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Abstract: Remote symptom tracking is critical for the prevention of Covid-19 spread. The qualified
medical staff working in the call centers of primary health care units have to take critical decisions
often based on vague information about the patient condition. The congestion and the medical
protocols that are constantly changing often lead to incorrect decisions. The proposed platform
allows the remote assessment of symptoms and can be useful for patients, health institutes and
researchers. It consists of mobile desktop applications and medical sensors connected to cloud
infrastructure. The unique features offered by the proposed solution are: (a) dynamic adaptation of
Medical Protocols (MP) is supported (for the definition of alert rules, sensor sampling strategy and
questionnaire structure) covering different medical cases (pre- or post-hospitalization, vulnerable
population, etc.), (b) anonymous medical data can be statistically processed in the context of the
research about an infection such as Covid-19, (c) reliable diagnosis is supported since several factors
are taken into consideration, (d) the platform can be used to drastically reduce the congestion in
various healthcare units. For the demonstration of (b), new classification methods based on similarity
metrics have been tested for cough sound classification with an accuracy in the order of 90%.

Keywords: symptom tracking; mobile app; cloud; classification; similarity; sound processing

1. Introduction

During the Covid-19 pandemic, primary health care services and call centers have
been criticized for their decisions about the need of a patient to be hospitalized or not.
The medical staff working in these call centers have to remotely estimate the condition
of the callers based on vague descriptions of their symptoms. Missing information about
the patients, the congestion and the consistently changing medical protocols, combined
with the subjective opinion of the medical practitioners, often leads to incorrect decisions.
Sensitive population with weak immune system (cancer, kidney failure, heart diseases, etc.)
is also necessary to be remotely monitored and the same holds for Covid-19 patients in
their rehabilitation phase.

The diagnosis of Covid-19 or other similar infections that will appear in the near future
(e.g., the Covid-19 variations that recently appeared in United Kingdom or South Africa) is
a major challenge since reliable molecular tests have to be performed to a large fraction of
the population. Covid-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus
2 virus (SARS-CoV-2) [1] and is characterized by high infection and case-fatality rates [2].
There is a large number of asymptomatic carriers and a high infection rate even when there
are no symptoms [3]. In [4], a number of molecular tests and immunoassays for Covid-19
management life cycle are presented. The life cycle of this virus consists of the preventive,
preparedness, response and recovery phase. The main molecular test categories are the
Nucleic Acid Amplification Test (e.g., Reverse Transcription—Quantitative Polymerase
Chain Reaction (RT-qPCR)) [5], Immunoassays (such as immune colloidal gold strips) [6]
and sequencing.
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The molecular tests and immunoassays are currently applied to a small portion of
the population, based on symptom assessment. The classification of the lesions appearing
in pneumonia chest Coaxial Tomography (CT) has been recently proposed in [7,8]. Im-
age processing applied to X-ray scans has also been examined in [9]. Lung ultrasound
images are analyzed in [10] for the estimation of the infection progress. Several imaging
techniques for the detection of Covid-19 are reviewed in [11]. Sound processing of either
respiratory [12,13] or cough sounds can also be used for the early Covid-19 diagnosis.
Speech modeling and signal-processing is applied in [14] for tracking the asymptomatic
and symptomatic stages of Covid-19. The coordination of neuromotor in various speech
subsystems that are involved in respiration, phonation and articulation are affected by
Covid-19 infection.

In [15], ten major telemedicine applications are reviewed. These applications can
minimize the required visits to the doctors providing a suitable treatment option. Robots
can undertake human-like activities that could otherwise favor the spread of Covid-19 [16].
For example, they can deliver medicine, food and other essential items to patients who are
under quarantine. Since mild respiratory symptoms appear in the early stage of Covid-19
infection it is important to continuously monitor the respiratory rate with a non-contact
method. A device-free real-time respiratory rate monitoring system using wireless signals
is presented in [13] and standard joint unscented Kalman filter is modified for real-time
monitoring. A portable health screening device for infections of the respiratory system is
presented in [12].

Several Machine Learning (ML) techniques have been employed [10] for the diag-
nosis of Covid-19 infection with high accuracy based on its symptoms [17]. The 4th
medical evolution (Medical 4.0) concerns applications supported by Information Technol-
ogy, microsystems, personalized therapy and Artificial Intelligence (AI). Ten Medical 4.0
applications are reviewed in [18]. Generative Adversarial Networks, Extreme Learning
Machine and Long/Short Term Memory (LSTM) deep learning methods have been studied
in [19] while user-friendly platforms are offered for physicians and researchers. In [20], a
research-focused decision support system is presented, for the management of patients in
the intensive care. Internet of Things (IoT) devices are also employed while the physiologic
data are exploited by ML models that have been developed in [20].

The major weapons for the infection spread prevention, are social distancing and
tracing [21]. Several approaches have been proposed that exploit smart phone facilities and
social networks. The control of information publishing strategies based on information
mined from social media is presented in [22]. A detailed model of the topology of the
contact network is sufficient in [23] to capture the salient dynamical characteristics of
Covid-19 spread and take appropriate decisions. The user location and contacts can be
traced through a smart phone Global Positioning System (GPS), cellular networks, Wi-Fi
and Bluetooth. In [24], the impact of contact tracing precision on the spread of Covid-19
is studied. An epidemic model has been created in [24] for the evaluation of the relation
between the efficiency and the number of people quarantined. In [25], the contact tracing
applications in Australia and Singapore are described.

