce the design and development of new benchmarks and software
modules that investigate performance metrics of real-time operating systems [23,24].

The approach followed in this research work is based on software test modules,
developed particularly for latency performance measurements in Linux kernels patched
with PREEMPT_RT. A similar approach that inspired this research is presented in the work
of Brown and Martin [13]. They developed a test system for evaluating the performance
of two real-time tasks on Linux and Xenomai systems. They compare the performance of
Linux kernels with real-time support such as Xenomai and the PREEMPT_RT patch, using
C software modules to perform timing measurements of responsive and periodic tasks,
with real-time characteristics, at user and kernel space. However, their evaluation is based
only on a BeagleBoard microcontroller and Ubuntu Lucid Linux kernel configuration.

It is worth the effort to run a real-time kernel and evaluate its potential and perfor-
mance benefits for applications. The advantages of using a real-time kernel are presented in
many cases. However, performance evaluation of different kernel versions with real-time
support has been presented primarily on Intel x86 platforms [25]. In the work of Litayem
and Saoud [26], the authors evaluate the timing performance (latency) and throughput of
PREEMPT_RT with different kernel versions, using cyclictest and unixbench. The platform
is an x86 computer with CoreTM 2 Duo Intel CPU, running Ubuntu Linux 10.10. In the
work of Fayyad-Kazan et al. [27], the authors present experimental measurements and
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tests that benchmark RTOSs such as Linux with PREEMPT_RT (v3.6.6-rt17) against two
commercial ones, QNX and Windows Embedded Compact 7. The tests were executed on
an x86 platform (ATOM processor). In the work of Cerqueira and Brandenburg [20], a
comparison of scheduling latency in Linux, PREEMPT_RT, and LITMUS RT is presented,
based again on a 16-core Intel CPU platform. The majority of these works rely upon
x86-based computer platforms with Ubuntu Linux.

The open source code accessibility and portability, the amount of implemented al-
gorithms and libraries have made Linux with PREEMPT_RT a strong alternative to com-
mercial RTOSs and specialized approaches, also in industrial environments [28]. Other
research articles have recently focused on latency measurements of Raspbian Linux with
real-time patch PREEMPT_RT vs. the standard Raspbian [29,30]. However, measurements
are performed only with Raspbian Linux and the cyclictest benchmark.

The latest research shows that such Linux-based embedded systems play an important
role in nearly every aspect of modern life, particularly in systems’ real-time control [31–33].
However, there is still no sufficient research work on the evaluation of the real-time
performance of Linux kernels patched with PREEMPT_RT on Raspberry Pi and BeagleBone
Black development platforms. Their low cost, open source design, and ease of integration
with various peripherals make these development platforms appropriate for research in
various fields, particularly in embedded control systems, robotics, smart cities, sensors
systems, and for fast experimentation and prototyping in manufacturing [34–36].

This research focuses on Linux latency measurements aiming to find out how the
real-time patch affects its real-time performance. In contrast to many of the above works,
the experimental platform includes multiple Linux kernels and distributions. This experi-
mental work of the latency performance of the Linux kernels patched with PREEMPT_RT
running adds to the knowledge and understanding of real-time execution behavior in such
platforms.

3. Methodology
3.1. Objectives

One of the major goals of this research is to measure the real-time responses of Linux
kernels and variants in ARM-based development platforms with the real-time preemption
patch PREEMPT_RT. This goal is addressed by creating new software multithreaded
modules in C, which implement the proposed measurement algorithms. These modules
provide the ability to observe the execution state of multiple parameters including response
latency during the real-time tasks execution.

3.2. Design Methodology

The research methodology is based upon two simple task models, the periodic task
model and the sporadic task model [37]. In the periodic task model, the tasks of a job arrive
strictly periodically, separated by a fixed time interval. In the sporadic task model, each
task may arrive at any time once a minimum interarrival time has elapsed since the arrival
of the previous task. This is because real-time tasks are usually activated in response to
external events (e.g., upon sensor triggering) or by periodic timer expirations.

