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Abstract: AbstractMulti-core processors have become widespread computing engines for recent
embedded real-time systems. Efficient task partitioning plays a significant role in real-time computing
for achieving higher performance alongside sustaining system correctness and predictability and
meeting all hard deadlines. This paper deals with the problem of energy-aware static partitioning
of periodic, dependent real-time tasks on a homogenous multi-core platform. Concurrent access of
the tasks to shared resources by multiple tasks running on different cores induced a higher blocking
time, which increases the worst-case execution time (WCET) of tasks and can cause missing the hard
deadlines, consequently resulting in system failure. The proposed blocking-aware-based partitioning
(BABP) algorithm aims to reduce the overall energy consumption while avoiding deadline violations.
Compared to existing partitioning strategies, the proposed technique achieves more energy-saving.
A series of experiments test the capabilities of the suggested algorithm compared to popular heuristics
partitioning algorithms. A comparison was made between the most used bin-packing algorithms and
the proposed algorithm in terms of energy consumption and system schedulability. Experimental
results demonstrate that the designed algorithm outperforms the Worst Fit Decreasing (WFD), Best Fit
Decreasing (BFD), and Similarity-Based Partitioning (SBP) algorithms of bin-packing algorithms,
reduces the energy consumption of the overall system, and improves schedulability.

Keywords: dynamic voltage/frequency scaling; energy-aware partitioning; multi-core real-time
systems; shared resources; task allocating and scheduling

1. Introduction

Embedded systems have become omnipresent, with the number of just mobile devices
now nearly reaching the world population. Embedded systems implementations embrace,
for example, home applications, pacemakers, cell phones, satellites, energy generation
and distribution, industrial automation, and many other kinds of systems. The process
of managing their energy consumption has become extremely challenging. Embedded
systems extremely affect the layout and development restrictions of their respective sur-
rounding systems and inversely. Some embedded systems communicate with the physical
surrounding and must ensure that a certain action is carried out successfully and that it
is terminated within a determined time frame. Some eminent examples of these devices
are airbags in cars, medical pacemakers, and autopilots in airplanes, and they are called
real-time embedded systems.

Multi-core processors are now the current architecture for recent real-time embedded
systems. To achieve both efficiency and speed, CPU architectures have evolved multi-
core processor units in which two or more processors have been used to perform a task.
Multi-core technology provided better response times when running massive applications,
improved power management, and provided faster execution times. Multi-core processors
are specially designed to run tasks in parallel. Parallelism can be at two levels in multi-core
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processors—one at the hardware level and another one at the software level. The proposed
software has been designed to take benefit of available parallelism.

Now, several multi-core processors are used with a dynamic voltage/frequency scaling
(DVFS) mechanism to save extra energy, where the voltage or frequency for every core can be
set by the CPU. As a consequence, each core in the processor may have a different processing
power and energy exhaustion. Numerous strategies were suggested, recently, for energy-
aware real-time task scheduling on multi-core processors that enable DVFS mechanisms [1,2].

Despite dependent tasks being widespread in many real-life applications, there are few
studies that have been carried out on them. When considering dependent real-time tasks,
shared resources must be accessed through a mutually exclusive approach that guarantees that
a task must accomplish its critical section execution before the next task tries to access the same
resource. The allocating of tasks and the scheduling in multi-core embedded real-time systems
have become vital problems in curtailment of energy consumption while still satisfying the
needed performance. There are several scheduling algorithms suggested to completely utilize
the computing resources from multiple cores to attain high efficiency. Traditionally, multi-core
real-time task scheduling can be divided into global scheduling, Global Earliest-Deadline-First
(G-EDF), and partitioned scheduling, Partitioned-EDF (P-EDF) [3–5]. Tasks are scheduled by
one scheduler in the global scheme, and every task is permitted to move from one processor
to another during the execution. The jobs are arranged in a single global queue and an
individual job of a task can be preempted on a processor and continued on a different
processor. Conversely, within the partitioning scheme, task migration is prohibited and all the
task instances are performed on the same processor. Every processor will have a different
queue prepared to schedule task jobs. Therefore, run-time performance is enhanced and tasks
can only intervene on the local processor.

Partitioned scheduling protocols are widely used and extensively endorsed in their
performance and usability through commercial real-time operating systems [6]. Besides,
excellently studied single-processor scheduling and synchronization mechanisms could
be adapted for multiprocessors with little adjustment (or without alters). Nonetheless,
partitioning tasks to the processors is believed to be a bin-packing problem that is an
NP-hard problem in the strong sense; finding the optimal mechanism in polynomial time is,
therefore, not likely in the generic state. So, scheduling protocols should be configured with
suitable partitioning algorithms to utilize the efficiency provided by multi-cores. Heuristic
techniques and adequate practicability studies have been developed to discover a near-
optimal partitioning for bin-packing algorithms [3,7]. Nonetheless, scheduling protocols
and existing multiprocessors (multi-cores) partitioning algorithms primarily presume
independent tasks while tasks typically share resources in real applications. The classic bin-
packing algorithm does not consider the blocking time, and therefore, the tasks can suffer
much blocking. When tasks access shared resources such as Input/Output ports and shared
memories, locking protocols are used to avoid uncontrolled priority inversions [8,9] and
to preserve data coherence. To comprehend the full capabilities of embedded multi-core
systems, resource-aware partitioning techniques are needed.

