
computers

Article

A Compromise Programming for Multi-Objective Task
Assignment Problem

Son Tung Ngo 1,2,* , Jafreezal Jaafar 1, Izzatdin Abdul Aziz 1 and Bui Ngoc Anh 2

����������
�������

Citation: Ngo, S.T.; Jaafar, J.; Aziz,

I.A.; Anh, B.N. A Compromise

Programming for Multi-Objective

Task Assignment Problem. Computers

2021, 10, 15. https://doi.org/

10.3390/computers10020015

Received: 14 December 2020

Accepted: 20 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Research in Data Science, Department of Computer and Information Sciences, Universiti Teknologi
PETRONAS, Tronoh 32610, Malaysia; jafreez@utp.edu.my (J.J.); izzatdin@utp.edu.my (I.A.A.)

2 Information and Communication Technology Department, FPT University, Hanoi 100000, Vietnam;
anhbn5@fe.edu.vn

* Correspondence: sonnt69@fe.edu.vn

Abstract: The problem of scheduling is an area that has attracted a lot of attention from researchers
for many years. Its goal is to optimize resources in the system. The lecturer’s assigning task is an
example of the timetabling problem, a class of scheduling. This study introduces a mathematical
model to assign constrained tasks (the time and required skills) to university lecturers. Our model is
capable of generating a calendar that maximizes faculty expectations. The formulated problem is in
the form of a multi-objective problem that requires the trade-off between two or more conflicting
objectives to indicate the optimal solution. We use the compromise programming approach to the
multi-objective problem to solve this. We then proposed the new version of the Genetic Algorithm
to solve the introduced model. Finally, we tested the model and algorithm with real scheduling
data, including 139 sections of 17 subjects to 27 lecturers in 10 timeslots. Finally, a web application
supports the decision-maker to visualize and manipulate the obtained results.

Keywords: timetabling; task assignment; MOP; combinatory optimization; compromise program-
ming; genetic algorithm

1. Introduction
1.1. Background

In many fields such as production management, engineering . . . etc., scheduling plays
a key role in productivity enhancement. The scheduling process is responsible for assigning
machines and resources to tasks such that all tasks are executed while meeting business
constraints. In the training institutions, the scheduling problems are mostly presented in
the form of timetabling problems. The university timetabling problem’s goal is to find a
method to allocate the predefined resources that minimize the cost where all constraints
within the problem must be satisfied. The resources here consist of classes (groups of
students with the same schedule), a subject that requires one or more specific skills and
knowledge, time slots that determine when a particular class and subject are attached. The
university usually performs a scheduling task before a semester begins [1–5]. The teaching
assignment problem, in essence, is a branch of the timetabling problem. The scheduler must
assign courses to trainers to satisfy the professional constraints and working time [6]. A
lecturer can teach only the courses that they are qualified in, and at their available timeslots.

This research was conducted on a practical case study at FPT University in Vietnam.
Currently, the university’s scheduling process is a manual process. In the situation, the
student can register for their studies very soon before the department head has enough
resources to determine the final schedule (of course, some classes could be canceled due to
lack of resources later). The training department creates groups of students who would
like to study the same subject based on the registrations and select the time slots. However,
the department heads still need to assign their lecturer to teach these classes later. The
reason for this is that we are student-centered. Other resources revolve around students to

Computers 2021, 10, 15. https://doi.org/10.3390/computers10020015 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4098-3147
https://orcid.org/0000-0003-2654-4463
https://orcid.org/0000-0002-3532-9434
https://doi.org/10.3390/computers10020015
https://doi.org/10.3390/computers10020015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10020015
https://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/10/2/15?type=check_update&version=2

Computers 2021, 10, 15 2 of 16

support them. In short words, the lecturers’ timetables are considered last. The project aims
to provide an automated task assignment tool to replace the manual process of matching
lecturers to their courses, as shown in Figure 1. The system assigns these courses to the
lecturers based on their skills and expectations (more detail in Section 2).

Computers 2021, 10, x FOR PEER REVIEW 2 of 16

like to study the same subject based on the registrations and select the time slots. How-
ever, the department heads still need to assign their lecturer to teach these classes later.
The reason for this is that we are student-centered. Other resources revolve around stu-
dents to support them. In short words, the lecturers’ timetables are considered last. The
project aims to provide an automated task assignment tool to replace the manual process
of matching lecturers to their courses, as shown in Figure 1. The system assigns these
courses to the lecturers based on their skills and expectations (more detail in Section 2).

Task
Assignment

Course ID

1

2

3

….

Skill

Java Web

J2SE

D&A

….

Time Slot

M1

E5

M1

….

List of Courses (Tasks)

Interests of Lecturers Slot

1

2

3

4

5

6

Mon

1

2

3

4

5

6

Tue

1

2

3

4

5

6

Wed

1

2

3

4

5

6

Thu

1

2

3

4

5

6

Fri

1

2

3

4

5

6

Slot

1

2

3

4

5

6

Mon

1

2

3

4

5

6

Tue

1

2

3

4

5

6

Wed

1

2

3

4

5

6

Thu

1

2

3

4

5

6

Fri

1

2

3

4

5

6

Slot

1

2

3

4

5

6

Mon

1

2

3

Tue

4

4

5

Wed

1

2

3

Thu

4

5

5

Fri

1

2

3

Timetable for Lecturers

Figure 1. The teacher assignment problem.

1.2. Related Work
There have been many studies on the problem of university scheduling. Many of

them have used an integer programming (IP) model to formulate the problem. For exam-
ple, Andrade et al. have built a Non-Linear Binary Integer Programming mathematical
model to develop the school timetabling problem, which is used to assign teaching tasks
to teachers at a defined time frame [1]. Gianpaolo et al. proposed an Integer Programming
formulation of selecting the training offer and the related timetabling for high-school re-
medial courses subject to constraints on budget and business operations [3]. Daskalaki et
al. presented a binary integer programming model of the university timetabling problem,
which tries to minimize the linear cost function [7]. Feng et al. developed a mixed-integer
linear program for the university timetabling problem. The original problem converted to
the three-dimensional container packing problem. They consider day, period, and room
as the three dimensions of one container and the lectures as different sized items then
assign them into the container [8].

Several researchers proposed models focused on assignments for rooms and time
slots to achieve workable schedules while optimizing the lecturer’s interests. For example,
Nouri and Driss [9,10] use the multi-agent approach, where the agents represent teachers
of different levels and seek to assign their lectures according to their interests. Higher-
ranking teachers are given priority in meeting their interests. Malik et al. built a model for
mapping the task to the lecturer that maximizes their preference on the time-slot [11].
There are many different views about the compact schedule. The goal is to avoid idle time
on the teacher’s plan and minimize working days [12,13].

The task assignment problems exist in many different forms. While some of them,
like the classical problem, have polynomial-time solutions [14], others are NP-hard com-
bination optimization problems [15] that require approximation approaches. A metaheu-
ristic is widely known [16]. In [17], Lewis classifies several metaheuristic-based techniques
into three classes for University Timetabling problems in their survey. Muthuraman and
Venkatesan also conducted a survey of meta-heuristic algorithms for solving combinato-
rial optimization problems [18]. They reviewed several algorithms, such as ant colony op-
timization, evolutionary computation, particle swarm optimization, etc. Many researchers
used genetic algorithms, an evolutionary algorithm to solve scheduling problems, and

Figure 1. The teacher assignment problem.