In this research, we introduce a response task model. In a periodic task model, each
invocation of a task arrives strictly periodically, separated by a fixed time interval. In the
proposed response task model, each task may arrive at any time upon the arrival of the
previous task. Each task τi is characterized by: its execution time relative to a deadline
ti, maximum (or worst-case) response latency wcrli, and minimum interval time tirv. A
task’s worst-case response latency wcrli is defined as the overall time elapsed from the
arrival of this task (timer interrupt) to the moment this task is switched to a running state
producing results. The models’ structure is described in the algorithms provided below
in Section 4 and implemented as the measurement software modules. In the experiments,
each task τi is scheduled using the highest real-time priority to eliminate the latency caused
by scheduling jitter. Each module executes the measurements loop, based on timing data
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acquired from the device under test, performs analysis of the measurements and outputs
the results. The experiments with the software modules were executed multiple times to
obtain the following measurements:

• The optimum sustained interrupt frequency, that is, the maximum frequency of the
signal on the associated GPIO line (General Purpose Input/Output) that can handle
efficiently running in continuous mode.

• The response latency, that is, the estimated time elapsed between GPIO input level
change (IRQ trigger—interrupt request) and GPIO output level change.

• In response tasks, measure the total time elapsed until the device under test re-
sponds, while in periodic tasks, measure whether the slave device responds at proper
time periods.

3.3. Measurements Software Design Considerations

Real-time multithreaded modules were executed under two modes, in user and kernel
space. A thread is a basic unit of CPU utilization, which can be implemented in user space
or in kernel space. These multithreaded applications perform the proposed response and
periodic real-time tasks. Processes are scheduled under the real-time policy SCHED_FIFO,
having a sched_priority value in the range of 1 (low) to 99 (high). This ensures a timely
execution of the tasks and decreased execution times and latencies. SCHED_FIFO policy
runs a task until it is preempted by a higher priority task. This may not contribute to
the overall throughput, but will increase the determinism by allowing all kernel space to
be preemptible as all interrupt handlers are switched to threaded interrupts. Scheduling
policy, attributes and priorities were also set per thread upon their creation, with POSIX
thread scheduling policy functions calls. The design approach is illustrated in Figure 1.
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The software modules are designed in a master-slave mode and perform measure-
ments in user and kernel space of response and periodic real-time tasks. The master
software module controls the overall execution process and performs the actual measure-
ments in user and kernel space. The slave modules run the actual tasks on the device under
test and provide feedback to the master control modules. The measurements are passed as
function arguments to threads function calls during their creation (pthread_create()). The
running tasks are scheduled as threads, with real-time SCHED_FIFO scheduling policy
(sched_setscheduler()) and high priority set to 99. All user-space processes are scheduled
with real-time scheduling class SCHED_FIFO, and high priorities. From a scheduling point
of view, it makes no difference between the initial thread of a process, e.g., executing the
main() function, and all additional threads created dynamically. The slave modules in
kernel space are implemented as kernel modules. The initialization function (kgpio_init)
in the response task uses the GPIO kernel interface and an interrupt handler function
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(gpio_irq_handler) to service the input changes. In the periodic task, the slave modules
uses a high-resolution timer (hrtimer) to produce timer-based interrupts.

It is possible to avoid intercore interferences by setting the processor affinity. However,
the intention is to investigate threads execution by having more than one thread per core,
and threads are allowed to migrate among all cores in RPi3 ARM CPU. This will affect
scheduling latencies due to potential locks, and will add to the total response latency.

4. Performance Measurements Modules

Usually, the worst-case execution time (WCET) analysis is mandatory for hard real-
time system performance evaluation according to their latency. Using the software modules
developed, experimental tests run for a long duration (about 1 h each test run) to eval-
uate the latency that occurred in real-time task execution, at the Linux kernels patched
with PREEMPT_RT and the standard ones. Measurements were conducted at user and
kernel space.

The software runs in a master-slave mode. A synopsis of the overall software control
flow is presented in Figure 2.

The master software module performs initializations, sets the scheduling policy and
events to poll, and triggers the device under test (writes GPIO output, gets clock time
and polls input). In user space, the slave software in response mode polls the input and
writes the output accordingly, while in periodic mode it reads the timer until the time
interval elapsed and writes the output. In kernel space, the slave software (as a kernel
module) in response mode services the interrupt by getting the input value and setting the
output, while in periodic mode it services the interrupt starting the high-resolution timer
and returns. Once the desired number of loops is reached, the master software module
performs metrics calculations and outputs the results.