This study presents a heuristic partitioning algorithm, the blocking-aware-based
partitioning (BABP) algorithm, to assign tasks that may access the same shared resources
to the same core (beginning with the task that has the longest blocking time). Therefore,
the BABP algorithm makes the best of the available parallelism in these multi-core systems,
as much as possible, because it guarantees that the parallel tasks—not having shared
resources—are dispatched to different cores so as to execute then in parallel.
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The proposed algorithm partitions a collection of real-time tasks on a non-ideal DVS
processor of a multi-core architecture. According to DVFS methods, the BABP uses a
Two-Speed Strategy (TSS)-based approach known as the Dual-Speed (DS) algorithm [10],
which is initially used to carry out tasks at a low level of speed and then shifts to a high-level
speed immediately when the tasks are blocked.

Partitioned Earliest-Deadline-First (P-EDF) [3] is used as the dynamic priority task-
scheduling strategy for each processing core of a multicore system. Upon considering
dependent real-time tasks, the BABP algorithm uses the Multiprocessor Stack Resource
Policy (MSRP) [11] to synchronize the access of tasks to shared resources. By using MSRP, a
limited blocking time is ensured for tasks when accessing the global resources, and local re-
sources are synchronized using SRP. When using the P-EDF algorithm to schedule tasks [3],
the DS algorithm computes the low level of speed and the high level of speed based on
the EDF-sufficient condition of schedulability. Therefore, while energy consumption is
decreased, the timing restrictions of tasks can be guaranteed. Particularly, when tasks
arrive, the DS algorithm allocates the low-speed level for executing them, while at the
moment the tasks are blocked, the processor speed will shift to the high-speed level. With
the DS algorithm, a high-speed interval begins when the blocking starts and terminates at
the blocking task deadline. The capabilities of the proposed approach were appraised by
using a simulation platform named the multi-core real-time scheduling simulator (MCRT-
sim) [12].

The key contributions of this study are: (1) A BABP heuristic algorithm is proposed
to effectively exploit the available parallelism, balance the workload in these multi-core
systems, and assign tasks which can run in parallel to different cores as much as possible.
For example, as shown in Figure 1, the tasks τ1, τ5, and τ7 can be dispatched to one core and
the others to another core. (2) The suggested algorithm is implemented with a simulation
platform called MCRTsim. (3) An assessment of the suggested algorithm in conjunction
with the blocking-agnostic bin-backing partitioning algorithm and the (SBP) algorithm, as
a reference, is done. Within the framework of this study, the blocking-agnostic algorithm
points to a bin-packing algorithm that does not include blocking parameters to improve
the efficiency of partitioning while the schedulability check comprises blocking times.
In particular, this research presumes that tasks are periodic, preemptive (only of non-critical
sections), and dependent because of the synchronous access to shared resources. By using
the BABP algorithm as a partitioning strategy and P-EDF as a scheduling algorithm,
the simulation results indicate that the BABP algorithm achieves more energy savings than
other partitioning techniques.

The remainder of this paper is arranged as set out below. Section 2 sums up the previ-
ous research on real-time systems scheduling and synchronization with a uniprocessor or a
multi-core processor. Section 3 depicts the system model and problem formulation. Section
4 discusses the proposed BABP algorithm and its implementation, with the schedulability
analysis. Section 5 reports on the simulation assessment and outcomes analysis. The
conclusion is reported in Section 6.
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Figure 1. Block diagram of the proposed algorithm.

2. Related Work

Many studies have focused, within recent years, on energy-aware scheduling of
embedded systems in real time. In uniprocessor environments, there are several research
papers in the domain of energy-aware scheduling of independent real-time tasks, and an
extensive survey can be found in [1]. Very little research has discussed the problem of
dependent real-time tasks within the context of task synchronization [13,14]. The DVFS
mechanism that works to slow the processing speed is a widely used energy-saving
technique due to the convexity of the power consumption function [15–17].

The interest in multiprocessor techniques has increased as a result of the growth in
multi-core architectures. The article [18] tackled the problem of energy-aware static parti-
tioning of periodic real-time tasks on asymmetric multiprocessor (multi-core) embedded
systems. It formulated the problem according to the platform-supported DVFS model and
outlined optimal methods of reference partitioning for each case of the DVFS model.
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The authors of [19], from the perspective of allocating workloads to cores, suggested a
method for energy administration of applications in a multi-core partitioned architecture.
They introduced the Energy Efficient Allocator (EEA) algorithm as an allocation method for
assigning partitions to cores founded on bin-packing algorithms that consider the various
frequencies at which a core can work. They also presented a variety of solutions to the
problem of energy minimization. Every solution will provide an appropriate allocation of
workload to cores with various levels of energy and system utilization. The EEA algorithm
picks out the type of allocator (First Fit Decreasing Utilization (FFDU) WFDU, and BFDU)
and the criteria (decreasing utilization (DU), increasing utilization (IU), or randomly (R))
under which partitions are chosen to minimize their frequency.

For hard real-time systems, the authors of the article [20] presented a study of energy-
aware multi-core scheduling algorithms. They summed up several algorithms listed in
the literature and grouped them by both homogeneous and heterogeneous multi-core
processors, depending on Partitioned, Semi-Partitioned, and Global scheduling strategies.
An Inter-task Affinity-aware Task Allocation (IATA) algorithm was proposed in [21] to
nullify overheads in the WCET due to cache evictions. IATA collects the tasks considering
their constraints, dependencies, preferences (shared resources, inter-core communication,
and cache evictions) and assigns these groups to multiple cores to decrease the additive
overheads in WCET.

