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Abstract: Cancers of the head and neck region are among the leading causes of cancer-related
mortalities worldwide. Oral leukoplakia and erythroplakia are identified as precursor lesions
to malignancy. Patients cured of an initial primary head and neck cancer are also susceptible
to developing second primary tumors due to cancerization of their mucosal field. Multi-step
acquisition of genetic mutations leading to tumorigenesis and development of invasive cancer
has been previously described. Recently, whole exome sequencing of tumor specimens has helped
to identify driver mutations in this disease. For these reasons, chemoprevention or the use of
systemic or biologic agents to prevent carcinogenesis is an attractive concept in head and neck
cancers. Nonetheless, despite extensive clinical research in this field over the past couple decades,
no standard of care option has emerged. This review article reports on targeted interventions that
have been attempted in clinical trials to date, and focuses on novel molecular pathways and drugs in
development that are worthy of being tested for this indication as part of future endeavors.
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1. Introduction

Over 60,000 new cases of squamous cell cancers of the head and neck (SCCHN) will be
diagnosed in the United States alone in 2017, and over 13,000 people are expected to die from their
disease [1]. Leukoplakia and erythroplakia are both recognized as oral premalignant lesions (OPML)
and are known to precede invasive oral carcinoma by months or years [2–7]. However, the risk of
malignant transformation is known to be highly variable among populations [6,8,9]. The majority
of SCCHN could be caused by environmental exposure to tobacco and alcohol [10]. This is believed
to be a key trigger for the development of OPML and their eventual transformation into invasive
cancers. Increasingly over the past couple of decades, we are also witnessing a rising incidence of
human papillomavirus (HPV)-associated oropharynx cancers, particularly among younger men in
the economically developed world [11]. Despite recent advances in multi-disciplinary treatment
approaches including surgery, radiation, and chemotherapy, the five-year overall survival (OS) for
patients with SCCHN is only about 40–60%. And often times, survivors live with long-term functional
impairment (xerostomia, dysphagia, feeding tube dependence) from treatment-related morbidity.
Patients cured from an initial cancer are also at significantly increased risk of developing a second
primary tumor (SPT) [12,13]. A combined analysis of 13 international cancer registries showed that the
cumulative risk of a SPT over 20 years reaches between 30–40% with no plateauing over time, and that
these most commonly develop in the aero-digestive tract [12]. SPT therefore, are a major cause of
increased morbidity and mortality among survivors of an initial SCCHN primary [14–16].
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2. Rationale and Defining Populations at Risk

For these reasons, chemoprevention has long been thought of as an attractive concept in
SCCHN. The term chemoprevention was first introduced by Michael Sporn and his colleagues in
1976, and was defined as the use of natural or synthetic chemicals for the reversal, suppression,
or prevention of invasive carcinoma [17]. Two important hypotheses highlight the need for SCCHN
chemoprevention. The first is the field cancerization theory, which was proposed by Danely Slaughter
and colleagues in 1953, and refers to the effect on the upper aero-digestive tract mucosa of the
chronic exposure to environmental carcinogens (tobacco and alcohol) [18]. He observed that clinically
normal appearing oral mucosa adjacent to resected malignant lesions exhibited microscopic changes
of pre-malignancy. The entire mucosal field was therefore thought to be condemned for progressive
carcinogenesis. Califano et al then proposed the genetic progression model for head and neck
cancers [19]. They examined 10 tumor suppressor loci in oral lesions categorized as hyperplasia,
dysplasia, carcinoma in situ, and invasive oral cancer, and found that progression from precancerous to
cancerous lesions was a multi-step process of oncogenic activation and silencing of tumor suppressor
genes. There is a general order of acquisition of genetic changes, which cumulatively leads to malignant
transformation. More recently, investigators have reported that most genetic changes occur prior to
carcinogenesis, and that gene expression profiles differ between normal mucosa, OPML, and invasive
cancer [20]. Loss of heterozygosity (LOH) at 3p14 (containing the tumor suppressor gene FHIT) and
9p21 (containing the cell cycle regulating gene p16), and augmentation of 11q13 (which houses cyclin
D1) are now recognized as early events in tumorigenesis [21]. TP53 mutation and proliferative signaling
through the epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) pathways are later
events in this process [22,23]. As a correlative study component of the Phase III Erlotinib Prevention
of Oral Cancer (EPOC) trial, investigators validated the use of LOH at high-risk loci as portending
increased oral cancer risk among patients with OPML [24]. Not unexpectedly, it also correlated with
increased EGFR gene copy number.