Additional medical parameters should be taken into consideration when the overall
condition of a patient has to be assessed [18]. These additional medical data may have to
be acquired from eHealth sensors. In [26] wearable devices suitable for monitoring the
sensitive population and individuals in quarantine are presented. Unobtrusive sensing
systems for disease detection and for monitoring patients with relatively mild symptoms
as well as telemetry for the remote monitoring and diagnosis of Covid-19 are studied.
Wireless Medical Sensor Network (WMSN) can benefit those who treat Covid-19 patients
risking their lives. In [27] the deployment of WMSN is studied for the accomplishment of
quality healthcare while reducing the potential threat from Covid-19. A wearable device
based on Internet of Medical Things (IoMT) is presented in [28] for the protection from
Covid-19 spread through contact tracing and social distancing.
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The developed platform (called henceforth Coronario) aims at the reduction of the
traffic in the call centers of primary healthcare units through remote symptom tracking.
The functionality offered can be used to support the real-time screening of vulnerable
population (patients with weak immune system, heart diseases, cancer, transplanted, etc.).
Moreover, it can be used to monitor the condition of the patients who have recovered
from Covid-19 infection in real-time. The research concerning the nature of Covid-19
requires an abundance of information about the pre- and post- hospitalization phase.
An eHealth infrastructure that is, a number medical sensors on the side of the patient is
employed to support a more reliable diagnosis based on the overall patient condition and
his environment [29]. The anonymous medical data that are used in the Coronario platform
can also be exploited in the context of research on Covid-19.

The Coronario platform consists of a user mobile application (UserApp) and a number
of medical IoT sensors that are connected to cloud services preferably through a sensor
controller for higher security and efficiency. The information processed by the UserApp
includes the description of the symptoms through questionnaires, the location of the user
and the results of audio processing for the classification of cough and respiratory patterns.
Cloud connection allows data privacy with user authentication, access permissions, en-
cryption and other services. The sensor data (e.g., blood pressure, body temperature, etc.)
are uploaded there and can be accessed by the supervisor doctor or authorized researchers.
The diagnosis results are certified by authorized medical staff that access the data through
the Supervisor application. The diagnosis decisions can be potentially assisted by Artificial
Intelligence (AI) tools such as pre-trained TensorFlow neural network models. Finally, the
researchers can access anonymous medical data, given after the consent of the patients,
through the Scientific application.

Compared to similar symptom tracking applications, Coronario offers a flexible MP file
format that allows the definition or modification of alert rules, sensor sampling scenarios
and questionnaire structures in real time. In this way, several medical cases of Covid-19 or
other infections can be supported. Moreover, the facilities of the Coronario platform can
be exploited by various practitioners: physicians, primary healthcare units, hemodialysis
centers, oncological clinics and so forth. An extensible platform where different sound
classification methods can be tested, is also offered for the support of the research on
Covid-19. The integration of various components in the Coronario platform offers extra
services, beyond symptom assessment and statistical processing. Specifically, user tracking,
localization and social distancing, is also supported.

The rest of the paper is organized as follows: The detailed description of the Coro-
nario architecture is presented in Section 2. The dynamic medical protocol configuration
is examined in Section 3. In Section 4, cough sound classification is examined for the
demonstration of research experiments using the Coronario platform. A discussion on
extensions and the security features, follows in Section 5. Section 6 draws conclusions.

2. Architecture of the Coronario Platform

The general Coronario platform architecture appears in Figure 1. It consists of a
mobile (UserApp) and two desktop applications (SupervisorApp and ScientificApp), a
local eHealth sensor network and cloud storage. More details about the data structures
exchanged between these modules are shown in Figure 2. The use and the features of each
one of these modules are described in the following paragraphs.
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2.1. UserApp

The UserApp is a mobile application used by the patient. It has been developed using
Microsoft Visual Studio 2019/Xamarin thus, that it can be deployed as an Android or iOS
application. An overview of the UserApp pages appears in Figure 3. The user selects the
language of the interface from the initial page (Figure 3a), signs in (Figure 3b) and updates
the MP file (Figure 3c). General information about the age, gender and habits of the user are
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asked (Figure 3d) and then, the default or customized by the MP symptoms’ questionnaire
appears (Figure 3e,f). The answers can be either given as true/false using checkboxes or
in an analog way through sliders (slider on the left: low symptom intensity, slider on the
right: high intensity).
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The current position of the user is detected through the Global Positioning System
(GPS) of the cell phone in Figure 3g and displayed on the map (Figure 3h). In the current
version, the country is detected through GPS coordinates and additional information such
as the number of Covid-19 cases found so far in this country can also be retrieved by a
web page that publishes such information. Narrower regions can also be used to trace the
locations that the user has visited in case he found infected by Covid-19.

The user can select a sound file with recorded cough or respiratory sound as shown in
Figure 3i,j. The sound file is then, played and sound processing is performed, potentially
sending the analysis results and the extracted features to the cloud. In the last page shown
in Figure 3k, several messages are displayed. For example, diagnosis results and alerts can
appear. Guidelines are displayed showing to the user how and when to perform tests with
the medical sensors.

2.2. SupervisorApp

The SupervisorApp is used by authorized medical practitioners. A supervisor doctor
can access the patient data through this application and exchange messages. He can login
to his account on the cloud, selects the interface language and accesses the sensor data in
readable format. The supervisor can also select or create an appropriate MP file where the
conditions that generate alerts and instructions to the user are defined. The sensor sampling
scheme that has to be followed and guidelines about how the user will perform the medical
tests with the available medical equipment, is also defined in the MP. Moreover, the specific
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questions that should be included in the customized questionnaire are determined in the
MP file. The flexibility in determining these issues is owed to the employed MP file format
described in Section 3.

The SupervisorApp has been developed in Visual Studio 2019 as a Universal Windows
Platform (UWP). Its main page is shown in Figure 4. The values of specific sensors are also
viewed in this page.
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2.3. IoT eHealth Sensor Infrastructure

The IoT eHealth sensor infrastructure is employed to monitor several parameters
concerning the condition of the patient’s body and his environment. A non-expert should
be able to handle the available sensors and a different combination of these sensors can be
employed for each medical case. Ordinary sensors that can be operated by unexperienced
patients are the following:

• body position to monitor how long the patient was standing or walking, lying on the
bed or if he had a fall,

• blood pressure sensor,
• glucose meter,
• digital or analog thermometers for measuring the temperature of the body or the environment,
• Pulse-oximeter (SPO2),
• respiratory sensor to plot the patient breathing pattern,
• Galvanic Skin Response (GSR) sensor to monitor the sweat and consequently the stress,
• environmental temperature/humidity sensors.