4.1. Response Task Modules

The response task modules, based on the measurements analysis presented earlier,
invoke code that measures the responsiveness of the real-time applications in user and
kernel space. The measurements software module in the master device performs the overall
control of execution and metrics measurements at user and kernel space. This module
triggers the slave device at specific and random time intervals in a loop for a number of
iterations (1 M), and measures the time elapsed (latency) until the slave device under test
responds. In user space, in the slave device, the software module responds to GPIO toggle
frequency (e.g., 10 kHz) in an asynchronous manner by activating a GPIO output, as soon
as the level of a GPIO input changes. In kernel space, in the slave device the software
module is inserted into the slave’s kernel as a loadable kernel module. This module uses
an interrupt handler function (only the top-half) to service the input change.

Master and Slave Response Tasks in User and Kernel Space

The Linux kernel has a way to expose internal structures using SysFS, a virtual
file system which exposes a common interface for kernel implementation details and
internal structures. The software modules make use of the kernel’s SysFS interface. The
algorithms that describe the basic functionality of these modules are shown as pseudocode
in Algorithms 1–3.
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Algorithm 1 Master response task in user and kernel space

scheduling is SCHED_FIFO at priority 99← set thread’s scheduling algorithm to real-time
events is POLLIN or POLLPRI← set the events to poll until there is data to read
loops← set by command line argument
no_of_iterations is below or equal to loops
while no_of_iterations is below or equal to loops, do

setting← 1
write fd_output setting← set the value of output pin that triggers the slave
clock_gettime begin_time
poll fd_input for events← await for interrupt infinitely
clock_gettime end_time
read fd_input← read input once enabled by the slave
setting← 0

end
perform measurements

Algorithm 2 Slave response task in user space

scheduling is SCHED_FIFO at priority 99← set thread’s scheduling algorithm to real-time
events is POLLPRI← set the events to poll until there is data to read
while 1 do
read fd_input← read input once enabled by the master

poll fd_input for events← await for interrupt infinitely
write fd_output setting← set the value of output pin accordingly (to 0 or 1)

end

Algorithm 3 Slave response task in kernel space

function kgpio_init← uses the GPIO kernel interface
gpio_request gpio_out← request GPIO output
gpio_direction output← set up as output
gpio_request gpio_in← request GPIO input
gpio_direction input← set up as input
gpio_to_irq irqNumber←maps GPIO to IRQ number
irq_request irq_handler← request an interrupt line

end function kgpio_init
function gpio_irq_handler← uses an interrupt handler function (only the top-half) to service the
input change

gpio_get_value gpio_in← gets GPIO input value
gpio_set_value gpio_out to gpio_in← sets GPIO output accordingly
return IRQ_HANDLED← interrupt serviced

end function gpio_irq_handler

4.2. Periodic Task Modules

The purpose of the periodic task modules is to periodically execute at a specific
interval certain process interrupts. The master control software monitors whether the slave
device under test responds at proper periods in user and kernel space measurements. The
slave device responds to the interrupts by toggling the value (0, 1) of an output pin, at
specific time intervals, based on an internal timer. In kernel space, the slave’s software uses
an internal high-resolution timer, which is inserted as a kernel module. Due to the fact
that a periodic timer interrupt is not an appropriate solution for a real-time kernel, most of
the existing real-time kernels provide high-resolution timers [38–41]. Since hard real-time
systems usually have timing constraints in the micro seconds range, a high-resolution timer
is usually a requirement when a task needs to occur more frequently than the 1 millisecond
resolution provided under Linux.
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Master and Slave Periodic Tasks in User and Kernel Space

Reliable latency performance measurements require accurate timing source. For this
reason, the performance measurements software make use of the system call clock_gettime()
with the highest possible resolution, and the clock is set to CLOCK_MONOTONIC. The
master control software reads the slave’s input for the corresponding interrupts and mea-
sures the time interval in between (half period). The slave’s software module uses, again, a
high-resolution timer to produce timer-based interrupts. The algorithms that describe the
basic functionality of these modules are shown as pseudocode in Algorithms 4 and 5.