Given that the genetic progression of events in head and neck carcinogenesis is being elucidated,
it could theoretically provide a framework to design future studies of SCCHN chemoprevention using
novel agents that target known drivers of carcinogenesis. Three discrete populations could potentially
be candidate for these trials: (1) individuals with excessive exposure to tobacco or alcohol who are at
high risk for developing SCCHN; (2) individuals with OPML who harbor high-risk features of their
lesions evolving into invasive cancers; and (3) patients who have been cured of an initial SCCHN
primary, but remain at risk of developing SPT.

3. Methods

This review was based on a comprehensive search on PubMed, Google Scholar and Medline
Ovid using medical subject heading (MeSH) terms “head and neck cancer chemoprevention”,
“cancer chemoprevention”, and “head and neck cancer chemoprevention trials”. Inclusion criteria
were studies published in humans, as well as published preclinical data in human cell lines and animal
models. Patient information, including treatment response, recurrence, and follow-up time, when
available, was extracted. Information presented in Table 3 was obtained from clinicaltrials.gov using
the same search terms.

4. Past Chemoprevention Efforts

4.1. Retinoids

Early observational studies demonstrated that vitamin A deficiency in animal and human
systems led to abnormal differentiation of epithelial cells and metaplasia, which could be reversed
by retinoids [25,26]. Retinoids are postulated to work by restoring nuclear retinoid receptor beta
(RAR beta) mRNA expression, which resets an abnormally proliferating clone of premalignant cells
into normal growth and differentiation [27]. Initial chemoprevention efforts therefore focused on
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naturally occurring and synthetic vitamin A analogues (vitamin A, beta-carotene, cis-retinoic acid,
etretinate, and retinyl palmitate). Hong et al reported that 1–2 mg/kg daily dose of 13-cisretinoic acid
(13-CRA), given to patients with oral leukoplakia significantly decreased the size of the lesions and
completely reversed dysplasia in 54% of patients, compared with a placebo [28]. Relapse occurred
in over half of the responders 2–3 months after drug cessation. They then randomized 103 patients
curatively treated for stages I-IV SCCHN, to daily high-dose 13-CRA (50–100 mg/m2 body surface
area (BSA)) vs. placebo for 12 months [29]. Although there were no significant differences in local
or distant recurrence, the group receiving the study drug had significantly fewer SPT (4% vs. 24%,
p = 0.005). However, 13-CRA did not prolong OS, with the majority of patients being alive in both
study arms [30]. In the landmark Phase III trial of retinoid intervention, patients curatively treated
for Stage I–II SCCHN were then randomized for 30 mg daily dose of 13-CRA or a placebo for three
years [31]. A lower dose was chosen because of the observed high toxicity rate and low compliance to
treatment with the previously tested high doses of 13-CRA. Patients were monitored for four years
beyond treatment completion, and there were no significant differences in SPT or OS between the
two study arms. Current smoking was found to be associated with the acquisition of SPT and with
decreased OS. The exclusion of advanced stage patients, the substantially lower dose of retinoid used
in this study, and the possible effect of smoking cessation on SPT and OS made it difficult to confirm
or refute the beneficial chemoprevention findings from earlier studies. Currently, no sound evidence
exists to support its clinical use.