1.2. Related Work

There have been many studies on the problem of university scheduling. Many of them
have used an integer programming (IP) model to formulate the problem. For example,
Andrade et al. have built a Non-Linear Binary Integer Programming mathematical model to
develop the school timetabling problem, which is used to assign teaching tasks to teachers
at a defined time frame [1]. Gianpaolo et al. proposed an Integer Programming formulation
of selecting the training offer and the related timetabling for high-school remedial courses
subject to constraints on budget and business operations [3]. Daskalaki et al. presented
a binary integer programming model of the university timetabling problem, which tries
to minimize the linear cost function [7]. Feng et al. developed a mixed-integer linear
program for the university timetabling problem. The original problem converted to the
three-dimensional container packing problem. They consider day, period, and room as
the three dimensions of one container and the lectures as different sized items then assign
them into the container [8].

Several researchers proposed models focused on assignments for rooms and time
slots to achieve workable schedules while optimizing the lecturer’s interests. For example,
Nouri and Driss [9,10] use the multi-agent approach, where the agents represent teachers of
different levels and seek to assign their lectures according to their interests. Higher-ranking
teachers are given priority in meeting their interests. Malik et al. built a model for mapping
the task to the lecturer that maximizes their preference on the time-slot [11]. There are
many different views about the compact schedule. The goal is to avoid idle time on the
teacher’s plan and minimize working days [12,13].

The task assignment problems exist in many different forms. While some of them, like
the classical problem, have polynomial-time solutions [14], others are NP-hard combina-
tion optimization problems [15] that require approximation approaches. A metaheuristic
is widely known [16]. In [17], Lewis classifies several metaheuristic-based techniques
into three classes for University Timetabling problems in their survey. Muthuraman and
Venkatesan also conducted a survey of meta-heuristic algorithms for solving combinatorial
optimization problems [18]. They reviewed several algorithms, such as ant colony opti-
mization, evolutionary computation, particle swarm optimization, etc. Many researchers
used genetic algorithms, an evolutionary algorithm to solve scheduling problems, and
task assignment problems [19–21]. Genetic Algorithm generates high-quality solutions to
optimization and search problems. A particular researcher can have different designs of
the Genetic Algorithm to solve specific problems. Feng et al. combine genetic algorithms
and search strategies to create offspring in populations based on information collected

Computers 2021, 10, 15 3 of 16

from the best individuals of previous generations and with a local search that improves the
efficacy of the proposed Genetic Algorithm [8]. Yang develops an efficient hybrid genetic
algorithm based on algorithms for the converted problem [22]. In [23], Corne suggested
some of timetabling constraints including: unary constraints, binary constraints, capacity
constraints, event spread constraints, agent constraints.

The common of the above studies is that they basically have the right target orientation
to handle timetabling. However, the proposed model is too simple. It does not cover
enough the achievements that complex business required. University lecturers are experts,
enabling them to perform their jobs as important as cost optimization. The preferences
of the trainer have not been properly considered in the resource optimization process.
The use of metaheuristic algorithm to solve the combinatorial optimization problem is a
reasonable direction. This study introduces a multi-objective optimization problem that
used binary integer decision variables and a version of the Genetic Algorithm to solve the
task assignment problem mentioned in Section 1.1.

1.3. Contribution

In this study, we present an approach to construct a task assignment support system
for the university—the research output, including an optimization model, algorithm,
and software application for actual use. The application plays a stage in the automatic
scheduling solution at FPT University. It is a new variant of the teaching task assignment
problem. The related research to the scheduling and task assignment may benefit from
our study. Our mission is to arrange the teaching tasks for available human resources. We
built a multi-objectives model that accesses each individual’s level of interest assigned
to the job, providing a binding compliance solution. Our proposed model covers more
business requirements than previous works since the many aspects of lecturer preferences
are considered. The optimization model of the problem is described in Section 2.

There are many ways to solve the proposed optimization model. We choose com-
promising programming to transform the multi-objective problem into a single-objective
problem. Each MOP approach has its advantages and disadvantages and is suitable for
different decision-makers groups. Still, compromise programming works extremely better
if no preference is indicated (it is assumed that the people are treated equally). We have
implemented a Genetic Algorithm that solves both optimal models of a target mentioned
above—the detail of the implementation is described in Section 3. In the following sections
of this paper, we present our experiments using the scheduling data of Computer Funda-
mentals at FPT University. A review of the algorithm is also discussed in Section 4. The
remaining are discussion and conclusion.

2. Mathematical Problem
2.1. Multi-Objective Task Assignment Problem

In this research, we also define our timetable problem in the form of IP as follows:

• Let G is the number of lecturers.
• Denote S is the number of subjects.
• T is the number of available time slots, in our case, T = 10 as described in Table 1.
• H is the number of section, a section represents a particular class studies a specific

subject at a timeslot.
• ch, sh, th are class, subject, and time slot of section h-th respectively.
• Dg is a number of classes that lecturer g-th prefers to teach.
• Mg is a minimum number of classes that the lecturer g-th has to teach.
• as,g ≥ 0 as integer for every s = 1 . . . S, g = 1 . . . G represent the rating of the lecturer

g-th to teach subject s-th. The value 0 indicates that the lecturer does not want to teach
the subject. Other values respectively mean “like a little” to “like very much”.

• bt,g ≥ 0 as integer for every t = 1 . . . T, g = 1 . . . G denote the rating of the lecturer g-th
to teach at time slot t-th. The value 0 indicates that the lecturer does not want to teach
at the time slot. Other values respectively mean “like a little” to “like very much.”

Computers 2021, 10, 15 4 of 16

• xh,g is the decision variable for every h = 1 . . . H, g = 1 . . . G. xh, g = 1 if the lecturer
g-th is assigned to section h-th, xh,g = 0 otherwise.

Table 1. The details of 10-time slots defined at the FPT University for a week.

Time-Slot
DoW Monday Tuesday Wednesday Thursday Friday Part of the Day

1 M1
M4

M1 M4 M1

Morning2 M2 M2
M5

M2

3 M3 M5 M3 M3

4 E1
E4

E1 E4 E1

After Noon5 E2 E2
E5

E2

6 E3 E5 E3 E3

We define several constraints to the problem as follows:

• All section must be assigned lecturer and at most one lecturer is assigned to a section.

G

∑
g=1

xh,g = 1 ∀ss = 1 . . . H (H1)

• A particular lecturer does not teach the subject that he/she does not have skill.

ash ,g ≥ xh,g ∀h = 1 . . . H, g = 1 . . . G (H2)

• A particular lecturer does not teach at the time-slot that he/she is not available.

bth , g ≥ xh,g ∀h = 1 . . . H, g = 1 . . . G (H3)

• All lecturers have to satisfy the quota for the number of sections they have to teach.