Algorithm 4 Slave periodic task in user space

timerfd_create is CLOCK_MONOTONIC← set the clock to mark the timer’s progress
timerfd_settime is ABSTIME← start the timer
semi_period_interval← set by command line argument
no_of_iterations is below or equal to semi_period_interval
while no_of_iterations is below or equal to semi_period_interval, do

read timer_fd← read the timer until the time interval is elapsed
write fd_output setting← set the value of output pin accordingly (to 0 or 1)

end

Algorithm 5 Slave periodic task in kernel space

function kgpio_init← uses an internal high-resolution timer
hr_timer_init high_res_timer
hr_timer_set CLOCK_MONOTONIC
hr_timer_mode HRTIMER_MODE_REL
hr_timer_function timer_func

end function kgpio_init
function gpio_irq_handler← the GPIO IRQ handler function

hrtimer_start high_res_timer← starts high-resolution timer
return IRQ_HANDLED← interrupt serviced

end function gpio_irq_handler

4.3. Issues Solved

Real-time metrics measurements depend upon how well software or benchmarking
modules are written, as well as how well the kernel is configured. Comparing the per-
formance of a real-time application running in different systems is a challenge, mainly
because of the difficulty to isolate the various different factors that may affect performance.
That usually implies the configuration of the kernel and adaptation of the source software
to the native kernel of each system. Optimal decisions also have to be made on how to
set various settings related, e.g., to memory management mode, system timers, peripheral
devices configuration, etc., since they can make a huge difference on the latencies of a given
system. During the experimental work, a few problems were encountered and solved,
meaning that there are still issues to be considered and improved in real-time support with
PREEMPT_RT. In some cases, long latencies were due to the use of timer functions on time
measurements other than clock_gettime() or clock_nanosleep(). In another case, it was
observed that during the experimental runs, after a few minutes the RPi run into instability
and the system had to be restarted. In particular, the FIQ (Fast Interrupt reQuest) system
implementation causes lock ups of the RPi when using threaded interrupts. A solution to
this problem is proposed by the Open Source Automation Development Lab (OSADL) [42],
which disables the IRQ while the FIQ spin lock is held, and indeed the kernel run stable.
As the Linux Foundation points out [1], since the kernel of Raspberry Pi is not part of the
mainline, there are some known limitations of PREEMPT_RT running on RPi platforms.
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5. Experimental Setup

A Raspberry Pi3 (RPi3) is used as the master device in all measurement schemes. The
RPi3 has integrated a System on Chip (SoC) based on Broadcom BCM2837, which features
a 1.2 GHz 64-bit quad-core ARM Cortex-A53 (ARMv8) processor. The BeagleBone Black
development board features a 1 GHz ARM Cortex-A8 (ARMv7) processor based on TI
Sitara AM3358AZCZ100 SoC from Texas Instruments. Both the devices are low-cost and
low-power single-board computers, commonly used as development platforms for various
system applications, specifically for embedded systems.

The slave devices (RPi3 and BBB) can communicate and transfer data to and from the
master device using the standard GPIO interface. The master and slave arrangements are
shown in Figure 3.
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The master and slave devices are connected through GPIOs in a master-slave schema,
as illustrated in Figure 4. For RPi3, GPIO27 (pin 13) in the slave device is defined as
input and connected to GPIO17 (pin 11) defined as output in the master device. For BBB,
GPIO1_13 (pin 11) is defined as input and GPIO1_16 (pin 15) as an output. The connections
establish a pin-to-pin bidirectional communication, so the same connection is applied,
respectively, in reverse directions from the slave devices to the master.
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Standard Linux kernel configurations and kernels with real-time support were in-
stalled and configured (on different microSD cards) on the slave devices under test.
These include: Ubuntu Mate (4.14.74-rt44-v7), Arch Linux (4.19.10-1-ARCH), and De-
bian (4.19.67-2). The developed software measurement modules provide consistent and
reliable results based on multiple experiments. These were visualized and validated with
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an oscilloscope. In particular, the latency measurements obtained internally by the software
modules are compared to those directly measured externally with an oscilloscope.