Some of the sensors have analog interface as shown in Figure 2 (temperature, GSR,
body position, respiratory) and should be connected to Analog/Digital Conversion readout
circuits. Others offer a digital interface or even network connectivity (e.g., blood pressure,
glucose meter, SPO2) and are capable of uploading their measurements directly to a cloud
in real-time. A local controller (Gateway) may be used to connect both analog and digital
sensors through appropriate readout circuits and upload data to the cloud through its
wired or wireless network interface. The Gateway can also filter sensor values and upload
only the necessary information required for the diagnosis. Filtering can include smoothing
through moving average windows, estimation of missing sensor values through Kalman



Computers 2021, 10, 22 7 of 24

filters, data mining that searches for strong patterns through Principal Component Analysis
(PCA). Only the important sensor values are uploaded to the cloud for higher data privacy
and they can be isolated for example, through appropriate thresholds. The experiments
conducted here, were based on the sensor infrastructure described in [29]. After user
consent, some sensor data may be anonymously used by the ScientificApp in the context of
research about Covid-19 or other similar infections. Although, more advanced tests such as
ElectroCardioGrams (ECG) or ElectroMyoGrams (EMG) are also available, their operation
is more complicated and the results they produce cannot be interpreted by a non-expert.
Moreover, many of these sensors are not medically certified.

UserApp is also employed to guide the user about how and when to operate an
external sensor. The sensor sampling strategy can be defined in the MP file and the
UserApp converts it to comprehensive guidelines for the patient.

2.4. Cloud Services

There were several options for the implementation of the communication between the
Coronario modules. Dedicated links for any pair of modules would not be appropriate
since multiple links would have higher cost, would be more difficult to synchronize and
would require an overall larger buffering scheme to support asynchronous communica-
tion. Multiple copies of the same data travelling through different links could also cause
incoherence. Private datacenters could be used to store the generated data. They can offer
advanced storage security and speed but have higher initial (capital) and administrative
cost. Moreover, they usually support only the customized services developed by their
owners. On the contrary, public clouds support advanced services for data sharing, analysis
and visualization, they allow ubiquitous uniform access while their cost is defined on a
pay-as-you-go basis. However, the customers of the cloud services do not always trust
them as far as the security of their data is concerned.

The information is exchanged between the various modules of the Coronario platform
through general cloud services such as the ones offered by Google Cloud, Microsoft Azure,
Amazon Web Services (AWS). These platforms support advanced security features guaran-
teed by Service Level Agreements (SLAs), data analysis and notification methods as well
as storage of data in raw (blobs) or structured format (e.g., tables, databases). Advanced
healthcare services such as Application Program Interfaces (APIs) and integration are
offered by Google Cloud Healthcare API. Microsoft Cloud for Healthcare brings various
new services for monitoring patients combining Microsoft 365, Dynamics, Power Platform,
Azure cloud and IoT tools. The common data model used in this case, allows for easy data
sharing and analysis. For example, medical data can be visualized using Microsoft Power
BI. Microsoft Azure cloud and IoT services have been used by the Coronario platform
although only the storage facilities have been exploited in order to make the developed
application more portable. Several other even simpler cloud platforms (Ubidots, ThingS-
peak, etc.), could have been employed in the place of Microsoft Azure. The data stored in
the cloud can be visualized (e.g., plotted) outside the cloud and more specifically in the
Supervisor App.

The following information is stored in the cloud:

• Sensor values stored in (uid, sid, ts, v) format (see Figure 2). The uid and sid are the
user and sensor identification number (not name), ts is the timestamp and v the sensor
value represented as a string. This format is also followed for storing the information
returned by the User App.

• MP files.
• Messages exchanged between the supervisor doctor and the patient.

MP files as well as messages can also be stored in the cloud as (uid, sid, ts, v) for
uniform representation. A whole message or even an MP text file can be stored in the string
field v. This field is intentionally defined as a string in order to incorporate a combination
of one or more numerical values, text and additional meta-data needed besides uid, sid
and ts.
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2.5. ScientificApp

Scientific is a variation of UserApp compiled as a desktop application for a more
ergonomic user interface. The details of this module are given in this paragraph in order to
demonstrate how alternative classification methods and similarity metrics can be tested.
Most of the pages are identical with UserApp except from the page that concerns the sound
processor shown in Figure 5. In this page the researcher can select and play a sound file
(e.g., daf9.wav as shown in Figure 5). The type of the recorded sound (cough or respiratory)
as well as the “Training” mode is defined using checkboxes.
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Based on the employed classification methods, the SupervisorApp can determine
the reference features in the frequency domain of a cough sound class, using a number
(e.g., 5–10) of training files. Then, the features extracted from any new sound file that is
analyzed, are examined for similarity with the reference ones in order to classify it. Fast
Fourier Transform (FFT) is applied to the input sound file in segments for example, of 1024
samples (defined in the page shown in Figure 5). Subsampling can also be applied in order
to cover a longer time interval with a single FFT.

The drop down menu “Select Analysis Type” shown in the page of Figure 5 can be
used to select the similarity method that will be used as shown in Figure 6. The supported
similarity methods will be explained in detail in Section 4. Some similarity analysis
methods may need extra parameters to be set. Reserved fields “Param1” and “Param2”
can be used for this purpose. The magnitude of the FFT output values are the features used
for similarity checking and are displayed at the bottom of Figure 4 after the analysis of the
sound is completed. If training takes place these values appear after all the training sound
files have been analyzed. These values can be exported for example, in a spreadsheet for
statistical processing. Different FFT segments of the same sound file are either (a) averaged
or (b) the maximum power that appears among different segments for the same frequency
is used as the final bin value.
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When a new sound file is analyzed, the FFT output is displayed at the bottom of the
page shown in Figure 5 and the classification results can be generated after the user selects
the file with the reference features of the supported classes. This set of classes can of course
be extended if the system is trained with sounds from a new cough or respiratory category.
In Figure 7, the name of the “Classify” button is changed to the specific reference features’
filename (classmax_1024_s4_maw7.txt). The field holding the selected analysis type in
Figure 5 (Pearson Correlation Similarity), displays now the results of the classification (see
Figure 7).
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3. Dynamic MP File Configuration

The format of the MP file is studied in detail in this section, in order to demonstrate
that any alert rule, sensor sampling scenario or questionnaire structure can be supported.
JavaScript Object Notation (JSON) format is employed for the MP file. The configuration
sections of an MP file are the following: (a) Questionnaire, (b) Sensor Sampling and
(c) Alert Rules. A new MP file can be defined by the supervisor who uploads it to the
cloud through the SupervisorApp (see Section 2.2). This file can be downloaded from the
cloud by the UserApp. Several fields in the UserApp pages are adapted according to the
information stored in the MP file. Updating an MP file is performed in real time without
requiring a recompilation of the Coronario modules. Each MP section is described in the
following paragraphs.