H

∑
h=1

xh,g ≥ Mg ∀g = 1 . . . G (H4)

In this research, we have defined some objectives functions that maximize the lec-
turer’s preference level on time-slots, subjects, and the number of classes that the lecturer
expects to teach. The objective functions described as follows:

• Maximize the expectations of the lecturers on the subject they want to teach.

max

{
H

∑
h=1

xh,g ∗ ash ,g

}
∀g = 1 . . . G (O1)

• Maximize the expectations of the lecturers on the time slots they want to teach.

max

{
H

∑
h=1

xh,g ∗ bth ,g

}
∀g = 1 . . . G (O2)

• Minimize the errors on the number of classes that the lecturers want to teach.

min

{∣∣∣∣∣ H

∑
h=1

xh,g − Dg

∣∣∣∣∣
}
∀g = 1 . . . G (O3)

Computers 2021, 10, 15 5 of 16

Minimize the number of parts of the day, which lecturers must work (morning,
afternoon every day). The lecturer would register three classes, even if he expressed his
interest in all of the time-slots. It is better to assign him/her to work in the slot-times (E1,
E2, E3) instead of (E1, E4, M1):

max
{

pod
({

xh,g

∣∣∣ h = 1 . . . H
})}

∀g = 1 . . . G (O4)

where pod is a fuzzy logic membership function that returns the rating for the number of
parts of the day, which lecturers have to work, the detailed implementation can be different
in different situations. We show our implementation in the part of the experiment to suit
the context of FPT University.

The proposed model is in the form of a multi-objective programming problem (MOP) [24].
Since there are often many Pareto optimization solutions for MOP problems, solving such
a problem is not as simple as a typical single goal optimization problem. In the following
sections, we present an approach to transform the optimal problem into a more suitable form
to find the optimal solution in the decision space.

2.2. Compromise Programming for MOP

Our proposed scheduling problem becomes MOP. There are two main approaches to
solving the MOP problem: preference method and non-preference method, as mentioned
in Hwang’s survey [24]. The most useful solution is found using different philosophies
that depending on the subjective preferences of the decision-makers. In the decision-
making process, decision-makers can place interest in each criterion according to his/her
subjective preferences. Here, the decision-maker should be an expert in the domain. It
is challenging to find the desired weights for different objectives. This section of this
paper discusses the compromise programming approach that requires no pre-defined
decision-maker preferences.

The problem of 4*G objective functions is complicated for decision-makers to define
the weights corresponding to each lecturer. There are many proposed methods to solve
multi-objective problems. Zeleny [25] introduced the ideal solution defined as the best-
compromise solution that is the nearest to perfection. Ngo et al. [26–28] applied compromise
programming to solve the problem of the binary objective in team selection, where they
introduced the idea point E and try to find the solution that has minimum distance to E.
Mahmudova used a variant of compromise programming called TOPSIS to identify the
criteria and alternatives for software. They chose an alternate variant that has to be at the
shortest Euclidean distance from the positive ideal solution and the farthest Euclidean
distance from the negative ideal solution. The value of best and worst alternatives to
software efficiency was found using the estimates of professional programmers [29]. Xu
et al. determined the best compromise solution using a linear fuzzy membership function
that represents the degree of achievement of an objective function as a value between 0
and 1. The best compromise solution is the one that archived the highest value of the
normalized membership function µk calculated at the k-th solution [30]. Wei and Tian
used a fuzzy statistic algorithm to select the best compromise solutions after obtaining
Pareto-optimal solutions [31].

When the decision-maker stands in the view of lecturers, they declare their preferences
on subjects and time-slots. It is hard to find the solution to archive the best, but we can
define the best schedule they expect. The only goal left is to find a solution that is closest to
this predefined point. The question we may ask decision-maker and predictable answer
for them is as follows:

• How much faculty satisfaction on preferred time-slot and skill is good? Ideally, what
they receive should be what they expect.

The decision-maker mostly provides this pair of the above question and answer for the
time-slot, skill, number of courses, and part of the days they have to work. The objective
function is now expressed as follow:

Computers 2021, 10, 15 6 of 16

• Denote E ∈ RG×(T+2) = {E1, E2, . . . , EG} is the matrix of idea timetable.

Where Eg =
{

Eg,1, Eg,2, . . . , Eg,T , Eg,T+1, Eg,T+2
}

is the vector of expected timetable
for lecturer g-th, such that

Eg,j =


max

h = 1 . . . H | th = j

(
ash ,g ∗ bj,g

)
i f j ≤ T

norm(Dg) i f j = T + 1
i otherwise

The norm denotes the normalization function, i is max rating for the number of parts
of the days that a lecturer has to work.

• Let F is the matrix of the solution. F ∈ RG×(T+2) = {F1, F2, . . . , FG} where Fg ={
Fg,1, Fg,2, . . . , Fg,T , Fg,T+1, Fg,T+2

}
is the vector of final timetable for lecturer g-th,

such that:

Fg,j =



H
∑

h=1|th=j
xh,g ∗ ash ,g ∗ bj,g i f j ≤ T

norm
(

H
∑

h=1
xh,g

)
i f j = T + 1

pod
({

xh,g

∣∣∣ h = 1 . . . H
})

otherwise

• Q is the matrix of the worse possible solution. Q ∈ RG×(T+1) = {Q1, Q2, . . . , QG}
where Qg =

{
Qg,1, Qg,2, . . . , Qg,T , Qg,T+1, Qg,T+2

}
is the vector of the worse timetable

for lecturer g-th, such that:

Qg,j =



 0 i f max
ss = 1 . . . SS | tmss = j

(
asbss ,g ∗ bj,g

)
∗ 2 > max_rating

max_rating Otherwise
i f j ≤ T{

0 i f Dg ∗ 2 > T
T2 Otherwise

i f j = T + 1

0 otherwise

The original multi-objective functions (O1), (O2), (O3), and (O4) are rewritten in the
form of compromise problem (CP):

maximize(obj) = (1−
distance

([
E1, E2, . . . , EG

]
,
[

F1, F2, . . . , FG
])

distance
([

E1, E2, . . . , EG
]
,[Q1,Q2,...,QG]

)
= 1−

√
∑G

i=1 ∑T+1
j=1 (Ei,j−Fi,j)

2

∑G
i=1 ∑T+1

j=1 (Ei,j−Qi,j)
2)

3. Proposed Algorithm
3.1. Introduction to Genetic Algorithm

The Genetic Algorithm [32,33] is a population-based metaheuristic method extensively
used in scheduling problems. It searches a solution space for the optimal solution to a
problem. This search is done in a fashion that mimics the operation of evolution. In essence,
a “population” of possible solutions formed, and new solutions are created by “breeding”
the best individual from the population’s members to build a new generation. When
the algorithm converged after several generations, the best solution returned. Genetic
algorithms are particularly useful for problems where it is extremely difficult or impossible
to get an exact answer or severe problems where a correct solution may not be required.
They offer an exciting alternative to the typical algorithmic solution methods and are highly
customizable. This notion can apply to a search problem. We consider a set of solutions for
a challenge and select the set of best ones out of them. There are five phases considered in

Computers 2021, 10, 15 7 of 16

a genetic algorithm. This study introduces a version of the Genetic Algorithm to solve the
MOP model Compromise Programming approach with a new added phase called “repair”
to correct the errors. The flow of the proposed scheme is displayed in Figure 2.

Computers 2021, 10, x FOR PEER REVIEW 7 of 16

returned. Genetic algorithms are particularly useful for problems where it is extremely
difficult or impossible to get an exact answer or severe problems where a correct solution
may not be required. They offer an exciting alternative to the typical algorithmic solution
methods and are highly customizable. This notion can apply to a search problem. We
consider a set of solutions for a challenge and select the set of best ones out of them. There
are five phases considered in a genetic algorithm. This study introduces a version of the
Genetic Algorithm to solve the MOP model Compromise Programming approach with a
new added phase called “repair” to correct the errors. The flow of the proposed scheme
is displayed in Figure 2.