6. Response Task Measurements in User and Kernel Space
6.1. Response Task Measurements in User Space

The master control software at specific time intervals runs a task τi that triggers a
GPIO input on the slave device, with loops of “0 s” and “1 s”, which the slave is polling in
an infinite loop. Then, it begins to measure the slave’s response delay and accumulates
relevant measurement metrics. The slave device, upon reading the change of the input
state, sets its output accordingly (on a rising edge it sets its output line, while on a falling
edge it clears its output line). Then, the master device repeats the loop for a number of
cycles (1 million loops) for sufficient samples to be collected for analysis. The variation
in the input signal level (values of 0 s and 1 s) provides a way to check that the devices
under test read the input signals correctly, and respond appropriately and accordingly.
Measurements are performed on both edges, rising and falling, of the trigger signals, as
shown in Figure 5.
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Each running task τi runs two loops, and thus consists of two subtasks—loops of “1 s”
and “0 s”—which are executed sequentially and alternatingly. The total execution time
includes the execution of all the subtasks (that is, tlat1 for loop of “1 s” and tlat0 for loop
of “0 s”) times the amount of iterations, plus the time interval tirv between the generated
subtasks. In the experiments, the time interval tirv in between was initially unset and
random; however, later, for efficiency purposes, it was set to specific values within the
range of 1 to 10 ms. This is because for lower time intervals it was observed that long
delays sometimes appear on latency measurements. Although rare, such delays make it
apparent that the devices could not react properly at such frequencies.

6.1.1. Estimation of Maximum Sustained Frequency

The time interval between two consecutive generated interrupts is estimated so that
subtasks are properly initialized and executed. For this purpose, a number of tests have
been executed with variable frequency values to determine the optimum value for the time
interval between the generated interrupts at the master device. The results show that the
slave devices with PREEMPT_RT can handle all the generated interrupts if the time interval
in between is above 10 ms. This value was set for the majority of the experiments, and
below, for testing and sensitivity analysis purposes. That means that we could toggle the
state of a GPIO pin, e.g., with a low frequency, e.g., of 1000 Hz, with millions of interrupts
(1 M), and get reliable responses.
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6.1.2. Response Latency Measurements

The importance of measuring the response latency is unquestionable in real-time
systems. The slave devices were tested continuously by circulating the loops of “1 s” and
“0 s” for a million (1M) interrupts, with an average cycle duration of 120 µs, and an overall
running time of about 3 h. At the end of each measurement cycle, the master control
software processes the results and estimates the mean, minimum, and the maximum
response latency, plus some statistics on variance and standard deviation.

6.2. Response Task Measurements in Kernel Space

In kernel space, experimentation is conducted in a similar way. The master control
software initiates the triggering cycles at specific intervals, which the slave’s software
module is polling in an infinite loop, and responds once a change of the input state is
detected. The slave’s software in this case is a kernel module developed for this purpose
and inserted in the kernel.

7. Periodic Task Measurements in User and Kernel Space

In periodic measurements, the master device measures the signal’s length period
produced by the slave’s internal timer. The master software module checks at specific
time periods the slave’s output status in order to verify that the device responds at proper
periods, and at the same time to investigate the state upon which the slave device cannot
react properly.

In user space, the master device is polling the slave device in an infinite loop, until its
GPIO input status is changed (rising edge of the first interrupt). On the other hand, the
slave device toggles periodically the value of an output configured pin at a specific periodic
rate, based on an internal timer. The master control software begins to count the time until
its input status has changed again (falling edge of the second interrupt) (Figure 6).
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In kernel space, the experimental setup and layout of the devices is the same as
described earlier. The master device performs the measurements in a similar way to the
user space experimentations. However, in this case, the slave’s control software is a kernel
module that uses an internal high-resolution timer to produce the periodic interrupts.

Measurements are performed on both edges of the triggering signals for a variable
number of samplings starting at 10,000 and decreasing, with a semi-period at 15,000 µs
(down to a 1500 µs period). The results show that the slave devices generate the timer
interrupts at exact time intervals, both at standard Linux kernels and with real-time support.