4.2. Cyclooxygenase-2 (COX-2) Inhibitors

COX-2 plays a role in the progression of epithelial tumors by influencing cellular functions such as
apoptosis, angiogenesis, proliferation, invasion, and metastasis [32]. Renkonen et al. found an increasing
gradient of cyclo-oxygenase-2 (Cox-2) expression when studied by immunohistochemistry in normal oral
mucosa, dysplastic epithelium, and invasive squamous cell carcinoma (SCC) [33]. Shiotani et al. reported
that although COX-2 protein was barely expressed in normal rat tongue epithelia on Western Blot analysis,
there was a six-fold increased expression in 4-nitroquinolone-1-oxide (4-NQO)-induced squamous cell
carcinoma (SCC) lesions [34]. Wang et al. first reported on the chemopreventive efficacy of celecoxib
in oral cancer development in a nude mouse model [35]. The mice were intradermally inoculated with
oral carcinoma cells, and then fed a celecoxib-supplemented diet or regular diet. Celecoxib significantly
deferred tumor cell growth and decreased tumor volume. There was also decreased neo-vascularization
in the tumor sites, suggesting an anti-angiogenic effect. Saba et al. studied COX-2 expression by
immunohistochemistry in non-cancerous tissue, progressive stages of OPML and carcinoma in situ (CIS)
lesions from non-smoking, non-cancer subjects [36]. They found that COX-2 expression incrementally
increased through premalignancy and was less intense in the severe dysplasia/CIS stage as well as
in malignant cells. Cumulative data provided the rationale for studying COX-2 inhibitors for their
chemopreventive efficacy in OPML. However, results from observational and case-control studies are
conflicting. A questionnaire-based matched case-control study of 529 patients with SCCHN found
that aspirin use decreased the risk of SCCHN by 25%, and the benefit accumulated with length of
treatment [37]. Women derived greater benefit, while patients with a history of heavy tobacco and
alcohol consumption did not. In a blind, randomized trial of oral ketorolac rinse solution, there was
no difference in the extent of leukoplakia versus placebo [38]. Wirth et al. measured changes in
prostaglandin E-2 (PGE-2) levels in 22 patients with OPML treated with celecoxib [39]. In 18 pairs
of biopsies from baseline and 12-weeks post-treatment, PGE-2 levels decreased by 38% (p = 0.002).
In 12 biopsies (67%, p = 0.0129) severity of dysplasia improved after 12 weeks, and in 8 of 11 biopsies
(73%, p = 0.0703), there was continued improvement beyond 12 months. COX-2 inhibitor use was
found to significantly accentuate the risk of cardiac complications in placebo-controlled trials for the
prevention of colorectal adenomas [40,41], leading to an eventual decline in their use. Also, a recently
published meta-analysis of eleven observational studies suggested that overall, the use of non-steroidal
anti-inflammatory drugs (NSAID) does not significantly decrease the risk of SCCHN (OR = 0.95; 95%
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confidence interval (CI), 0.81–1.11) [42]. Based on these data, they currently have no established role in
head and neck cancer chemoprevention.

4.3. EGFR Inhibition

The epidermal growth factor receptor (EGFR)-signal transducer and activator of transcription
(STAT)-3 signaling pathway plays a key role in SCCHN growth, survival, and prognosis [43]. Shin et al.
demonstrated significant upregulation in EGFR expression between dysplastic tissue and SCCHN [44].
Leeman-Neill et al. reported on a 4-NQO-induced murine model of oral carcinogenesis which was
utilized to investigate the chemopreventive activities of erlotinib and guggulipid (STAT-3 inhibiting
compound) [43]. Dietary guggulipid did not protect against oral carcinogenesis. However, mice
on an erlotinib-supplemented diet demonstrated a 69% decrease (p < 0.001) in the development of
premalignant and malignant lesions versus those on a control diet. With the rationale to test EGFR
inhibitors in the clinical setting, a phase II trial of cetuximab, a monoclonal anti-EGFR antibody,
in high-risk pre-cancerous lesions of the upper aerodigestive tract, demonstrated complete reversal
of dysplasia in four of 12 patients (33%) treated with weekly doses for eight weeks versus zero of
five patients in the observation arm [45]. However, intravenous treatment with cetuximab posed a
limitation to the longer duration of testing. The convenience and availability of oral EGFR tyrosine
kinase inhibitors (TKI) led to the design and implementation of the phase III randomized Erlotinib
prevention of oral cancer (EPOC) trial [24]. 150 patients, who were determined to have high-risk OPML
based on specific LOH profiles and previous history of oral cancer, were randomized to treatment with
oral erlotinib 150 mg daily dose or placebo. Three-year oral cancer-free survival (CFS) was lower for
the high-risk LOH group versus the low-risk LOH group (74% vs. 87%, HR, 2.19; 95% CI, 1.25–3.83;
p = 0.01). Although an increase in EGFR gene copy number was associated with high-risk LOH profile
(p < 0.001) and lower CFS (p = 0.01), it did not portend greater efficacy with erlotinib. There was also
no significant difference in three-year CFS between arms [hazard ratio (HR), 1.27; 95% CI, 0.68–2.38;
p = 0.45]. These results do not support use of erlotinib in the chemoprevention setting.