Start

End

Generate the initial Population

Compute Fitness

Is Converged

Selection

Crossover

Mutation

Repair

Compute Fitness

Generate new
Generation

Yes No

Figure 2. Basic workflow of the proposed Genetic Algorithm’s scheme.

3.2. Genetic Algorithm Scheme
3.2.1. Genetic Representation

Chromosome is represented as a matrix of 𝐺 rows and 𝑇 columns, rows 𝑖-th repre-
sent the section assignment for lecturer 𝑖-th. Cell (𝑔, 𝑡) contains section lecturer g-th as-
signed to time-slot 𝑡-th, or 0 if lecturer g-th is not assigned to any section at the time-slot 𝑡-th.

3.2.2. Fitness Function
The fitness function contains two components: the penalty function and the objective

function. While the objective function focuses on optimizing the lecturer’s satisfaction, the
penalty function deals with constraints. We separate constraints into two groups, group
1st includes constraint (H4) handled by penalty function and group 2nd includes the re-
maining constraints (H1), (H2), (H3) handled by repair mechanism described in Section
3.2.4. So, we have the fitness function: 𝑓 = 𝑤௣௘௡ ∗ 𝑝𝑒𝑛 + 𝑤௢௕௝ ∗ 𝑜𝑏𝑗

where 𝑝𝑒𝑛, 𝑜𝑏𝑗, 𝑤௣௘௡, 𝑤௢௕௝ denote penalty function, objective function, penalty function
weight, and objective function weight respectively. We normalize the penalty function,
objective function, and weights to 0–1 range. So we have the constraints: 0 ≤ 𝑤௣௘௡, 𝑤௢௕௝ ≤1, and 𝑤௣௘௡ + 𝑤௢௕௝ = 1. Let 𝑉 be the number of lecturer violate constraint (H4), the pen-
alty function is normalized as follows: 𝑝𝑒𝑛 = 11 + 𝑉

Figure 2. Basic workflow of the proposed Genetic Algorithm’s scheme.

3.2. Genetic Algorithm Scheme
3.2.1. Genetic Representation

Chromosome is represented as a matrix of G rows and T columns, rows i-th represent
the section assignment for lecturer i-th. Cell (g, t) contains section lecturer g-th assigned to
time-slot t-th, or 0 if lecturer g-th is not assigned to any section at the time-slot t-th.

3.2.2. Fitness Function

The fitness function contains two components: the penalty function and the objective
function. While the objective function focuses on optimizing the lecturer’s satisfaction,
the penalty function deals with constraints. We separate constraints into two groups,
group 1st includes constraint (H4) handled by penalty function and group 2nd includes
the remaining constraints (H1), (H2), (H3) handled by repair mechanism described in
Section 3.2.4. So, we have the fitness function:

f = wpen ∗ pen + wobj ∗ obj

where pen, obj, wpen, wobj denote penalty function, objective function, penalty function
weight, and objective function weight respectively. We normalize the penalty function,
objective function, and weights to 0–1 range. So we have the constraints: 0 ≤ wpen, wobj ≤ 1,
and wpen + wobj = 1. Let V be the number of lecturer violate constraint (H4), the penalty
function is normalized as follows:

pen =
1

1 + V

3.2.3. Algorithm Operations

Denote:

• U represents the size of the population.
• Pe =

{
pe

i

∣∣ i = 1 . . . U
}

as the population at generation e-th.
• pe

i as the individual i-th of the population at generation e-th, represented as chromo-
some matrix described in Section 3.2.1. pe

i n,m denotes the value of the cell at row n-th
and column m-th.

Computers 2021, 10, 15 8 of 16

• ∂t as the set of sections that learn at time-slot t-th.
• ϕ as the tournament size for selection.
• B as the mutation rate

Step 1: Generate the initial population: Columns k-th of an individual pe
i contain ∂k

and exactly G − |∂k| number 0. So, for each column k | k = 1 . . . T, fill ∂k and G − |∂k|
number 0 to that column, and shuffle its element to ensure the randomness of the initialized
population. After filling all columns to chromosome matrix, apply repair operator to ensure
the created chromosome respects constraints (H1), (H2), and (H3).

Step 2: Selection: we implemented the selection process based on Tournament Selec-
tion [34]. Randomly select ϕ individuals from Pe and perform a tournament that return the
best individuals based on fitness value among them.

Step 3: Crossover: pe
f ather and pe

mother are the parents to crossover. The set of numbers
in each column of pe

f ather and pe
mother is permutation of each other, so we can choose any

ordered crossover method to apply. Partially mapped crossover (PMX) [35] is one of the
most effective crossover techniques for ordered list, so it is chosen in this study.

Step 4: Mutation: For each individual pe
i , have rate B to swap only once for any

two elements in any column. Similar to generating initial population process, the created
chromosome after performing crossover and mutation must be applied to repair operator
to ensure there are no invalid results during the processing.

3.2.4. Repair Process

Input a chromosome matrix p which may violate constraints (H1), (H2), and (H3),
genetic repair operator rearrange elements in p so that new chromosome p′ satisfies all
these constraints. Moreover, p′ should retain as many p′s genes as possible. The purpose
we combine constraints (H1), (H2), (H3) into one group is because it is very easy to
convert them into the maximum matching problem in bipartite graph. In this study, we use
the Hopcroft–Karp algorithm [36], a polynomial algorithm to find the maximum matching.
The repair process is performed in three steps as follows:

Step 1: Build a graph } = (V , E), with vertex set V = X ∪ Y , X represents vertex
set of G × T items for each lecturer in each timeslot, Y represents vertex set of H items
represent for sections. For each vertex }t ∈ X (}t is the vertex represents for lecturer g-th
at timeslot t-th), h ∈ Y (h is the vertex represents for section hth), we add an edge from }t
to h if and only if t = th, ash ,g > 0 and bt,g > 0.

Step 2: For each lecturer g | g = 1 . . . G at each timeslot t | t = 1 . . . T, pair the vertex
u ∈ X (u is the vertex represents for lecturer g-th at timeslot t-th) to vertex v ∈ Y (v is the
vertex represents for section p th

g,t) if pg,t > 0 and the pairing does not violate any constraints
in (H1), (H2), (H3). This step aims to retain the good genes from p.

Step 3: Apply the Hopcroft–Karp algorithm to graph } built in step 1 with pre matching
in step 2, we get the final matching which represents the repaired chromosome p′.

4. Experiment and Result

To evaluate the proposed model and algorithm, we use the data collected in the spring
semester of 2020 of the Computing Fundamental department at FPT University. A total of
H = 139 sections of S = 17 subjects were assigned to G = 27 lecturers. The pod function’s
returned values were collected depending on the different business settings. Table 1
illustrates the definition of the timeslots at the institution. The merged cells described that
two real-life slots are marked as the same time slot in the mathematical model.

We construct a fuzzy function pod to fit the definition of the timeslots as the following
algorithms. Our goal is to determine the number of sessions per day that the instructor must
be in college and rate it. A good schedule that is matching the number of sections to teach
with the number of part of days that lecturer has to present at the school gain 100% satisfaction
(i points). Satisfaction is inversely proportional to the instructor’s waiting time. For some
situations, when hiring qualified lecturers is not easy work, a compact schedule in the aspect

Computers 2021, 10, 15 9 of 16

of time may give more flexibility to the human resources organizing process.