3.1. Questionnaire Configuration

The aim of the Questionnaire section is to select the appropriate questions about the
patient symptoms that should appear in the corresponding form of the UserApp (see
Section 2.1). These questions are selected from a pool that contains all the possible ones
that are related to Covid-19 or other infections. Names such as q1, q2, q3 (see Figure 8)
are indicating that the definition of a question follows. Each question is defined by the
fields: SensId and Question. The value of SensId should be retrieved from the question
pool so that it can be recognized by the UserApp. The text in the Question field can be
customized (it is not predefined) and appears as a question in the UserApp. The default
way of answering a question that is defined in the MP file is a percentage value determined
by a slider control that appears in the UserApp questionnaire. In this way, the user can
respond to a question by an analog indication between No (0%—slider to the left) and
Yes (100%—slider to the right). For example, if a symptom appears with mild intensity,
the patient may place the slider close to the middle (50%). If the answers to specific
symptom questions should be a clear yes or no, checkboxes can be defined through the
Questionnaire section of the MP file. For uniform handling of both the sliders and the
checkboxes, when the checkbox is ticked a value of 100% is assumed while 0% is returned
when the checkbox is not ticked. Figure 8 shows how the questions defined in the MP file
appear in the UserApp.
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The values set in the questionnaire are uploaded to the cloud in the same format as
the sensor values of the eHealth Infrastructure (see Section 2.4): (uid, sid, ts, v). Moreover,
additional information uploaded by the UserApp such as the geolocation is also stored in
this format. The type of the parameter v is string, so that multiple for example, floating
point values or even whole messages/text files can be incorporated in a single field. All of
these values whether retrieved from the IoT eHealth sensor infrastructure or for example,
from the UserApp questionnaire can be viewed by the supervisor who can search for
specific sensor values based on the sensor identity or other criteria (e.g., specific dates
or users).

3.2. Sensor Sampling Configuration

The second section in the MP file concerns the sampling strategy that should be
followed concerning the IoT medical sensors. The format of each entry in this section
demands the declaration of the sensor name (e.g., BPos for body position, MPressH for
systolic blood pressure and MPressL for the diastolic one), followed by 4 fields: Type, Date,
Period, Repeat. The Type field can have one of the following values: Once, Repeat, Interval. If
Once is selected, then the medical test should be performed once at the specific Date. The
Period and Repeat fields are ignored in this case (can be 0). If Type = “Repeat”, then the patient
must perform a routine medical test starting at the date indicated by the corresponding
field. A time interval (determined in the Period field) should intervene between successive
tests. The Repeat field indicates a maximum number of tests that should be performed
although these tests can be terminated earlier by a newer MP file. If Type = “Interval” then
the interpretation of the other 3 fields is different. More specifically, a medical test should
be performed in a Period starting from Date, Repeat times.

Although this MP file section has been defined for the sensors of the eHealth infras-
tructure, they can also be used for sensor-like information retrieved through the UserApp
(questionnaire answers, geolocation coordinates or even sound/image analysis). The
sampling scenarios determined in this MP file section should be converted in compre-
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hensive guidelines for the patient in order to schedule his medical tests in the right time.
Figure 9 shows how the UserApp converts the JSON format of the Sampling Section in
natural language.
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The sampling scenario for the screening of a patient with kidney failure is examined
to demonstrate the flexibility of the MP file format in determining any usage of the medical
sensors. More specifically, it demonstrates how different regular and irregular sampling
rates can be supported. Sleep apnea which is a breathing disorder is highly prevalent in
these patients. This disorder results in reduced blood oxygen saturation (called hypoxemia)
and oxygen saturation is below 90%. It is also the cause of high blood pressure and can
cause cardiac diseases that are frequent in chronic kidney disease and dialysis patients [30].
The sensor sampling scheduling of Figure 10 is implemented by the MP file “Sampling”
section as shown in Algorithm 1.
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Algorithm 1 Sampling Section of the MP File for a Dialysis Patient

[{“Questionnaire”:{
. . .

“Sampling”:{
“BPressH”:{“Type”:”Repeat”,
“Date”:”8:00 6 July 2020”,
“Period”:”12 h”,
“Repeat”:”1000”}
“BPressL”:{“Type”:”Repeat”,
“Date”:”8:00 6 July 2020”,
“Period”:”12 h”,
“Repeat”:”1000”}
“BTemp”:{“Type”:”Repeat”,
“Date”:”20:00 6 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“BTemp”:{“Type”:”Repeat”,
“Date”:”20:00 8 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“BTemp”:{“Type”:”Repeat”,
“Date”:”20:00 10 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“Quest”:{“Type”:”Repeat”,
“Date”:”20:30 6 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“Quest”:{“Type”:”Repeat”,
“Date”:”20:30 8 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“Quest”:{“Type”:”Repeat”,
“Date”:”20:30 10 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}}
“SPO2”:{“Type”:”Repeat”,
“Date”:”9:00 6 July 2020”,
“Period”:”24 h”,
“Repeat”:”1000”}},
“Resp”:{“Type”:”Repeat”,
“Date”:”23:00 6 July 2020”,
“Period”:”7 d”,
“Repeat”:”1000”}},
. . .

}]

As can be seen from Algorithm 1, blood pressure has to be measured every 12 h thus,
a single declaration can cover all days. Similarly, a single declaration can determine the
SPO2 measurements to be performed every day at 9:00. The body temperature and the
questionnaire have to be answered the day before the hemodialysis thus, 3 declarations
(with period of one week) are used. Respiratory is monitored once every week. These
measurements should be performed continuously thus, a large number (e.g., 1000) is used
in the field “Repeat” to cover a long time period until a new MP is defined.