A combination of EGFR TKI and celecoxib was studied for its effects on SCCHN cell lines and
showed significant G1 arrest, apoptosis, and suppressed capillary formation of endothelium, leading
to inhibited growth of all five cell lines tested, and suggesting there might be an additive or synergistic
decrease in COX-2 expression [46]. Zhang et al. then reported effects of celecoxib alone, ZD1839
(an EGFR TKI) alone, or a combination of the two on nude mice injected with a human SCCHN cell
line [47]. Tumor growth in the combined treatment was significantly inhibited versus control (p < 0.001),
ZD1839 (p = 0.005), or celecoxib alone (p < 0.001). Saba et al. then conducted a Phase I study to establish
maximum tolerated dose (MTD) for the combination [48]. The MTD of erlotinib in combination with
celecoxib at 400 mg BID was 50 mg per day, and the onset of skin rash was the dose-limiting factor.
Twelve patients with OPML, dysplasia and CIS were treated for a median duration of 5.38 months.
Overall pathologic response rate was 63%. The average time to development of more severe dysplasia
or malignancy was 25.4 months. EGFR and p-ERK downregulation in follow-up biopsies correlated
with response to treatment. Although early results seemed promising, COX-2 inhibitors have fallen
out of favor due to their adverse cardiac profile, impeding further investigation of the combination in
head and neck cancer chemoprevention.

4.4. Micronutrients

Several natural compounds and micronutrients (green tea extract, curcumin, resveratrol,
soybean extracts, pomegranate juice, broccoli sprout extract, vitamin C, vitamin E, and lysophilized
black raspberries) have been under investigation for their efficacy in head and neck cancer
chemoprevention [49–56]. These compounds contain high levels of polyphenols with anti-oxidant
properties, and are postulated to inhibit carcinogenesis through their action on downstream signaling
pathways [53,54,57].
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Warner et al. evaluated the preclinical efficacy of topical freeze-dried black raspberries (BRB) on
the prevention of OPML progression in at-risk hamster cheek pouch (HCP) mucosa [55]. After 12 weeks,
SCC multiplicity (−41.3%), tumor incidence (−37.1%), and proliferation rate (−6.9%) were reduced
in HCP receiving BRB. Topical BRBs correlated with an increase in RB1 expression in developing
oral lesions.

Bauman et al. investigated the chemopreventive potential of sulforaphane (a bioactive metabolite
of glucoraphanin, found in broccoli sprout extracts) using in vitro models of non-cancerous and
cancerous mucosal epithelial cells and an in vivo model of 4-NQO induced murine oral cancer [58].
In a non-cancerous cell line and in 4 SCCHN cell lines, the investigators observed induction of NRF2
and its target genes NQO1 and GCLC, which mediate carcinogen detoxication. Sulforaphane also
brought about inactivation of pSTAT3, a factor in SCCHN oncogenesis, and significantly decreased the
growth of 4-NQO-induced tongue tumors in mice. These findings support further clinical investigation
of sulforaphane in the chemoprevention of SCCHN.

Katiyar and co-workers at the University of Alabama reported growth inhibitory effects of
phytochemicals on human SCCHN cell lines [59]. Treatment of human SCCHN cell lines with grape
seed proanthocyanidins (GSP) significantly decreased cell viability, induced apoptosis and G1 arrest,
inhibited expression of Cyclin D1/D2, and cyclin dependent kinases (CDK), downregulated E2F
transcription factor, activated caspase-3, and reduced EGFR expression [60]. There was also decreased
cell invasion and activation of NF-κB/p65, a downstream target of EGFR, and inhibition of epithelial
to mesenchymal transition, a key process involved in disease progression [61]. The same group also
tested SCCHN cell lines with honokiol, a phytochemical from the magnolia plant, and observed the
inhibition of cell viability, decreased EGFR expression, and EGFR-dependent signaling [62]. When
administered to nude mice, similar inhibition of the EGFR signaling pathway was noted. Molecular
docking analysis demonstrated that honokiol has stronger binding with EGFR when compared to
gefitinib. Taking together these findings and the presumption that micronutrients will cause fewer
systemic toxicities, these agents merit further investigation in humans.