A static mixed task scheduling (SMTS) algorithm has been proposed in [22] to solve
the problem of scheduling mixed tasks that comprise of n hard real-time periodic tasks with
shared resources and soft aperiodic tasks. They take into account two opposing objectives:
decreasing the energy consumption and reducing aperiodic task response time. The SMTS
algorithm schedules aperiodic tasks with the maximum processor speed and periodic
tasks with the best speed. They have also introduced a dynamic mixed task scheduling
algorithm (DMTS) capable of reclaiming dynamic slack time produced from periodic tasks
and the constant bandwidth server to minimize energy consumption. Their results display
that the DMTS technique outperforms the SMTS algorithm and the baseline algorithm,
where DMTS decreases an average of 7.18% of energy consumption and 53.66% of response
time compared with the other algorithms.

The authors of [23] suggested research on the maximum gains for volunteer com-
puting platforms (VCPs). VCPs can be considered asymmetric multiprocessing systems
(AMSs). The authors needed to pick tasks from users and assign the tasks to appropriate
workers to solve the maximum benefit problem. They proposed a list-based task assign-
ment (LTA) strategy and showed that the LTA strategy could complete the task with a
deadline restriction as soon as possible. Then, based on the LTA technique, they proposed
a maximum benefit scheduling (MBS) algorithm, a new task assignment algorithm aimed
at optimizing VCP gains.

The authors of [24] implemented a comparison of 11 heuristics for mapping indepen-
dent tasks on heterogeneous distributed computing systems. It has been shown that the
relatively simple Min-min heuristic achieves minimum energy in comparison with the
other strategies for the cases studied. The article [25] showed that the proposed Resource-
Oriented Partitioned (ROP) scheduling with a distributed resource sharing strategy would
achieve a significant speed-up factor guarantee. The authors of [26] aimed to reduce energy
consumption under real-time and reliability constraints. They suggested that a formulation
of an Integer Non-Linear Programming (INLP) performs task mapping by jointly address-
ing task allocation, assignment of task frequency, and duplication of tasks. The original
INLP problem was safely converted to an analogous Mixed Integer Linear Programming
(MILP) problem to provide an optimal solution. Appointing a real-time task group to
the multi-core platform is a bin-packing problem that is understood to be an NP-hard
problem in the powerful sense; therefore, finding the best solution in polynomial time is
not pragmatic in the generic state. Given the unfavorable nature of the problem, numerous
heuristics and their performance analyses were subject to various research papers, such as
the First-Fit, Best-Fit, Next-Fit, and Worst-Fit methods [27,28]. A comparison was made
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for homogeneous multi-core systems and periodic independent tasks between these four
well-known heuristics behaviors [29].

Indeed, when the Earliest-Deadline-First scheduling technique was used, the problem
had a near resemblance to bin-packing [30,31], and the results/heuristics that can be
acquired in this vastly studied field show insights into partitioning-based scheduling.
The suggested algorithm in [32] uses the Worst-First strategy to partition the collection
of frame-based tasks (with the same period and deadline) and then scales the speed in
accordance with the task characteristics in a certain instant. Although the method is
represented by a rational approximation factor for optimum scheduling, some unrealistic
assumptions were made by the author such as a continuous and infinitive frequency range
(s ∈ [0, ∞]) and negligible in idle-state consumption. The problem of appointing a series
of periodic real-time tasks in multi-core systems characterized by a single voltage island
(where all processors share the same voltage and frequency) was considered in [33]. First,
they examined the approximation upper bound for the classical Worst-First heuristic,
and then they introduced their technique that overcomes many state-of-the-art limitations.

Resource control policies for single-processor systems are well recognized. The Pri-
ority Ceiling Protocol (PCP) [34], in particular, is one of the most attractive suggested
protocols for synchronization of resource accesses. It avoids both deadlock and transitive
blocking. Stack Resource Policy (SRP) [35,36] was defined as a refinement to PCP for
EDF systems that strictly binds priority inversion and permits simple schedulability tests.
Each task under SRP is assigned a preemption level that reflects the relative deadlines of
the tasks. The shorter the deadline, the higher the preemption level. The authors of [37,38]
subsequently developed multiprocessor and distributed versions of PCP. Hence, the proto-
col was targeted at distributed shared memory systems. There have been some versions of
the Multiprocessor Priority Ceiling Protocol (MPCP) that extend PCP to multiprocessor sys-
tems and reduce the remote blocking. The authors of [39] extend the research for dynamic
PCP. A dynamic priority multiprocessor version of the Priority Ceiling Protocol based upon
EDF scheduling (MDPCP) was introduced in [40]. The authors of [11,41] extend SRP to the
Multiprocessor Stack Resource Policy (MSRP), the first spin-lock protocol in multiprocessor
real-time systems.

Partitioning-based real-time scheduling of multiprocessors finds feasibility as the
primary aim. The problem occurs in two different patterns: to decrease the number of
processors necessary to assure the feasibility of the task set, or, instead, to find sufficient
schedulability (usually, utilization) limits given a fixed multiprocessor platform. In this
research, the researchers also take into consideration the energy factor to this problem.
Because generic bin-packing heuristics do not regard the blocking time caused by resource
requests, they may not be efficient for task sets that have shared resources. To regard
this extra blocking, the two well-known multi-core synchronization protocols, MPCP and
MSRP, were presented. A partitioning heuristic adapted to the MPCP was introduced [6],
a semaphore-based multiprocessor real-time locking protocol. The MSRP, spin-lock proto-
col [11], was proposed where tasks are busy waiting for shared resources once blocked.