Function: pod

Input:
{

xh,g

∣∣∣ h = 1 . . . H
}

1: i = 100
2: r=NumPod(

{
xh,g

∣∣∣ h = 1 . . . H
}
)

3: n =
H
∑

h=1
xh,g

4: If (1 ≤ n ≤ 3) and (r = 1) Return i
5: If (1 ≤ n ≤ 3) and (r = 2) Return i/5
6: If (1 ≤ n ≤ 3) and (r ≥ 3) Return 0
7: If (4 ≤ n ≤ 6) and (r = 2) Return i
8: If (4 ≤ n ≤ 6) and (r = 3) Return i/5
9: If (4 ≤ n ≤ 6) and (r = 4) Return 0

10: If (1 ≤ n ≤ 3) and (r = 1) Return i
11: If (7 ≤ n ≤ 8) and (r = 3) Return i
12: If (7 ≤ n ≤ 8) and (r = 4) Return i/2
13: If (9 ≤ n ≤ 10) Return i

The NumPod function defined as:

Function: NumPod

Input:
{

xh,g

∣∣∣ h = 1 . . . H
}

1: Num = 0
2: If (∑

th∈{M1,M2,M3}
xh,g ≥ 1) Then Num = Num + 1

3: If (∑
th∈{E1,E2,E3}

xh,g ≥ 1) Then Num = Num + 1

4: If (∑
th∈{M4,M5}

xh,g ≥ 1) Then Num = Num + 1

5: If (∑
th∈{E4,E5}

xh,g ≥ 1) Then Num = Num + 1

6: Return Num

We built a webpage to collect lecturer preferences of the subjects, time-slots, and the
number of time-slots they want to teach, as shown in Figure 3. The preferences gathering
process needs to be done before starting the scheduler triggered. The lecturers use their
personal accounts to make declarations with the system. In this experiment, we set the
preferences received the values in the range of as,g ∈ [0 . . . 5] and bt,g ∈ [0 . . . 5].

The developed system described in this report was deployed on a computer configured
as follows: Processor: Intel(R) Xeon(R) CPU X5650 @2.67 GHz (4 CPUs), ~2.3 GHz; Memory:
8096 MB RAM; all code implemented in java 8.

The designed genetic algorithm operated based on several parameters. They have a
significant influence on the results of the algorithm. In this section, we describe how the
values of this parameter are selected. To select the most suitable parameters for the genetic
algorithm, we execute the algorithm multiple times. Observed effects on the corresponding
MOP approaches are listed in Table 2.

The tested ranges of the importance of the parameters show good results. The small
tournament size makes the crossover loses diversity. It negatively affects the algorithm
results as well as the time of convergence. The tournament size = 7 seems to generate good
results for the scalarizing approach, and tournament size > 9 increases the processing time
even though it maintains an excellent fitness value. Population size > 100 gets worse for
both fitness values and processing time. Based on the observed results, we selected the
parameter set to run the algorithm according to Table 3.

Computers 2021, 10, 15 10 of 16

Computers 2021, 10, x FOR PEER REVIEW 10 of 16

tournament size

2 Results decreased slightly, stable time execution
3 Stable results, processing time increased
5 Stable results, stable time execution
7 Stable results, processing time decreased
9 Stable results, processing time decreased

population size
100–150 Stable results, processing time increased
151–200 Stable results decreased, processing time increased

Figure 3. Webpage to collect the preferences of a particular lecturer on the subjects and time-slots.

The tested ranges of the importance of the parameters show good results. The small
tournament size makes the crossover loses diversity. It negatively affects the algorithm
results as well as the time of convergence. The tournament size = 7 seems to generate good
results for the scalarizing approach, and tournament size > 9 increases the processing time
even though it maintains an excellent fitness value. Population size > 100 gets worse for
both fitness values and processing time. Based on the observed results, we selected the
parameter set to run the algorithm according to Table 3.

Figure 3. Webpage to collect the preferences of a particular lecturer on the subjects and time-slots.

Table 2. The observation result of the algorithm for each set of parameters.

Param Value Observation Results

mutation
0.9–1 Stable results, processing time increased slightly

0.5–0.8 Stable results, processing time increased

0–0.5 Stable results, stable time execution

tournament size

2 Results decreased slightly, stable time execution

3 Stable results, processing time increased

5 Stable results, stable time execution

7 Stable results, processing time decreased

9 Stable results, processing time decreased

population size
100–150 Stable results, processing time increased

151–200 Stable results decreased, processing time increased

Computers 2021, 10, 15 11 of 16

Table 3. Parameters to run the algorithm.

Parameter B U ϕ Stop after wobj wpen

Value 0.4 100 7 30 0.3 0.7

To evaluate the proposed algorithm. We have run the algorithm multiple times with
the same initial value. Figure 4 shows the fitness values over 13 executions. It shows that
the result is nearing expected values (approximately 1) on tested data. The average time
execution is around 33 s, as shown in Figure 5. In fact, the teaching assignment process
accounts for an average of 1 working day of the head of department. In many cases when
the number of sections is too large, it is even more time-consuming.

Computers 2021, 10, x FOR PEER REVIEW 11 of 16

Table 3. Parameters to run the algorithm.

Parameter 𝐵 𝑈 𝜑 Stop after 𝑤௢௕௝ 𝑤௣௘௡
Value 0.4 100 7 30 0.3 0.7

To evaluate the proposed algorithm. We have run the algorithm multiple times with
the same initial value. Figure 4 shows the fitness values over 13 executions. It shows that
the result is nearing expected values (approximately 1) on tested data. The average time
execution is around 33 s, as shown in Figure 5. In fact, the teaching assignment process
accounts for an average of 1 working day of the head of department. In many cases when
the number of sections is too large, it is even more time-consuming.

Figure 4. Fitness values of GA over several executions.

Figure 5. Execution time of GA over several executions.

The fitness values change during each generation of the Genetic Algorithm is shown
in Figure 6. After about the first 20 generations, the fitness value came very close to the
convergence value. The proposed model allows faculty preferences for four aspects: skills,
timeslots, number of classes, and working time. It considers more aspects of stakeholders’
needs than the simple “sum of favorites on the particular wish of lecturers” model intro-
duced by previous research [17,21]. We use a non-preference approach for the multi-ob-
jective problem. Compromise programming gives a satisfactory answer in cases where
there is not any priority assigned. The lecturer’s satisfaction degrees corresponding to the
groups of objective functions were obtained by executing GA displayed in Figure 7. It
observed that teachers who are registered to teach many subjects could guide in many
different time frames and naturally prioritize various topics. Meanwhile, with the target
function’s current scoring: 100%~5 stars of subjects * 5 stars of time slots, which leads to

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

1 2 3 4 5 6 7 8 9 10 11 12 13

Fi
tn

es
s

va
lu

es

#Executions

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

Ex
ec

ut
io

n
tim

e
(s

)

#Executions

Figure 4. Fitness values of GA over several executions.

Computers 2021, 10, x FOR PEER REVIEW 11 of 16

Table 3. Parameters to run the algorithm.