Tables 1 and 2 list the completed chemoprevention trials to date in patients with OPML, and a
curatively treated malignancy index, respectively. Table 3 lists studies currently underway.

Table 1. Randomized controlled squamous cell cancers of the head and neck (SCCHN)
chemoprevention trials for patients with oral premalignant lesions (OPML).

Study Author, Year Intervention N Endpoint & Results

Hong, 1986 [28]
13-cisretinoic acid (13-CRA)

(1–2 mg/kg/d) or
placebo × 3 months

44
OPML clinical and histologic
response. 13-CRA decreased

OPML size and reversed dysplasia

Lippman, 1993 [63]

13-CRA
(1.5 mg/kg/d × 3 months), then

randomize: 13-CRA
(0.5 mg/kg/d × 9 months) or

β-carotene (30 mg/d × 9 months)

70

OPML clinical & histologic
response. Following high-dose

13-CRA, low-dose 13-CRA better
than β-carotene in maintaining
response. On long term f/u, no

difference in OCFS between arms.

Sankaranarayanan, 1997 [64]
Vit A (3000 IU/week × 12 months)

or β-carotene
(360 mg/week × 12 months)

160
Complete regression of OPML.

Both regimens better than placebo
at inducing OPML remission.

Mulshine, 2004 [38]
Ketorolac oral rinse (10 mL of
0.1% sol, swish/spit BID for

30 s × 90 d) or placebo
57 OPML clinical response rate.

Negative study

Papadimitrakopoulou, 2008 [65] Celecoxib 100 mg BID or 200 mg
BID or placebo × 12 weeks 49 OPML clinical response rate.

Negative study

Papadimitrakopoulou, 2009 [66]

13-CRA (0.5 mg/kg/d × 1 year,
then 0.25 mg/kg/d × 2 years) or
β-carotene 50 mg/d + retinyl

palmitate 25,000 U/d or
retinyl palmitate

162

3 month OPML clinical response.
Negative study. 3 month OPML

response did not correlate
with OCFS
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Table 1. Cont.

Study Author, Year Intervention N Endpoint & Results

Tsao, 2009 [67]
Green tea extract (500, 750 or

1000 mg/m2 TID) or
placebo × 12 weeks

41 3 month OPML clinical response.
Negative study

Armstrong, 2013 [68] BBIC (swish & swallow BID) or
placebo × 6 months 132 OPML clinical response rate.

Negative study

Nagao, 2015 [69]
B-carotene 10 mg daily + Vit C

500 mg daily or
placebo × 12 months

46 OPML remission. Negative study

William, 2015 [24] Erlotinib 150 mg daily or
placebo × 12 months 395

OCFS. Negative study.
Prospectively validated

high-risk LOH

Abbreviations used: 13-CRA (13-Cis-retinoic acid), d (day), Vit (vitamin), sol (solution), BID (twice daily), TID
(thrice daily), BBIC (Bowman-Birk Inhibitor concentrate), f/u (follow-up), OCFS (Oral cancer-free survival).

Table 2. Randomized controlled chemoprevention trials of SCCHN second primary tumors (SPTs).

Study Author, Year Intervention N Results

Hong, 1990 [29] 13-CRA (50–100 mg/m2/d) or
placebo × 12 months

103 Effective in preventing SPT

Bolla, 1994 [70]
Etretinate (50 mg/d × 1 month,

then 25 mg/d)
vs. placebo × 24 months

316 No differences in local, regional or
distant recurrence.

Jyothirmayi, 1996 [71]
Retinyl palmitate

(200,000 IU/week) or
placebo × 1 year

106 Higher frequency of recurrences
but no SPT in Vit A group

Van Zandwijk, EUROSCAN,
2000 [72]

Retinyl palmitate
(300,000 IU/d × 1 year then

150,000 IU/d × 1 year) or
N-acetylcysteine

(600 mg/d × 2 years) or both
or neither

2592
No benefit in OS, EFS, or rate of

SPT formation with 2 years
supplementation

Mayne, 2001 [73] B-carotene 50 mg/d or placebo 264 No decrease or delay in SPT

Khuri, 2006 [31] 13-CRA (30 mg/d) or
placebo × 3 years 1190 No decrease in rate of SPT or

death

Abbreviations used: OS (overall survival), EFS (Event-free survival), d (day).