The Similarity-Based Partitioning (SBP) algorithm [42] was presented. It is another
partitioning heuristic for MSRP using the same methodology, which uses modern cost
heuristics to more precisely classify group splits with low energy consumption. It appoints
the tasks which can access the same collection of shared resources to the same core to avoid
a number of blockings.

3. Research Model and Problem Formulation
3.1. Multi-Core DVFS Processor and Energy Model

Most recent processors allow variable levels for voltage and frequency, and this
processor can perform dynamic voltage scaling (DVS) and its speed is proportional to
the supply voltage. In the literature, DVS processors are classified as ideal and non-
ideal. The ideal DVS processor will run at any speed, ranging from the lowest to the
highest possible speed, whereas a non-ideal DVS processor possesses only separate speeds.
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Recently, multiple DVS processors are non-ideal, whereas ideal DVS processors are for
theoretical research purposes only. This study regards a multi-core platform P consisting
of a set of z cores, i.e., P = {core1, core2, . . . , corez}, and it supports h discrete speeds
S = {s1, s2, . . . , sh}, where s1 < s2 < . . . < sh. The researchers presume that the platform
P supports per-core DVFS capabilities where cores may run at different speeds at the
run time.

The processor power model [43] used in this study has been greatly used in the
literature [13,44]. The researchers suppose a DVFS-enabled multi-core processor is capable
of operating at a variety of separate voltage levels. Commonly, the power exhaustion of a
complementary metal oxide semiconductor (CMOS) system is known as dynamic and static
power consumption [14]. The dynamic power dominates the total energy consumed by the
processor core and the dynamic power dissipation is the most costly and time-consuming
part. Therefore, this study is aiming only to detract dynamic power consumption during
this study and the static power consumption is neglected [26].

The static power consumption is foremost caused by leakage currents (Ileak), and the
static (leakage) power (Pleak) will be defined by:

Pleak = Ileak · Vdd (1)

The dynamic power consumption will be displayed as a convex function of the
processor speed. The dynamic power consumption for CMOS circuits [45] depends on the
processor operating voltage and frequency at speed S and it can be presented by:

Pdynamic(s) = Ce f f V2
dd f (2)

where Ceff is the effective switching capacitance, Vdd is the supply voltage, and f is the clock
frequency of the processor (speed) that will be declared as:

f = k.(Vdd − Vth )
2/ Vdd (3)

where k is a constant, Vdd is the supply voltage, and the threshold voltage Vth. To express
the power consumption of a specified corei of processor P, the researchers use a function
PCi(s) of the selected speed s. If a task keeps a processor throughout the implementation
duration of [t1, t2], then the energy exhausted by the processor throughout this period is
given by:

∑
corei ∈P

∫ t2

t1

PCi(s(t))dt (4)

where si(t) is the speed of the processor at time t.

3.2. Task and Resource Models

This study focuses on real-time systems consisting of a periodic task set with n tasks,
TS = {t1, t2, . . . , tn}. Each task ti is presented by a tuple (Ai, Pi, Di, Ci, and Zi), where:

• The arrival time (Ai): the timing when the task is first issued.
• The period (Pi): the fixed time duration among jobs.
• The relative deadline (Di): the maximum appropriate delay for task processing.
• The computation time (Ci): the worst-case execution time (WCET).
• The list of critical sections (Zi) of task i.

This research regards well-formed tasks that meet the requirement 0 ≤ Ci ≤ Di ≤ Ti.
Each task ti is a prototype of its instances and every instance can reach for every period Ti
regularly. Let ti,j represent the jth instance of task ti. Within this research, researchers are
concerned about scheduling and synchronizing the dependent real-time tasks. The researchers
presume these tasks are periodic, dependent (because of their access to shared resources),
and preemptible (only in non-critical sections). Furthermore, they presume that a set of m
shared resources (software objects, e.g., data structure, files, data objects, or shared variables)
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RS = {rs1, rs2, . . . , rsm} may be accessed in a mutually exclusive method (simultaneous access
is not allowable).

Researchers presume that a semaphore provides access control of shared resources
to ensure mutual exclusion amongst competitive tasks. Task requests for shared resource
access will happen at any moment during its implementation; a portion of code accessing a
shared resource is classified as a critical section under mutual exclusion restrictions. A list
that describes the critical sections of a task ti is Zi = < zi,1, zi,2, . . . , zi,n>, where zi,j is the
jth critical section of ti. This study presumes that the shared resource requests are not
nested. Locks are freed in the opposite order in which they were acquired. A task ti may
request a shared resource rs ∈ RS several times during its execution but just one job at
a time will access a shared resource, i.e., binary semaphore. Real-time locking protocols
assist to ensure mutual exclusion. For instance, if a task ti asks for a shared resource rs
already locked by another task, it must wait until rs is available. Besides, each shared
resource rs can have a ceiling priority Ω, indicating the highest possible priority that it
can have. Researchers declare ui as the task utilization and it can be described by ui =

Ci
Pi

.