3.3. Alert Configuration

Local rule checks performed by the UserApp can be defined in the “Alert” section
of the MP. Whenever the condition in a rule is found true, an action is taken. In the
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current version this action is a message displayed to the user. Any logical condition C is
expressed as:

C = ((s0 ≥ s0,min)·(s0 ≤ s0,max))·((s1 ≥ s1,min)·(s1 ≤ s1,max)) . . . , (1)

where s0, s1 are sensor values and s0,min, s0,max, s1,min, s1,max are the allowed limits in the
sensor values. The operators “·”, ”+” and “L” are the logical AND, OR and inversion of
L, respectively. If ±∞ can be used in these limits then, the inversion of a condition can be
expressed with Equation (2). For example

((s0 ≥ s0,min)·(s0 ≤ s0,max)) = ((s0 > −∞)·(s0 ≤ s0,min))·((s0 ≥ s0,max)·(s0 < +∞)), (2)

Since all the conditions in a rule must be true to perform the defined action (i.e., they
are related with an AND operator) the OR operator (+) in Equation (2) can be implemented
by defining twice the rule (with the same action): one for: ((s0 > −∞)·(s0 ≤ s0,min)) and one
for: ((s0 ≥ s0,max)·(s0 <+∞)). An example that shows that any complicated condition can be
supported by the format of the Alerts section of the MP file is the following: let us assume
that the action A has to be taken if the following condition C is true:

A : C =
(
((s0 ≥ s0,min)·(s0 ≤ s0,max)) + ((s1 ≥ s1,min)·(s1 ≤ s1,max))

)
·(s2 = true), (3)

Equation (3) can be rearranged by splitting the condition C in 3 separate conditions
C1, C2, C3, as follows:

A : C1 = (((s0 ≥ s0,min)·(s0 ≤ s0,max))·((s3 ≥ true)·(s3 ≤ true))) (4)

A : C2 = (((s1 > −∞)·(s1 ≤ s1,min))·((s3 ≥ true)·(s3 ≤ true))), (5)

A : C3 = (((s1 ≥ s1,max)·(s1 ≤ +∞))·((s3 ≥ true)·(s3 ≤ true))), (6)

This rule can be expressed in the Alerts section as shown in Algorithm 2.
As can be seen from Algorithm 2, “Inf” has been used to denote infinite and the

minimum, maximum of the sensor values have been declared as: s0_min, s0_max, s1_min,
s1_max. Conditions C1, C2, C3 have been implemented by the pairs: (c1a, c1b), (c2a, c2b) and
(c3a, c3b), respectively. Although three different rules have been defined (m1, m2, m3), they
all trigger the same action “A.” Of course the negation of, for example, s ≥ smin is s < smin
and not s ≤ smin as used above in Algorithm 2 but this could be easily handled without
modifying the MP file format, if a small correction e is used: s ≤ smin − e.
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Algorithm 2 Example Alerts Section in the MP File for Implementing the Rule Defined in
Equations (3)–(6)

[{“Questionnaire”:{ . . .
“Sampling”:{ . . .
“Alerts”:{
“m1”:{“A”,
“Conditions”:{
“c1a”: {“SensId”:”s0”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”s0_min”,
“Maximum”:”s0_max”}
“c1b”: {“SensId”:”s3”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”TRUE”,
“Maximum”:”TRUE”}
}
“m2”:{“A”,
“Conditions”:{
“c2a”: {“SensId”:”s1”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”-Inf”,
“Maximum”:”s1_min”}
“c2b”: {“SensId”:”s3”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”TRUE”,
“Maximum”:”TRUE”}
}
“m3”:{“A”,
“Conditions”:{
“c3a”: {“SensId”:”s1”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”s1_max”,
“Maximum”:”+Inf”}
“c3b”: {“SensId”:”s3”,
“Date”:”8:00 19 April 2020”,
“Minimum”:”TRUE”,
“Maximum”:”TRUE”}
}
. . .

}]
[{“Questionnaire”:{ . . .
“Sampling”:{ . . .
“Alerts”:{
“m1”:{“A”,
“Conditions”:{
“c1a”: {“SensId”:”s0”,

4. Experimentation: Cough Sound Classification
4.1. Materials and Methods

In this section, the sound analysis facilities offered by the ScientificApp are employed
as a case study to demonstrate how the developed platform can assist the research on
Covid-19 symptoms. More specifically, a number of new classification techniques based on
similarity metrics are developed and tested. One of the most representative symptoms of
Covid-19 is the dry cough. Recognizing the particular cough sound produced by a person
infected by Covid-19 is not an easy task since it depends on the gender, the age as well as
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the progress of the infection. Computer aided sound analysis that allows the classification
of the cough sound may help in this direction.

As already described in Section 2.5, the researcher can use a number of wav files
that store recorded cough sounds. The labeled wav files with known origin are used for
training. N-point FFT is applied to the wav file samples with subsampling 1/Sm (i.e., 1 of
Sm consecutive samples is used). Subsampling allows a single FFT frame to span over a
longer time interval. Each segment of the sound clip may have different significance in
the classification of the sound but for the sake of simplicity we will assume that all the Nf,
FFT output sets may be averaged to estimate the significance of each frequency bin in the
classification process (called henceforth, “Add” combination). Alternatively, we will also
examine the case where the maximum power that appears for the same frequency among
the different Nf segments of a single wav file, is used as the final bin value (“Max” combina-
tion). If FFTn() denotes the n-th FFT operation that accepts as input a set of N input values:
x = {xn,0, xn,1, . . . , xn,N−1} and output magnitudes: X = {Xn,0, Xn,1, . . . , Xn,N−1} then,
the results R = {R0, R1, . . . , RN−1} of the sound analysis using the “Add” combination
would be:

{Xn,0, Xn,1, . . . , Xn,N−1} = FFT({xn,0, xn,1, . . . , xn,N−1}), xi = yi·Sm (7)

{R0, R1, . . . , RN−1} =
{

1
N f

∑
n

Xn,0,
1

N f
∑
n

Xn,1, . . . ,
1

N f
∑
n

Xn,N−1

}
. (8)

In the combination called “Max” each Ri would have been estimated as:

Ri = max(X0,i, X1,i, . . . , Xn−1,i). (9)

Additional averaging of the R sets is performed to combine the training results and
extract the reference spectrum R f = {R fi}, where each R fi has resulted from averaging the
Ri’s of all the training sounds. Special techniques can be applied to smooth the FFT output
spectrum: Moving Average Window (MAW) and Principal Component Analysis (PCA).