8. Results and Discussion

Linux-based platforms on ARM-based devices such as the Raspberry Pi3 and Beagle-
Bone Black are continuously gaining popularity in various standalone control applications
as embedded systems. However, many of the approaches to measuring their real-time
performance and particularly latency are still based on x86 CPU architectures and the use of
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benchmark tools such as cyclictest. Regarding latency measurements, very few works, such
as the work of Brown and Martin [13], proceed into the development of specific software
measurement modules for such ARM-based devices. Their research inspired this work to
extend the measurement metrics to a wider range of Linux kernels and distributions in
such ARM-based embedded platforms. There are software structure similarities in both
approaches; however, the hardware development platforms and Linux kernel versions are
different. On the other hand, both hardware platforms are based on ARM CPU architec-
tures running among other Linux distributions, Ubuntu too. Table 1 provides a summary
of the results obtained in both approaches for Ubuntu Linux distributions and kernels
with real-time support. Even though the results are very close, the intention is rather to
reconfirm the results obtained with PREEMPT_RT, rather than providing a fair comparison,
since the kernel versions are significantly different.

Table 1. Software module latency results on RPi3, BeagleBone Black and BeagleBoard C4.

Hardware Linux OS with
PREEMPT_RT

Periodic Tasks
Period (µs)

Response Tasks Latency (µs)

User Space (min, max) Kernel Space (min, max)

RaspberryPi3 Model B
64-bit ARM Cortex-A53 quad core,

1200 MHz
(our platform approach)

Ubuntu Mate, kernel
4.14.74-rt44-v7

30.000
jitter = 0

49, 147
90% of the latencies

<<147
50, 67

95% of the latencies <<67

BeagleBone Black
32-bit ARM Cortex-A8 1000 MHz

(our platform approach)

Ubuntu, kernel
4.14.74-rt44-v7

30.000
jitter = 0

50, 160
90% of the latencies

<<160
48, 76

95% of the latencies <<76

BeagleBoard C4, OMAP3520 SoC,
32-bit ARM Cortex-A8, 720 MHz

(Brown and Martin [13])

Ubuntu Lucid Linux,
kernel

2.6.33.7-rt29
7.071

jitter = 0

157 (max) for 95% of
the time

796 (max) for 100% of
the time

43 (max) for 95% of the
time

336 (max) for 100% of the
time

In RPi3 and BeagleBone Black with PREEMPT_RT patched kernels, the minimum
latency is measured below 50 µs, both at user and kernel spaces. In user space, 90% of
the latencies fall below the maximum of 147 µs and 160 µs, respectively, while in kernel
space, 95% of the latencies fall below the maximum of 67 µs and 76 µs, respectively. In
BeagleBoard C4, at user space, for 95% of the time the maximum latency does not exceed
the value of 157 µs, while in kernel space, this value is lower at 43 µs. Figure 7 illustrates
the above results for both approaches in all devices.
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Figure 7. Latency comparison for both approaches and preempted kernels in user and kernel space
on all devices (Raspberry Pi3, BeagleBone Black and BeagleBoard C4).
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Response Latency Results

Table 2 presents a comparative summary of the response latency results for Raspberry
Pi3 and BeagleBone Black running Linux kernels with PREEMPT_RT patch. Data on the
most commonly used measures of spread that is variance (var) and standard deviation
(stdev) are also given.

Table 2. Response latency results on RPi3 and BeagleBone Black.

RaspberryPi3/
BeagleBone

Black

Linux
Kernel
Version

Samples Space PREEMPT_RT

Latency (µs)