The system utilization Utot is equal to
n
∑

i=1
ui and the periodic task set is scheduled by the

P-EDF policy. According to P-EDF policy, priorities are appointed dynamically and are
inversely proportional to the absolute deadlines of the active tasks, and the higher priority
tasks are executed first.

3.3. Problem Description

Consider a workload set TS of n dependent periodic real-time tasks (dependency
because of simultaneous access to shared resources) and a set RS of m shared resources.
The idea is how to optimally schedule the TS and synchronize their access of RS on a
multi-core processor P that supports the DVFS technique and allows h discrete speeds. The
research aimed to find the optimum method of task-to-processor assignment (task partition-
ing) to minimize the total energy exhaustion of a real-time system. In this case, the tasks
allocated to each processor can be feasibly scheduled, and the overall energy consumption
of P is minimized (among all feasible task allocations). The problem of optimizing dynamic
energy consumption using DVFS on a multi-core platform is an optimization problem,
that is, to find feasible scheduling with minimal energy consumption [15,17]. Notice that
scheduling is considered feasible if all scheduled task instances can be finished within their
deadlines at the latest [33].

4. Task Scheduling and Synchronization in a Multi-Core Platform

In particular, this study uses P-EDF [3] as the scheduling algorithm and multiprocessor
stack resource policy (MSRP) [11] as the synchronization protocol. By using the P-EDF
scheduling algorithm, the priority-driven scheduling algorithm, tasks are partitioned
offline at first among cores and are then scheduled on the allocated cores. Under MSRP,
the resources are divided into two groups: local and global. Local resources are accessed
only by tasks that execute on the same processor. Global resources are those which can
be accessed by tasks running on different processors. There are two types of blocking:
local blocking, which occurs when a task running on one core is blocked by another task
running on the same core, and remote blocking, which occurs when this task is blocked
by a task that is running on another core. Unlike SRP, global resources have different
ceilings—one for each processor. Moreover, every processor has its own system ceiling.
On processor P, tasks can only use global resources at the processor ceiling priority, that is,
the highest preemption level of all the tasks on processor P. Global resources are shared
across processors in a First-In-First-Out (FIFO) manner. To acquire a global resource, a task
must be running at the processor ceiling which makes it non-preemptive. Whenever a
task tries to access a shared resource that is already locked in the system by another task,
the task performs a busy wait (called a spin-lock), and the task resumes when the shared
resource is unlocked from the previously locked task.
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This study use MSRP to ensure a mutual exclusion among the competing tasks from
multiple cores and to maintain the data consistency of shared resources. Under the MSRP,
every task has a fixed value, named preemption level λi of task ti, to estimate the possible
blocking in the presence of dynamic priority scheduling. Tasks with a shorter deadline
will have a higher preemption level so the levels of preemption will represent the relative
deadlines of the tasks. Resources are given a ceiling value during the run-time according
to the maximum preemption level of the tasks accessing the resource. Whenever a task is
issued, it can only preempt the currently performed task if its absolute deadline is lesser
and its degree of preemption is greater than the highest ceiling of currently locked resources.
The effect of this protocol is nearly identical to PCP; tasks experience only one blocking,
deadlocks are avoided, and a simple formula can be obtained to compute the blocking
time. The MSRP lets tasks use the local critical resources under the SRP policy. As a result,
SRP saves redundant context switches by blocking earlier [11].

Schedulability Analysis of the MSRP

For a multi-core platform, researchers propose a partitioning algorithm for appointing
tasks onto processors; then, the tasks will be scheduled by EDF as a scheduling algorithm
and will use MSRP as a synchronization algorithm. When tasks are scheduled to be carried
out on a uniprocessor [37], a group of n real-time tasks are schedulable by EDF and SRP if:(

i

∑
k=1

Ck
Tk

)
+

Bi
Ti
≤ 1 , ∀i, 1 ≤ i ≤ n (5)

where Bi is the worst-case blocking time of ti. Tasks can access resources in a mutually
exclusive technique, and therefore, the overheads due to blocking time must be considered
whilst checking the schedulability of tasks assigned to the core. Under MSRP, if a task ti
tries to request a global resource rs, it becomes non-preemptive. If the resource rs is free.
it locks the resource, but if rs is already locked by another task tj running on a different

processor, ti performs busy wait (spinning state). The worst-case blocking time Bglob
i can be

calculated by considering busy wait time as follows:

Bglob
i = max

{∣∣∣z(tj ,rs)

∣∣∣+ spin(Pc, rs)
}

where
(
tj is not on Pc

)
∧ (rs is global) (6)

where spin(Pc, rs) is the upper bound of busy wait time that any task can wait on processor
Pc to access a global resource rs, which can be expressed as follows:

spin(Pc, rs) = ∑
∀ Pl 6= Pc

max
(∣∣Ztj, rs

∣∣) ∀ tj On Pl
(7)

where
∣∣Ztj, rs

∣∣ refers to the length of any critical section of task tj requesting to access the
resource rs.

Blocal
i is considered to be the worst-case blocking time of task ti when accessing a local

resource. By using the synchronization protocol MSRP, Blocal
i can be calculated as follows:

Blocal
i = max

{∣∣Ztj, rs
∣∣} where

(
tj is on Pc

)
∧ ( rs is local) ∧

(
λi > λj

)
∧ (λi ≤ ceil(rs)) (8)

where λi is preemption level of task ti, and ceil(rs) is the ceiling of local resource rs which
is the highest preemption level of all the tasks that may access rs in core Pc.