In MAW each output Xi is substituted by X′i = 1
W ∑W/2

k=−W/2 Xi+k, where W is the
window used for the averaging.

PCA is a useful statistical technique which is common for finding strong patterns in
data of high dimension. These patterns do not only allow the interpretation of the data in
a more meaningful way but they can also be used to compress these data. Assuming we
have a matrix Xr×n = [Xc1 Xc2 . . . Xcn] with measurements, where Xci is a sub-vector of r
elements sj, which is necessary for the calculation of principal components.

The covariance matrix with each Xci has to be calculated in order to measure the
variability of data:

(Rc)r×r =
r

∑
i=1

XciXT
ci. (10)

The Singular Value Decomposition (SVD) of (R)rxr is:

(Rc)r×r = USVT , (11)

where S is a diagonal matrix with the singular values of Rc on its diagonal, V is a matrix the
columns of which are the right singular vectors of Rc and U = [U1 U2 . . . Un] is a feature
vector (matrix of vectors) the columns of which are the left singular vectors of Rc.

The first m eigenvectors (ordered by magnitude) from the vector U are preserved
in order to create (Ureduced)nxm = [U1 U2 . . . Um], m < n. Those elements correspond to
principal components and m is the level of smoothing or compression.

The transpose of the vector is multiplied by the original data set:

(Yi)m×1 = (UT
reduced)m×n(Xi)n×1, (12)
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The original data are retrieved by:

(Xreceived
i )n×1 = (Ureduced)n×m(Yi)m×1, (13)

The original data are recovered with no error if all the eigenvectors are used in the
transformation, otherwise the data are recovered in a lossy way.

In the experiments conducted, all the combinations between different values for
N = 256 or N = 1024, Sm = 1/1 or Sm = 1/4, MAW (with W = 7 or 15) or PCA (with m = 2 or
5) or No smoothing filter, “Add” or “Max” combinations have been tested with the same
sound files. The most interesting combinations are the ones presented in Table 1. Initially,
the original data (no MAW or PCA smoothing) were used with Add combination and (a)
N = 1024 and Sm = 4 or (b) N = 256, Sm = 1. Since better experimental results are achieved
in case (a), N = 1024 and Sm = 4 were employed in the rest of the cases. PCA was used with
m = 2 or m = 5 and MAW was used with W = 7 or 15. In all these 4 cases, Add combination
was used. Max combination was tested with no filtering, PCA with m = 5 and MAW with
W = 7.

Table 1. Combinations Tested and Compared.

Combination Name Description

1024_s4 Add, N = 1024, Sm = 4, No filtering
256_s1 Add, N = 256, Sm = 1, No filtering
pca128_2 Add, N = 1024, Sm = 4, PCA with m = 2
pca128_5 Add, N = 1024, Sm = 4, PCA with m = 5
maw_15 Add, N = 1024, Sm = 4, MAW with W = 15
maw_7 Add, N = 1024, Sm = 4, MAW with W = 7
max1024_s4 Max, N = 1024, Sm = 4, No filtering
max_pca128_5 Max, N = 1024, Sm = 4, PCA with m = 5
max_maw7 Max, N = 1024, Sm = 4, MAW with W = 7

The classification is performed based on a similarity metric called Pearson Correlation
Coefficient (PCC) [31]. The PCC is estimated between R that is estimated for a new sound
file and each Rfc (the Rf estimated from the training samples of class c):

Pc =
n ∑ RiR fi −∑ Ri ∑ R fi√

n ∑ R2
i − (∑ Ri)

2
√

n ∑ R f 2
i − (∑ R fi)

2
. (14)

The Pc coefficient values are between−1 (rising edges of R correspond to falling edges
of Rf and vice versa) to 1 (perfect match). Pc equal to 0 implies that there is no linear
correlation between the variables.

Let TP TN, FP and FN be the number of samples recognized as True Positive, True
Negative, False Positive and False Negative, respectively, for a specific class. The Sensitivity
(or Recall or True Positive Rate), the Specificity (or True Negative Rate), the Precision and
the Accuracy are defined as:

Sensitivity =
TP

TP + FN
(15)

Speci f icity =
TN

TN + FP
(16)

Precision =
TP

TP + FP
(17)

Precision =
TP

TP + FP
. (18)
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4.2. Experimental Results

A number of cough sound files (300) were retrieved from SoundSnap (soundsnap.com)
and labeled according to the information given in this website, initially in 5 categories as
shown in Table 2. The population of each category is not constant and depends on the
availability in SoundSnap. The duration of the analyzed sounds, ranges between 1 and
5 s. Ten (10) representative sound files of each category were used for training that is,
for the extraction of its reference Rf set. Taking into consideration the overall number of
samples per sound class, the training set size ranges between 8% and 33% of each class
population. In several machine learning applications, the training size is in the order of
3
4 of the data size. Increasing the training set size is expected to improve the achieved
classification accuracy. All the files were used as a test set in each one of the methods listed
in Table 1 and the classification results were used to estimate the TP, TF, FP, FN parameters.
Although in large datasets it would be more appropriate to use separate training and test
sets, the small number of training samples used here and the dataset size allows us to apply
the test to all the available samples. The Sensitivity, Specificity, Precision and Accuracy
achieved by each method are listed in Tables 3–6, respectively. We consider the sensitivity
and accuracy as the most representative metrics and display these experimental results in
Figures 11 and 12, respectively.

Table 2. Initial Categories of the Cough Sound Files.

Category Description Number of Available
Files—Training Set

Child Cough of a child, male or female,
dry or productive 30–33%

Male-Dry Dry cough of adult male 66–15%
Female-Dry Dry cough of adult female 36–28%
Male-Productive Productive cough of adult male 122–8%
Female Productive Productive cough of adult female 46–22%

Table 3. Sensitivity Results for the Categories of Table 2.