Software Modules Oscilloscope
min/max/avgmin/max (wcrl) stdev/var

RPi3 Ubuntu Mate
4.14.74-rt44-v7

1 M

user
yes 49/147 65/4261 49/128/105

no 53/360 33/1137 51/370/109

kernel
yes 50/67 20/417 42/56/50

no 51/81 15/233 44/93/70

BBB Ubuntu
4.14.74-rt44-v7

1 M

user
yes 50/160 69/4771 50/122/102

no 54/380 14/208 53/385/120

kernel
yes 48/76 23/566 49/60/59

no 49/70 23/564 52/80/67

RPi3 Arch Linux
4.19.10-1-ARCH

1 M

user
yes 42/122 67/2336 44/129/98

no 54/330 32/990 51/350/111

kernel
yes 51/56 20/411 40/51/51

no 51/79 17/788 43/89/65

BBB Arch Linux
4.19.10-1-ARCH

1 M

user
yes 54/134 61/1025 50/139/101

no 55/360 30/678 54/389/120

kernel
yes 57/69 22/312 50/75/70

no 56/86 16/243 51/98/76

RPi3 Debian (Buster)
4.19.67-2

1 M

user
yes 40/90 79/6336 41/98/95

no 53/343 34/1190 53/310/101

kernel
yes 48/53 19/383 42/50/49

no 48/60 13/2988 44/76/59

BBB Debian
4.19.67-2

1 M

user
yes 47/96 71/5085 49/104/101

no 53/376 33/1089 55/360/121

kernel
yes 51/67 25/644 49/70/65

no 53/78 13/190 50/89/79

The specified kernel versions are different in order to investigate the spread of the
variations in latency results. Linux kernels with real-time support maintain much lower
latencies. The oscilloscope measurements reconfirm the results produced with the software
measurement modules.

The majority of Linux kernels’ measurements with PREEMPT_RT-patched kernel
show the minimum response latency to be below 50 µs, both in user and kernel space. The
maximum worst-case response latency (wcrl) reached 147 µs for RPi3 and 160 µs for BBB
in user space, and 67 µs and 76 µs, respectively, in kernel space (average values). Most of
the latencies are quite below this maximum (90% and 95%, respectively, for user space and
kernel space). In general, it seems that maximal latencies do not often cross these values.

The measurements in standard Linux kernels show the minimum response latency
to be about the same and below 55 µs, both in user and kernel space. However, the
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maximum worst-case response latency reached 360 µs (RPi3) and 380 µs (BBB) in user
space, and 160 µs and 86 µs, respectively, in kernel space. This maximum observed latency
is significantly higher than the one observed under the PREEMPT_RT-patched Linux
kernels. Figure 8 illustrates the worst-case response latencies in user space for both kernels
(standard and preempted).
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In real-time systems designed with tight timing constraints, these worst-case latency
values must be taken into consideration.

9. Conclusions

This research work presents the experimental evaluations on the real-time perfor-
mance of the PREEMPT_RT patch, and particularly latency metrics, in Linux kernels and
distributions running on Raspberry Pi3 Model B and BeagleBone Black ARM-based de-
velopment platforms. These devices have become a popular choice for a wide range of
applications in many embedded systems, while being easy to use, flexible, and lower cost.

Challenges in recent real-time embedded systems, such as those found in cloud
computing platforms using commercial-off-the-shelf technology, have prompted further
research into their real-time behavior. However, currently, there is still limited research
on investigating the real-time performance of such ARM-based architectural platforms
running Linux patched with PREEMPT_RT.

This experimental work provides further insights into their real-time behavior. The
performance measurement and evaluation approach is based upon the introduction of
response and periodic task models implemented as new specific real-time software mea-
surement modules. This could be applied and deployed on other Linux-based development
boards and platforms too. Any device that supports a Linux kernel version, e.g., from
release 4 (e.g., 4.4, 4.9, 4.14, 4.19) and later, and configured with the PREEMPT_RT patch, is
an appropriate platform to deploy the developed measurement modules. These experi-
mental software modules written in C are available as an open-source project at GitHub
https://github.com/gadam2018/RPi-BeagleBone (accessed on 10 April 2021). There are
further details provided about their installation and usage. The experimental results show
that latencies on kernels with real-time support are considerably lower compared to those
in the standard kernels and the majority falls below 50 µs. The average maximum observed

https://github.com/gadam2018/RPi-BeagleBone
https://github.com/gadam2018/RPi-BeagleBone
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latency of 160 µs is still significantly lower than the one observed under the standard Linux
kernels. As an outcome, Linux kernels patched with PREEMPT_RT on such devices have
the ability to run in a deterministic way as long as a latency value of about 160 µs, as
an upper bound, is an acceptable safety margin. Such results reconfirm the reliability of
such COTS devices running Linux with real-time support and extend their life cycle for
the running applications. In addition, such devices could further stimulate their use in
the development of architectural frameworks and systems for reliable real-time control
applications, as is the case presented here [43]. Initially, the preliminary results of this
research were also utilized in the development of a real-time controller based on Raspberry
Pi and kernel modules [44].
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