The worst-case blocking time Bi of task ti executing on processor Pc is calculated
as follows:

Bi = max
(

Blocal
i , Bglob

i

)
(9)
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Based on the schedulability analysis of multiprocessor environments [11], a set of n
real-time tasks on processor Pk, ordered by decreasing preemption level, is schedulable
under EDF and MSRP if:

i

∑
k=1

Ck + spink
Tk

+
Bi
Ti
≤ 1 ∀Pk ∈ P , TPk = {t1, . . . , tnk}, ∀i = 1, . . . , nk (10)

The proposed algorithm aims to reduce the overall blocking overhead in the system
that may excess the schedulability of a task set.

5. Proposed Approach for Task Partitioning

This section introduces the proposed BABP algorithm for task allocation on a homo-
geneous uniform multi-core platform. Figure 1 presents the general idea of the proposed
algorithm. The algorithm BABP can be used under partitioned RMS (Rate-Monotonic
Scheduling) and partitioned EDF scheduling schemes along with MSRP. The algorithm
uses the uni-core synchronization protocol SRP when dependent tasks are assigned to
the same core of the processor. The BABP algorithm aims to partition the periodic real-
time tasks amongst the cores to (1) decrease the overall remote blocking times of tasks
due to shared resources, (2) balance a load of multiple cores, and (3) reduce inter-core
communication. This usually improves the schedulability of a task set. Considering the
blocking factors of tasks under MSRP, more blocking times occur by tasks with additional
and extended global critical sections [11]. Algorithm 1 lists the specifics of the proposed
BABP algorithm.

5.1. Blocking-Aware-Based Partitioning (BABP) Algorithm

In the initial setup, BABP calculates each task utilization eachUi =
Ci
Pi

, for each task
(line 5) and then calculates the num of zi,q parameter which is the number of critical sections
where ti asks for resource rsq and the longest zi,q parameter which signifies the longest
critical section of ti demanding rsq (lines 7–14). The BABP algorithm uses the previously
computed parameters (in the initial step) as inputs to compute a weight for each task ti_w
by using (11). The proposed partitioning technique aims to minimize the blocking times,
so higher weights should be given to the tasks which can lead to longer blocking times.
Therefore, the calculation of the weight of task ti depends on its utilization in addition to
the number of its critical sections multiplied by the duration of its longest critical sections
for all resources that it will access as follows:

ti_w = eachUi +

[
∑RS

rsq=1
(

num o f zi,q × longest zi,q
)

Pi

]
(11)

The BABP algorithm generates a resource usage table (lines 16–21) (sorts the tasks
in non-increasing order based on the preemption value of the task λi ) to determine the
maximum blocking time for a task ti [37,38], denoted by local blocking time calculated by
(8) or global blocking time calculated by (6), depending on the partitioning strategy. Then,
it orders the tasks according to their weights in a non-increasingly order. Depending on the
partitioning strategy, the calculated task weight ti_w signifies the significance of the task.

The BABP algorithm picks the task pairs, starting with the first task (that has the
maximum weight). Then, it calculates the proposed cost function Vij,q by (12), which is
a function that calculates the number of critical sections and the duration of the longest
critical sections for each task pair (ti and tj) that shares a similar resource q:

Vi j,q =
(
num o f ziq × longest ziq

)
+
(
num o f zjq × longest zjq

)
(12)

Then, the algorithm arranges tasks in non-increasing order based on their cost function
V, grouped by shared resources (lines 23–32). The output of BABP is the task set where
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the tasks are sorted depending on their cost function. Figure 2 introduces the flowchart of
proposed BABP algorithm.
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Algorithm 1. Blocking-Aware-Based Partitioning (BABP).

Input: 1. a task set TS = {t1, t2, . . . , tn}
2. a set of resources Rs = {rs1, rs2, . . . , rsm}

Initialize:
3.Generate allTs[ ] // array of all tasks ti from task set TS;
4. foreach ti ε all Ts
5. Calculate eachUi = Ci

Pi
; // task ti utilization

6. assigned(ti) = false;
7. foreach rsq ε ti resources
8. foreach z ε ti_critical sections set
9. calculate num of zi,q; // count number of times

// the rsq used by ti
10. calculate longest zi,q; // longest critical section

// of rsq with ti
11. total = (num of zi,q × longest zi,q); // total number of

// critical sections zq of resource rsq multiply by its longest critical
//section for task ti

12. end for
13. sum + = total; // summation of total value for all resources

//that shared by task ti
14. end for
15. Calculate ti_w = eachUi +

(
sum
Pi

)
; // proposed task_weight

16. Calculate λi = 1
D i; // task preemption level

17. end for
18. Sort tasks in descending order based on λi ;
19. foreach ti ε allTs
20. Calculate max blocking time Bi of each task according to MSRP rules;

// by constructing a resource usage table
21. end for
22. Sort tasks in descending order based on ti_w;
23. for i = 0 to n−1 // n is the number of tasks ordered by ti_w
24. for j = 1 to n
25. Pick ti and tj from the top of the ordered list based on ti_w;
26. Resq = {Φ};
27. if (ti_resource set ∩ tj_resource set 6= {∅ }) then

// check ti and tj have shared resources
28. Resq = {ti_resource set ∩ tj_resource set};
29. Calculate cost fun Vij,q of tasks i, j for each resource in Resq; // by (6)
30. end if
31. end for
32. end for
33. Sort tasks in decreasing order based on Vij,q, Grouping by shared resource_id;

return: List of Tasks, allTs, sorted based on the cost function value
End

5.2. Task Allocation Algorithm

In this step, the Task Allocation algorithm picks the tasks, starting with the first task
(which has the highest cost function V value), checks the task assigned(ti) value if false
(line 5), and then tests the schedulability condition defined by (13). It allocates the tasks
that directly or indirectly share resources to the same core based on the value of the cost
function. For example, if the tasks ti and tj share resource Rq and tasks tj and tk share the
same resource Rq, all three tasks will allocate to the same processor if the schedulability
test is satisfied. If not, the algorithm allocates the task pairs with the maximum value of
the cost function V of this shared resource to the same core at first.