Parameter 𝐵 𝑈 𝜑 Stop after 𝑤௢௕௝ 𝑤௣௘௡
Value 0.4 100 7 30 0.3 0.7

To evaluate the proposed algorithm. We have run the algorithm multiple times with
the same initial value. Figure 4 shows the fitness values over 13 executions. It shows that
the result is nearing expected values (approximately 1) on tested data. The average time
execution is around 33 s, as shown in Figure 5. In fact, the teaching assignment process
accounts for an average of 1 working day of the head of department. In many cases when
the number of sections is too large, it is even more time-consuming.

Figure 4. Fitness values of GA over several executions.

Figure 5. Execution time of GA over several executions.

The fitness values change during each generation of the Genetic Algorithm is shown
in Figure 6. After about the first 20 generations, the fitness value came very close to the
convergence value. The proposed model allows faculty preferences for four aspects: skills,
timeslots, number of classes, and working time. It considers more aspects of stakeholders’
needs than the simple “sum of favorites on the particular wish of lecturers” model intro-
duced by previous research [17,21]. We use a non-preference approach for the multi-ob-
jective problem. Compromise programming gives a satisfactory answer in cases where
there is not any priority assigned. The lecturer’s satisfaction degrees corresponding to the
groups of objective functions were obtained by executing GA displayed in Figure 7. It
observed that teachers who are registered to teach many subjects could guide in many
different time frames and naturally prioritize various topics. Meanwhile, with the target
function’s current scoring: 100%~5 stars of subjects * 5 stars of time slots, which leads to

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

1 2 3 4 5 6 7 8 9 10 11 12 13

Fi
tn

es
s

va
lu

es

#Executions

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

Ex
ec

ut
io

n
tim

e
(s

)

#Executions

Figure 5. Execution time of GA over several executions.

The fitness values change during each generation of the Genetic Algorithm is shown
in Figure 6. After about the first 20 generations, the fitness value came very close to the
convergence value. The proposed model allows faculty preferences for four aspects: skills,
timeslots, number of classes, and working time. It considers more aspects of stakehold-
ers’ needs than the simple “sum of favorites on the particular wish of lecturers” model
introduced by previous research [17,21]. We use a non-preference approach for the multi-
objective problem. Compromise programming gives a satisfactory answer in cases where
there is not any priority assigned. The lecturer’s satisfaction degrees corresponding to
the groups of objective functions were obtained by executing GA displayed in Figure 7.
It observed that teachers who are registered to teach many subjects could guide in many
different time frames and naturally prioritize various topics. Meanwhile, with the target

Computers 2021, 10, 15 12 of 16

function’s current scoring: 100%~5 stars of subjects * 5 stars of time slots, which leads to
those who can teach few items or more constrained about time constraints may receive a
less-satisfied schedule.

Computers 2021, 10, x FOR PEER REVIEW 12 of 16

those who can teach few items or more constrained about time constraints may receive a
less-satisfied schedule.

Figure 6. Fitness values changing over generations.

(A)

(B)

(C)

(D)

Figure 7. Satisfaction degrees of the lecturers. (A) Satisfaction degree on the assigned subjects. (B) Satisfaction degree on
the assigned timeslots. (C) Satisfaction degree on the assigned number of classes. (D) The returned values of the part of
the day function (pod).

We illustrate the optimal solution in Figure 8. A directed graph is used to represent
matching between instructor and sections. Each section node will only associate with one

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fi
tn

es
s

va
lu

e

#Generations

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

Su
bj

ec
ts

Lecturers

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

Ti
m

es
lo

ts

Lecturer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

nu
m

be
r o

f
cl

as
se

s

Lecturers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

po
d

va
lu

es

Lecturers

Figure 6. Fitness values changing over generations.

Computers 2021, 10, x FOR PEER REVIEW 12 of 16

those who can teach few items or more constrained about time constraints may receive a
less-satisfied schedule.

Figure 6. Fitness values changing over generations.

(A)

(B)

(C)

(D)

Figure 7. Satisfaction degrees of the lecturers. (A) Satisfaction degree on the assigned subjects. (B) Satisfaction degree on
the assigned timeslots. (C) Satisfaction degree on the assigned number of classes. (D) The returned values of the part of
the day function (pod).

We illustrate the optimal solution in Figure 8. A directed graph is used to represent
matching between instructor and sections. Each section node will only associate with one

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fi
tn

es
s

va
lu

e

#Generations

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

Su
bj

ec
ts

Lecturers

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

Ti
m

es
lo

ts

Lecturer

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sa
tis

fa
ct

io
n

D
eg

re
e

on
 th

e
A

ss
ig

ne
d

nu
m

be
r o

f
cl

as
se

s

Lecturers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

po
d

va
lu

es

Lecturers

Figure 7. Satisfaction degrees of the lecturers. (A) Satisfaction degree on the assigned subjects. (B) Satisfaction degree on
the assigned timeslots. (C) Satisfaction degree on the assigned number of classes. (D) The returned values of the part of the
day function (pod).

Computers 2021, 10, 15 13 of 16

We illustrate the optimal solution in Figure 8. A directed graph is used to represent
matching between instructor and sections. Each section node will only associate with
one node trainer. In this situation, the arrow comes from a trainer node and points to the
corresponding section node.

Computers 2021, 10, x FOR PEER REVIEW 13 of 16

node trainer. In this situation, the arrow comes from a trainer node and points to the cor-
responding section node.

Figure 8. Obtained solution visualized by a directed graph.

The Genetic Algorithm (and also other approximation algorithms) does not guaran-
tee to find the global solution. The obtained solutions may be local optima. Since our
model is different from previous models, it is not feasible to compare the proposed algo-
rithm with the available settings. However, we can evaluate whether the algorithm works
well in terms of a smaller search space. We extracted a data set from 5 lecturers, and 12
sections then found the global solution using exhaustive search. The proposed scheme’s
comparison results with the implementation of the Brute Force algorithm are shown in
Table 4, and the optimal solution is illustrated in Figure 9.

Table 4. Comparison between Genetic Algorithm and Brute Force Algorithm.

Algorithm Fitness Values Time Execution (s)
Brute Force 0.95919 468

Genetic Algorithm 0.95919 0.55

Figure 9. Global Solution obtained by Brute Force.

Figure 8. Obtained solution visualized by a directed graph.

The Genetic Algorithm (and also other approximation algorithms) does not guarantee
to find the global solution. The obtained solutions may be local optima. Since our model
is different from previous models, it is not feasible to compare the proposed algorithm
with the available settings. However, we can evaluate whether the algorithm works well in
terms of a smaller search space. We extracted a data set from 5 lecturers, and 12 sections
then found the global solution using exhaustive search. The proposed scheme’s comparison
results with the implementation of the Brute Force algorithm are shown in Table 4, and the
optimal solution is illustrated in Figure 9.

Table 4. Comparison between Genetic Algorithm and Brute Force Algorithm.

Algorithm Fitness Values Time Execution (s)

Brute Force 0.95919 468

Genetic Algorithm 0.95919 0.55

Computers 2021, 10, x FOR PEER REVIEW 13 of 16

node trainer. In this situation, the arrow comes from a trainer node and points to the cor-
responding section node.

Figure 8. Obtained solution visualized by a directed graph.