Sensitivity 1024_ s4 256_s1 pca128_2 pca128_5 maw_15 maw_7 max1024_s4 max_pca128_5 max_maw7

Child 0.8125 0.8000 0.8667 0.6667 0.7333 0.8000 0.6000 0.7333 0.6667
Dry Male 0.4242 0.3636 0.4848 0.4545 0.2500 0.2500 0.5000 0.3636 0.5152
Dry Female 0.5556 0.0526 0.5556 0.6111 0.3333 0.5556 0.7222 0.4444 0.6667
Productive
Male 0.6818 0.0769 0.5231 0.6061 0.5075 0.5970 0.8788 0.9091 0.8182

Productive
Female 0.4783 0.4783 0.4091 0.4783 0.4783 0.4783 0.5217 0.4783 0.6522

Average: 0.5905 0.3543 0.5678 0.5633 0.4605 0.5362 0.6445 0.5858 0.6638

Table 4. Specificity Results for the Categories of Table 2.

Specificity 1024_s4 256_s1 pca128_2 pca128_5 maw_15 maw_7 max1024_s4 max_pca128_5 max_maw7

Child 0.9643 0.6714 0.8913 0.9357 0.8714 0.8929 0.9424 0.9786 0.9643
Dry Male 0.9593 0.7869 0.8333 0.8770 0.8780 0.8862 0.9754 0.9426 0.9590
Dry Female 0.8551 0.9779 0.9185 0.9051 0.8321 0.8540 0.9412 0.9416 0.9416
Productive
Male 0.7222 0.9111 0.8182 0.7416 0.8068 0.8068 0.6932 0.6292 0.7191

Productive
Female 0.9398 0.7652 0.9313 0.9394 0.9091 0.9394 1.0000 0.9848 0.9697

Average: 0.8882 0.8225 0.8785 0.8798 0.8595 0.8759 0.9104 0.8954 0.9107
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Table 5. Precision Results for the Categories of Table 2.

Precision 1024_s4 256_s1 pca128_2 pca128_5 maw_15 maw_7 max1024_s4 max_pca128_5 max_maw7

Child 0.7222 0.2069 0.4643 0.5263 0.3793 0.4444 0.5294 0.7857 0.6667
Dry Male 0.7368 0.3158 0.4444 0.5000 0.3478 0.3636 0.8421 0.6316 0.7727
Dry Female 0.3333 0.2500 0.4762 0.4583 0.2069 0.3333 0.6190 0.5000 0.6000
Productive
Male 0.6429 0.3846 0.6800 0.6349 0.6667 0.7018 0.6824 0.6452 0.6835

Productive
Female 0.5789 0.2619 0.5000 0.5789 0.4783 0.5789 1.0000 0.8462 0.7895

Average: 0.6028 0.2838 0.5130 0.5397 0.4158 0.4844 0.7346 0.6817 0.7025

Table 6. Accuracy Results for the Categories of Table 2.

Accuracy 1024_s4 256_s1 pca128_2 pca128_5 maw_15 maw_7 max1024_s4 max_pca128_5 max_maw7

Child 0.9487 0.6839 0.8889 0.9097 0.8581 0.8839 0.9091 0.9548 0.9355
Dry Male 0.8462 0.6968 0.7582 0.7871 0.7484 0.7548 0.8766 0.8194 0.8645
Dry Female 0.8205 0.8645 0.8758 0.8710 0.7742 0.8194 0.9156 0.8839 0.9097
Productive
Male 0.7051 0.5613 0.6928 0.6839 0.6774 0.7161 0.7727 0.7484 0.7613

Productive
Female 0.8718 0.7226 0.8562 0.8710 0.8452 0.8710 0.9286 0.9097 0.9226

Average: 0.8385 0.7058 0.8144 0.8245 0.7806 0.8090 0.8805 0.8632 0.8787
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The rationale behind the selection of the specific combinations listed in Table 1 is the
following: The unfiltered data were tested initially using 1024_s4 and 256_s1. As can be
seen from Figures 11 and 12, 1024_s4 achieves better results in most of the cases. For this
reason, N = 1024 and Sm = 4 was used in the rest of the combinations tested. When PCA was
applied, better results were achieved when 5 principal components were used instead of 2.
Similarly, when MAW was employed using a window of W = 7 samples achieved better
results than using W = 15. From these results it can be concluded that the classification
results are not favored by a heavy smoothing. All of the aforementioned methods concerned
the extraction of Rf using “Add” Combination. The “Max” Combination was applied only
to the methods that achieved the best results with the “Add” Combination that is: 1024_s4,
pca128_5 and maw7.

The 5 categories listed in Table 2 were further split in the 9 categories of Table 7. Ten
training samples were used again except for the case of Child-Productive, since in this case
there were only 6 samples available and all of them were used both for training and test.
Figures 13 and 14 display the sensitivity and accuracy results for this case.

Table 7. Extended Set of Cough Sound Categories.

Category Description
Number of

Available Files
(Training Set)

Child-Dry Dry cough of a child, male or female 24 (42%)
Adult-Male-Dry Dry cough of adult male 42 (24%)
Adult-Female-Dry Dry cough of adult female 36 (28%)
Elderly-Male-Dry Dry cough of elderly male 24 (42%)
Child-Productive Productive cough of a child, male or female 6 (100%)
Adult-Male-Productive Productive cough of adult male 64 (16%)
Adult-Female-Productive Productive cough of adult female 16 (62%)
Elderly-Male-Productive Productive cough of elderly male 58 (17%)
Elderly-Female-Productive Productive cough of elderly female 30 (33%)
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4.3. Comparison

Cough features have been exploited in the diagnosis of several diseases of the res-
piratory system. Until recently, the patients reported the severity of their cough to the
supervisor doctor. This approach of course is not reliable and often subjective [32]. The
sound signal of the cough can reveal critical information about the patient condition [33].
Continuous audio signal collection provides important information and 24 h cough count
is a metric used to approve an appropriate treatment. Automated cough recording and
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counting solutions have been recently presented in the literature [34–36]. In [34] the sound
is split in segments of 1 s processed by Fourier transform with a window size of 25 ms,
a window hop of 10 ms and then a periodic Hann window is used to generate the corre-
sponding spectrum. The output of this analysis is input to a convolutional neural network
that classifies the sounds as cough or something else: noise, throat clearing, sneeze and so
forth. Despite the fact that the sound is affected by several parameters (noise, gender, age,
disease, etc.) its recognition as cough is a binary decision and definitely this an easier task
than classifying it in the multiple categories of Table 2 or Table 7.