If task ti satisfies the schedulability condition for coreg and the task assignment is
completed, the Task Allocation algorithm updates the assigned(ti) value to true for task ti



Computers 2021, 10, 10 13 of 21

and updates coreg utilization considering all previous tasks’ utilization allocated to that
coreg (lines 8–11):

Coregutilization = 1−
[
∀ki=1...n

(
i

∑
k=1

Ck + spink
Dk

)
+

Bi
Di

]
(13)

where Bi is the worst-case blocking time of tk.
After the Task Allocation algorithm is finished, the task set TS is partitioned into

{T1, T2, . . . , Th}, and each partition is assigned to the proper coreg for g = 1 to h. Every core
takes advantage of EDF to schedule its allocated tasks. Algorithm 2 lists the specifics of the
proposed Task Allocation algorithm. Figure 3 shows the flowchart of the proposed Task
Allocation algorithm.
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Algorithm 2. Task Allocation.

Input: 1. List of Tasks, allTs[ ], sorted based on the cost function value
2. a multi-core processor P = {core1, core2, . . . ., coreh}

Begin:
3. while (allTs.size > 0) do
4. Pick the task ti from the top of the ordered list based on Vij,q;
5. if assigned(ti) 6= true then
6. for g = 1 to h // h cores

// Test schedulability condition by (10)
7. if task ti satisfy the schedulability condition on coreg then
8. allocate ti to coreg;
9. update coreg.uti; //using (13)
10. assigned(ti) = true;
11. allTs.size − = 1;
12. break;
13. end if
14. end for
15. end if
16. return (T1, T2, . . . , Th) // the output {T1, T2, . . . , Th}

End

6. Experimental Evaluation and Analysis

The experimental assessment of the BABP algorithm was performed on a simulator
named the multi-core real-time scheduling simulator, MCRTsim [12]. A realistic envi-
ronment was used in the experiments from Marvell’s XScale technology-based processor
PXA270 [43] and a non-ideal DVS platform. The PXA270 processor provides six voltage
frequency levels, indicated in Table 1. Through the simulator MCRTsim, the researchers
set up a dual-core processor with the setting of its available processor speeds. The pri-
mary performance measure of interest in the experiments was the energy consumption of
tasks, named Energy_Consum. Assuming that s(t) is the speed of the processor in time t,
the energy consumption Energy_Consum can be determined by

∫ simTime
0 PC(s(t))dt, where

simTime is the time of the simulation.

Table 1. Voltage frequency levels of Marvell’s XScale Pxa270 Processor [43].

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Voltage (V) 1.55 1.45 1.35 1.25 1.15 0.90

Frequency (MHz) 624 520 416 312 208 104

Active Power Consumption (mW) 925 747 570 390 279 116

Idle Power Consumption (mW) 260 222 186 154 129 064

Once the tasks are assigned permanently to the processors, a speed assignment scheme
is chosen to reduce the energy consumption while preserving feasibility. The Dual-Speed
(DS) algorithm, a Two-Speed Strategy (TSS)-based technique, is initially used to execute
tasks at a low-speed level and then switches to a high speed instantly when the tasks are
blocked. When using the P-EDF algorithm to schedule tasks, DS adjusts the low-speed
level and the high speed based on the EDF-sufficient schedulability condition [3].

6.1. Simulation Settings

Different workloads, randomly generated task sets, were used. Task period values
were uniformly generated to obtain short tasks (10~50) ms, medium tasks (50~100) ms,
and long tasks (100~500) ms. The worst-case computation time of tasks in the three
groups was (1~10), (1~20), and (1~100) ms, respectively. The task period and the worst-
case computation amount were picked out randomly from the respective ranges for each
workload. Every task set was composed of 5–20 tasks. Within this research, the number
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of shared resources was adjusted to be around 4 and 6 to ensure sufficient competition
between tasks. The number of resources which a task accesses was picked at random from
1 to 4. The duration and position of the critical sections within every task were chosen

randomly. Remember that the utilization bound for EDF is
n
∑

i=1

Ci
Pi
≤ 1, where n is the

number of tasks. Table 2 introduces the parameters for a set of 10 tasks with a short period.