The Genetic Algorithm (and also other approximation algorithms) does not guaran-
tee to find the global solution. The obtained solutions may be local optima. Since our
model is different from previous models, it is not feasible to compare the proposed algo-
rithm with the available settings. However, we can evaluate whether the algorithm works
well in terms of a smaller search space. We extracted a data set from 5 lecturers, and 12
sections then found the global solution using exhaustive search. The proposed scheme’s
comparison results with the implementation of the Brute Force algorithm are shown in
Table 4, and the optimal solution is illustrated in Figure 9.

Table 4. Comparison between Genetic Algorithm and Brute Force Algorithm.

Algorithm Fitness Values Time Execution (s)
Brute Force 0.95919 468

Genetic Algorithm 0.95919 0.55

Figure 9. Global Solution obtained by Brute Force. Figure 9. Global Solution obtained by Brute Force.

Computers 2021, 10, 15 14 of 16

Decision-maker may have their customization on the provided schedule in this situa-
tion. To support them, modify the plan quickly, we design a web page to help drag and
drop, as shown in Figure 10. The decision-maker can choose any course and assign it to
another instructor by dropping the item in the corresponding line. The information systems
part plays a vital role in compensating for the shortcomings of the proposed algorithm.

Computers 2021, 10, x FOR PEER REVIEW 14 of 16

Decision-maker may have their customization on the provided schedule in this situ-
ation. To support them, modify the plan quickly, we design a web page to help drag and
drop, as shown in Figure 10. The decision-maker can choose any course and assign it to
another instructor by dropping the item in the corresponding line. The information sys-
tems part plays a vital role in compensating for the shortcomings of the proposed algo-
rithm.

Figure 10. The webpage allows the decision-maker to customize the generated schedule.

5. Conclusions
In this study, we have proposed a multi-objective optimization model for the assign-

ment task. The proposed model satisfies the lecturers’ preferences regarding skills, time,
and the number of jobs while ensuring related constraints. Our model was applied to the
FPT University lecturers scheduling problem and defined a generic solution for multi-
objective task assignment problems. We use compromise programming to turn the multi-
objective problem into a single-objective problem. Although in the preferred approach,
users can set different values for each weight of the target function. It is flexible, but in a
multi-dimensional space, the visualization of the results corresponding to a parameter set
is difficult. It leads decision-makers to explore parameter sets in an ample search space.
On the other hand, a compromise model is a single-shot solution for decision-makers. It
avoids them having to define preference information for the objectives. The model itself
has found a way to the best. However, the low use of parameters reduces the ability to
interact with the model of a decision-maker. The proposed scheme for genetic algorithm
shows that it works effectively; the repair step has removed all binding violation solutions
without affecting crossovers’ diversity. Shortly, we are looking to build an integrated
model with lecturers and students’ scheduling simultaneously. Refining the parameters
of the algorithm is also a job in our plan.

Author Contributions: Conceptualization, N.T.S., B.N.A. and J. J.; formal analysis, B.N.A.; funding
acquisition, B.N.A.; investigation, N.T.S.; methodology, N.T.S.; resources, N.T.S. and B.N.A.; soft-
ware, N.T.S. and B.N.A.; supervision, J.J. and I.A.A.; validation, J.J. and I.A.A.; writing—original
draft, N.T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FPT University, grant number DHFPT/2020/12.

Figure 10. The webpage allows the decision-maker to customize the generated schedule.

5. Conclusions

In this study, we have proposed a multi-objective optimization model for the as-
signment task. The proposed model satisfies the lecturers’ preferences regarding skills,
time, and the number of jobs while ensuring related constraints. Our model was applied
to the FPT University lecturers scheduling problem and defined a generic solution for
multi-objective task assignment problems. We use compromise programming to turn the
multi-objective problem into a single-objective problem. Although in the preferred ap-
proach, users can set different values for each weight of the target function. It is flexible, but
in a multi-dimensional space, the visualization of the results corresponding to a parameter
set is difficult. It leads decision-makers to explore parameter sets in an ample search space.
On the other hand, a compromise model is a single-shot solution for decision-makers. It
avoids them having to define preference information for the objectives. The model itself
has found a way to the best. However, the low use of parameters reduces the ability to
interact with the model of a decision-maker. The proposed scheme for genetic algorithm
shows that it works effectively; the repair step has removed all binding violation solutions
without affecting crossovers’ diversity. Shortly, we are looking to build an integrated model
with lecturers and students’ scheduling simultaneously. Refining the parameters of the
algorithm is also a job in our plan.

Author Contributions: Conceptualization, S.T.N., B.N.A. and J.J.; formal analysis, B.N.A.; funding
acquisition, B.N.A.; investigation, S.T.N.; methodology, S.T.N.; resources, S.T.N. and B.N.A.; software,
S.T.N. and B.N.A.; supervision, J.J. and I.A.A.; validation, J.J. and I.A.A.; writing—original draft,
S.T.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FPT University, grant number DHFPT/2020/12.

Computers 2021, 10, 15 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andrade, P.R.L.; Steiner, M.T.A.; Góes, A.R.T. Optimization in timetabling in schools using a mathematical model, local search

and Iterated Local Search procedures. Gestão Produção 2019, 26, e3421. [CrossRef]
2. Lemos, A.; Melo, F.S.; Monteiro, P.T.; Lynce, I. Room usage optimization in timetabling: A case study at Universidade de Lisboa.

Oper. Res. Perspect. 2018, 100092. [CrossRef]
3. Ghiani, G.; Manni, E.; Romano, A. Training offer selection and course timetabling for remedial education. Comput. Ind. Eng. 2017,

111, 282–288. [CrossRef]
4. Vermuyten, H.; Lemmens, S.; Marques, I.; Beliën, J. Developing compact course timetables with optimized student flows. Eur. J.

Oper. Res. 2016, 251, 651–661. [CrossRef]
5. Babaei, H.; Karimpour, J.; Hadidi, A. A survey of approaches for university course timetabling problem. Comput. Ind. Eng. 2015,

86, 43–59. [CrossRef]
6. Pentico, D.W. Assignment problems: A golden anniversary survey. Eur. J. Oper. Res. 2007, 176, 774–793. [CrossRef]
7. Daskalaki, S.; Birbas, T.; Housos, E. An integer programming formulation for a case study in university timetabling. Eur. J. Oper.

Res. 2004, 153, 117–135. [CrossRef]
8. Feng, X.; Lee, Y.; Moon, I. An integer program and a hybrid genetic algorithm for the university timetabling problem. Optim.

Methods Softw. 2016, 32, 625–649. [CrossRef]
9. Nouri, H.E.; Driss, O.B. MATP: A Multi-agent Model for the University Timetabling Problem. In Software Engineering Perspectives

and Application in Intelligent Systems; Silhavy, R., Senkerik, R., Oplatkova, Z., Silhavy, P., Prokopova, Z., Eds.; Advances in
Intelligent Systems and Computing; Springer: Cham, Switzerland, 2016; Volume 465. [CrossRef]

10. Nouri, H.E.; Driss, O.B. Distributed model for university course timetabling problem. In Proceedings of the 2013 International
Conference on Computer Applications Technology (ICCAT), Sousse, Tunisia, 20–22 January 2013. [CrossRef]

11. Malik, B.B.; Nordin, S.Z. Mathematical model for timetabling problem in maximizing the preference level. In Proceeding of the
25th National Symposium on Mathematical Sciences (Sksm25): Mathematical Sciences as the Core of Intellectual Excellence,
Pahang, Malaysia, 27–29 August 2017; AIP Conference Proceedings. p. 020037. [CrossRef]

12. Santos, H.G.; Uchoa, E.; Ochi, L.S.; Maculan, N. Strong bounds with cut and column generation for class-teacher timetabling.
Ann. Oper. Res. 2012, 194, 399–412. [CrossRef]

13. Dorneles, Á.P.; de Araújo, O.C.B.; Buriol, L.S. A fix-and-optimize heuristic for the high school timetabling problem. Comput. Oper.
Res. 2014, 52, 29–38. [CrossRef]

14. Hmer, A.; Mouhoub, M. Teaching Assignment Problem Solver. Lect. Notes Comput. Sci. 2010, 298–307. [CrossRef]
15. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [CrossRef]
16. Fisher, M.L.; Jaikumar, R.; Wassenhove, L.N.V. A multiplier adjustment method for the generalized assignment problem. Manag.