In a more sophisticated approach [37], a novel feature set called intra-cough shimmer
jump and intra-cough Teager energy operator jump is used to discriminate dry or wet
coughs. The frequency, intensity of coughing and acoustic properties of cough sound, were
analyzed in [38] but no classification results are presented.

Table 8 summarizes the results achieved by these referenced approaches. In the first
row, the classification in the 5 categories of Table 2 is used and in the second row, the
classification in the 9 categories of Table 7. If the various classification methods examined
on the Coronario platform are compared according to their accuracy, MAW7 achieved
a slightly better average accuracy as shown from Tables 2 and 7. Consequently, the
achievements of MAW7 are listed in Table 8.

Table 8. Comparison of the Referenced Cough Classification Methods.

Reference Target Sensitivity Specificity Precision Accuracy

Table 3 Classification in 5
categories (maw7) 66% 91% 70% 88%

Table 7 Classification in 9
categories (maw7) 61% 94% 64% 90%

[34]
Cough counting
Discrimination of
cough from noise

90% 99.5%

[35] -“- 91% 99%
[36] -“- 80% 96%

[37] Discrimination of
dry and wet coughs 75% 77% 76%

The overall accuracy of the tested classification methods is acceptable although the
average sensitivity is not particularly high. Especially, when the classification has to
be performed in the categories of Table 7, there are some cough classes that achieve a
sensitivity lower than 50% which is clearly not acceptable. It should be stressed that the
sensitivity/accuracy results presented were achieved using only 10 training samples per
cough class. The use of a larger training dataset is expected to lead to better accuracy.
Moreover, the accuracy of the other approaches, concerned binary decisions (cough or
noise [34–36], dry or productive cough [37]) and for this reason it is no surprise that this
discrimination is accomplished with higher success rate in some referenced approaches.

5. Discussion

The already implemented sound processor can be used to classify cough or respiratory
sounds related to the infection. The aim of the experiments conducted in the previous
section is to demonstrate how the developed platform can host several filtering, signal pro-
cessing and classification methods in order to exploit the medical information exchanged.
Nonetheless, the classification accuracy results obtained in some cases are quite good
compared to the referenced approaches listed in Table 8, taking into consideration that
the referenced approaches concern binary decisions. It is obvious that the classification of
a sound file in one of the multiple classes that are supported is a much harder problem.
Furthermore, the classification accuracy is expected to be much higher if a larger portion
of the dataset is used for training. Image processing will also be supported in the next
version of the system, to monitor for example, skin disorders as already studied in our
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previous work [39]. Additionally, the image processing methods that will be employed
may be used to scan the results of for example, Coaxial Tomography, X-ray, ultrasound
images and extract useful features for the diagnosis of an infection.

In the current version, the supervisor doctor is responsible for the diagnosis based
on the data retrieved from the UserApp and the IoT medical sensors. Nevertheless, AI
deep learning tools such as TensorFlow or Caffe can be trained to assist the automation
and reliability of the diagnosis. Such a neural network model can be trained using the
information exchanged between the Coronario modules (sensor values, user information,
geolocation data, etc.). The outputs of this model could be discrete decision about the
treatment or suggestions about the next steps that the patient has to follow. Such a trained
neural network model can be easily attached on the side of the supervisor doctor where
all the information is available or on the side of the eHealth sensor infrastructure. The
latter case can be used if some alerts have to be generated locally based on the sensor
values. This process can support the alert rules already defined in the MP file as discussed
in Section 3.3.

Several privacy and security issues have been addressed in order to make the system
compliant with General Data Protection Regulation (GDPR). First of all, encryption is
employed during the exchange and the storage of data. The information exchanged can be
decoded at the edge of the Coronario platform from the users (e.g., patients, supervisor
doctors or researchers) based on the certificates they own. The encrypted data are unread-
able by anyone that does not own the appropriate keys/certificates (e.g., while they reside
in the cloud). Only authenticated users have access to the stored information with different
permissions. The authorized doctors can download information that concerns only their
patients. The researchers can retrieve data from a pool of sensor values that are anonymized
and accompanied with permissions for research use. The patients can download the MP
files and the messages sent to them from their supervisor doctor. The cloud administrators
will not be able to decrypt and read the stored information although the Service Level
Agreement (SLA) between the cloud provider and the healthcare institutes will anyway
prohibit such an access.

Only the necessary information is stored. Local processing is encouraged to minimize
the risk of data exposure during wireless or even wired communication. This is the reason
why a local Sensor Controller (Gateway) such as the one used in [29] is proposed for
the sensor infrastructure of the Coronario platform. The supported alerts defined in the
medical protocol can check various parameters locally and perform certain actions avoiding
the move of sensitive data to the cloud. Several cloud facilities have been employed to
guarantee the protection of the stored data: different access privileges, alerts at the cloud
level to warn about attacks to the data by unauthorized personnel, the data are deleted
from the cloud as soon as possible and so forth. For example, the sensor values can be
deleted immediately after they are read by the authorized supervisor. The geolocation data
show the places visited by the user and can be deleted after a safe interval of for example,
14 days. Finally, the data used for research such as audio or image files are anonymous and
are used only after the consent of the patient.

6. Conclusions

A symptom tracking platform for Covid-19 or other similar infections has been devel-
oped. It is suitable for pre- or post-hospitalization and vulnerable population monitoring.
Alert rules, sensor sampling scenarios and questionnaire structure are dynamically deter-
mined. An editor is available for sound classification, assisting the research on the infection
symptoms (e.g., cough or respiratory sounds). The condition of a patient is reliably assessed
since information from several sources is taken into account. A number of sound signal
filtering and analysis methods have been already employed and tested for the classification
of cough sounds with 90% accuracy.

Future work will focus on testing the developed platform in real environments, mea-
suring its effectiveness in the protection of the public health and its financial impact. We
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will also extend ScientificApp module to allow experimentation with sound and image
classification using larger datasets and different ML methods.
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