Table 2. Ten short tasks example parameter set.

i 1 2 3 4 5 6 7 8 9 10

Ai 0 0 1 3 0 1 0 2 2 0

Pi 30 27 43 45 49 40 48 50 47 39

Ci 2 1 3 6 4 3 4 7 1 1

Ui 0.067 0.037 0.069 0.133 0.082 0.075 0.083 0.14 0.021 0.026

Zi,q
Z1,3
Z1,4

Z2,5
Z2,4

Z3,2
Z3,1

Z4,2

Z5,1
Z5,2
Z5,3

Z6,4
Z6,2

- -
Z9,5
Z9,1
Z9,3

-

6.2. Experimental Results and Discussion

When the randomly generated task sets were partitioned by BABP, SBP [42], and classic
bin-packing heuristics—BFD and WFD [30,31]—they were scheduled and synchronized
by P-EDF and MSRP in MCRTsim. These generated feasible dynamic priority task sets
were assessed under various values of the utilization factor. The BABP algorithm was
evaluated under the partitioned EDF scheduling scheme along with the MSRP multi-core
shared resources synchronization protocol. Regarding energy consumption, the results of
BABP are compared with the following heuristic algorithms’ results: SBP, BFD, and WFD.
Figure 4 shows a graphical representation of the simulation results, such that the scheduling
results of tasks’ executions and the resource usages can be observed on different cores.
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Table 3 indicates the simulation results, energy consumption, for scheduling a set of
10 tasks with a short period. The results show that the blocking time caused by global
shared resources is minimized significantly by allocating tasks using BABP as compared
to other mentioned task allocation techniques. When a bin-packing algorithm allocates a
task to a bin, it usually allocates the task in a bin that fits it better, and it does not consider
the unallocated objects that will be allocated after the current object. The BABP approach
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gathers all tasks with a higher value of the cost function Vi j,q and allocates them on the
same core, which reduces the remote blocking time of the task due to shared resources,
minimizes the inter-core communication, and exploits the parallelism of the multi-core
architectures efficiently. These time-saving factors result in reducing the total processor
busy time, which is consumed to schedule additional tasks.

Table 3. The energy consumption for scheduling 10 example short tasks.

Partitioning Algorithm BFD WFD SBP BABP

Energy Consumption (mW) 37.38 31.45 21.43 19.19

Considering the effect of variation in the number of tasks per task set, a simulation
was performed by doubling, tripling, and quadrupling the number of tasks. Consider
Figure 5 which plots the overall energy consumption of the system (the vertical axis) that
the algorithms could schedule successfully versus the number of tasks 5, 10, 15, and 20
of the task set (the horizontal axis). Figure 5 indicates the energy consumption varied
according to the number of tasks and the period of the task. Part (a) shows task sets with
a short period (10~50) ms. Part (b) shows task sets with a medium period (50~100) ms.
Part (c) shows task sets with a long period (100~500) ms. The results display that the
increase in the number of tasks will increase energy consumption in all situations and
the task set with fewer tasks will outperform the task set with more tasks. As a result of
the competition among tasks for resources, the number of blockings and their time will
increase as the number of tasks grows.

Figure 5 illustrates that the BABP algorithm performs significantly better than all
other compared partitioning algorithms. The BABP algorithm can minimize the amount of
remote blocking by partitioning tasks based on their resource usage likeness (directly or
indirectly shared) and the longest blocking time. The BABP algorithm allocates the tasks
that directly or indirectly share resources onto the same processor based on the importance
of the cost function. Hence, BABP succeeds in minimizing the length of remote blocking.
However, the SBP algorithm performs better than the blocking-agnostic algorithm in some
situations only. The results indicate that in some cases, the increase in the task period
contributes to more energy savings. They illustrate that task sets with a long period,
even with a heavy workload, will profit from the proposed BABP algorithm to improve the
system performance and save more energy.

Considering the effect of variation in total utilization of tasks, numerous task sets
have been randomly generated, with total utilization ranging from 0.4 to 1.0. Figure 6
plots the overall energy consumption of the system (the vertical axis) that the algorithms
could schedule successfully versus the total utilization of the task set (the horizontal axis).
It demonstrates the comparison of the results of the BABP, SBP, BFD, and WFD algorithms.
These outcomes indicate that the variation in energy consumption for a given utilization is
increased with increasing the utilization of tasks in some situations, as it is observed that
BABP outperforms all other techniques in all situations.
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7. Conclusions

Obtaining better performance and meeting the hard deadlines of real-time tasks
is a very critical problem. This research examines the problem of curtailment energy
consumption for a dependent periodic real-time task set that share resources. The proposed
BABP algorithm assigns a task set to the processor of a single-chip multiprocessor (multi-
core) with shared memory. The proposed technique’s goal is to minimize task blocking
times by allocating tasks that share resources directly or indirectly to appropriate processors,
beginning with tasks with the maximum estimated blocking time. Generally, this increases
the schedulability of a task group and may result in fewer processors needed compared to
blocking-agnostic bin-packing strategies. BABP supports the parallelism between tasks
which do not have shared resources efficiently. The method can exploit the parallelism of
the multi-core architectures efficiently. In this method, the tasks in one application can run
on a different processing core in parallel.

Because so many systems use dynamic priority scheduling protocols in practice,
the researchers implemented the proposed algorithm under MSRP, a standard synchroniza-
tion protocol for multiprocessors (multi-cores) that operates under the dynamic priority
scheduling algorithm P-EDF. The proposed technique performs notably better than the
other conventional task allocation algorithms BFD, WFD, and SBP. The results reflect that
the proposed algorithm reduces the globally shared resources and inter-core communi-
cation. The proposed partitioning algorithm will greatly reduce blocking times, improve
overall system performance, and reduce energy consumption. The proposed approach
abilities were evaluated using the MCRTsim simulator. For future work, the researchers will
also concentrate on run-time task partitioning strategies for global and semi-partitioned
schemes with various evolving synchronization protocols.
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