Sci. 1986, 32, 1095–1103. [CrossRef]
17. Lewis, R. A survey of metaheuristic-based techniques for University Timetabling problems. OR Spectr. 2007, 30, 167–190.

[CrossRef]
18. Muthuraman, S.; Venkatesan, V.P. A Comprehensive Study on Hybrid Meta-Heuristic Approaches Used for Solving Combinatorial

Optimization Problems. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT),
Tiruchirappalli, India, 2–4 February 2017.

19. Sigl, B.; Golub, M.; Mornar, V. Solving timetable scheduling problem using genetic algorithms. In Proceedings of the 25th
International Conference on Information Technology Interfaces (ITI 2003), Cavtat, Croatia, 19 June 2003; pp. 519–524.

20. Savić, A.; Tošić, D.; Marić, M.; Kratica, J. Genetic algorithm approach for solving the task assignment problem. Serdica J. Comput.
2008, 2, 267–276.

21. Sapru, V.; Reddy, K.; Sivaselvan, B. Time table scheduling using Genetic Algorithms employing guided mutation. In Proceedings
of the 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 28–29
December 2010; pp. 1–4.

22. Yang, S.; Jat, S.N. Genetic algorithms with guided and local search strategies for university course timetabling. Syst. Man Cybern.
Part C Appl. Rev. 2011, 41, 93–106. [CrossRef]

23. Corne, D.; Ross, P.; Fang, H. Evolving timetables. In The Practical Handbook of Genetic Algorithms; Chambers, L.C., Ed.; CRC: Boca
Raton, FL, USA, 1995; Volume 1, pp. 219–276.

24. Hwang, C.-L.; Masud, A.S.M. Multiple Objective Decision Making, Methods and Applications: A State-of-the-Art Survey; Springer:
Berlin/Heidelberg, Germany, 1979; ISBN 978-0-387-09111-2.

25. Zeleny, M. Compromise Programming. In Multiple Criteria Decision Making; Cochrane, J.L., Zeleny, M., Eds.; University of South
Carolina Press: Columbia, SC, USA, 1973; pp. 262–301.

26. Son, N.T.; Thanh, L.V.; Duong, T.B.; Anh, B.N. A decision support tool for cross-functional team selection: Case study in
ACM-ICPC team selection. In Proceedings of the 2018 International Conference on Information Management & Management Science
(IMMS‘18); ACM: New York, NY, USA, 2018; pp. 133–138. [CrossRef]

http://doi.org/10.1590/0104-530x3241-19
http://doi.org/10.1016/j.orp.2018.100092
http://doi.org/10.1016/j.cie.2017.07.034
http://doi.org/10.1016/j.ejor.2015.11.028
http://doi.org/10.1016/j.cie.2014.11.010
http://doi.org/10.1016/j.ejor.2005.09.014
http://doi.org/10.1016/S0377-2217(03)00103-6
http://doi.org/10.1080/10556788.2016.1233970
http://doi.org/10.1007/978-3-319-33622-0_2
http://doi.org/10.1109/iccat.2013.6521990
http://doi.org/10.1063/1.5041568
http://doi.org/10.1007/s10479-010-0709-y
http://doi.org/10.1016/j.cor.2014.06.023
http://doi.org/10.1007/978-3-642-13025-0_32
http://doi.org/10.1002/nav.3800020109
http://doi.org/10.1287/mnsc.32.9.1095
http://doi.org/10.1007/s00291-007-0097-0
http://doi.org/10.1109/TSMCC.2010.2049200
http://doi.org/10.1145/3277139.3277149

Computers 2021, 10, 15 16 of 16

27. Son, N.T.; Thuy, T.T.; Anh, B.N.; van Dinh, T. DCA-Based Algorithm for Cross-Functional Team Selection. In Proceedings of the
2019 8th International Conference on Software and Computer Applications (ICSCA‘19); ACM: New York, NY, USA, 2019; pp. 125–129.
[CrossRef]

28. Ngo, T.S.; Bui, N.A.; Tran, T.T.; Le, P.C.; Bui, D.C.; Nguyen, T.D.; Phan, L.D.; Kieu, Q.T.; Nguyen, B.S.; Tran, S.N. Some Algorithms
to Solve a Bi-Objectives Problem for Team Selection. Appl. Sci. 2020, 10, 2700. [CrossRef]

29. Mahmudova, S. Application of the TOPSİS method to improve software efficiency and to optimize its management. Soft Comput.
2020, 24, 697–708. [CrossRef]

30. Xu, X.; Hu, Z.; Su, Q.; Xiong, Z. Multiobjective Collective Decision Optimization Algorithm for Economic Emission Dispatch
Problem. Complexity 2018, 2018, 1027193. [CrossRef]

31. Wei, W.; Tian, Z.-Y. An improved multi-objective optimization method based on adaptive mutation particle swarm optimization
and fuzzy statistics algorithm. J. Stat. Comput. Simul. 2017, 1–14. [CrossRef]

32. Van Veldhuizen, D.A.; Lamont, G.B. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evol. Comput. 2000,
8, 125–147. [CrossRef] [PubMed]

33. Thede, S.M. An Introduction to Genetic Algorithms. J. Comput. Sci. Coll. 2004, 20.
34. Miller, B.; Goldberg, D. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Syst. 1995, 9, 193–212.
35. Otman, A.; Jaafar, A. A comparative study of adaptive crossover operators for genetic algorithms to resolve the travelling

salesman problem. Int. J. Comput. Appl. 2011, 31, 49–57.
36. Hopcroft, J.E.; Karp, R.M. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 1973, 2, 225–231.

[CrossRef]

http://doi.org/10.1145/3316615.3316645
http://doi.org/10.3390/app10082700
http://doi.org/10.1007/s00500-019-04549-4
http://doi.org/10.1155/2018/1027193
http://doi.org/10.1080/00949655.2017.1360298
http://doi.org/10.1162/106365600568158
http://www.ncbi.nlm.nih.gov/pubmed/10843518
http://doi.org/10.1137/0202019

	Introduction
	Background
	Related Work
	Contribution

	Mathematical Problem
	Multi-Objective Task Assignment Problem
	Compromise Programming for MOP

	Proposed Algorithm
	Introduction to Genetic Algorithm
	Genetic Algorithm Scheme
	Genetic Representation
	Fitness Function
	Algorithm Operations
	Repair Process

	Experiment and Result
	Conclusions
	References