Table 3. Trials currently accruing patients for SCCHN chemoprevention.

NCT # Population Intervention N Phase Endpoints

NCT02608736 Patients cured of index SCCHN
Valproic acid

1500 mg/d × 3 months
vs. placebo

30 0 Change in saliva
protein/histone acetylation

NCT01414426 Patients with OPML Vandetanib vs.
placebo daily × 6 months 54 2 Effect on

microvessel density

NCT00099021 Patients with OPML Pioglitazone daily × 12 weeks 21 2a Reversal of hyperplastic/
dysplastic leukoplakia

NCT01504932 Patients with surgically treated
oral cancer

LBR lozenges QID × 6 months
vs. observation 44 Pilot Prevention of recurrent

oral cancer

NCT02007200 Patients with stages I-IV SCCHN
undergoing surgery

Soy isoflavones × 14 days prior
to surgery 44 2

Change in p16
methylation & expression

of p16, COX-2, VEGF,
EGFR, IL6, p53 and BclxL
in tumor and non-tumor

adjacent mucosa

Abbreviations used: LBR: lyophilized black raspberry, d (day).
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5. Novel Candidate Targets and Endpoints

Multiple international research teams have performed next-generation sequencing of invasive
SCCHN [74–77], of which the TCGA data provides the most comprehensive analysis. A wealth of
data has emerged from these efforts, enabling therapeutic trials to be designed that target actionable
alterations. This analysis also highlights the differences in molecular profiles of SCCHN with viral
versus non-viral etiology, and from varied geographic regions.

Similar information would be invaluable, but is lacking in oral precancerous lesions. Campbell
et al. recently made a call for the development of a Pre-Cancer Genome Atlas (PCGA) to capture
serial changes in the molecular profiles of premalignant lesions as they progress towards, or regress
from malignancy in multiple tumor types [78]. This information would not only serve to develop
novel targeted strategies to delay or reverse carcinogenesis, but would also enable the development of
prognostic and predictive biomarkers that could serve as tools for early detection, risk stratification,
patient selection for studies, and as surrogate endpoints in clinical trials.

5.1. Notch-1

The Notch pathway is intricately involved in several cellular functions, including maintenance of
stem cells, proliferation and apoptosis [79]. Exome sequencing has shown Notch-1 to be the second
most commonly mutated gene in SCCHN after TP53 [74,77]. Notch signaling can exert either activating
or tumor suppressive effects in a variety of solid and hematological malignancies [80]. A bimodal
pattern of Notch pathway alterations in SCCHN has previously been reported, with a smaller subset
of patients with inactivating Notch-1 receptor mutations and a larger subset exhibiting increased
expression or gene copy number [81]. The potential implication of a concerted effort of genomic
characterization of OPML was recently demonstrated by the identification of Notch-1 mutations in 54%
of primary oral SCC and 60% of premalignant lesions collected from patients in China [82]. In contrast
to Notch-1 inactivating mutations previously reported in Caucasian-predominant populations,
gain-of-function or activating mutations were predominantly seen in the Chinese sample, signifying
a targetable driver in OPML. Although risk of progression to malignancy associated with a Notch-1
mutation is currently unknown, this should be investigated in a larger sample with longitudinal
follow-up. Currently, Notch pathway inhibitors are being tested in clinical trials for the treatment of
other advanced malignancies. They may have application in the subset of OPML or SCCHN patients
with activating mutations as a prevention measure. However, information from an etiologically and
ethnically diverse sample of precancerous lesions would be vital to assess the frequency of a driver
mutation and enable appropriate patient selection onto pilot studies.

5.2. Stat-3

Signal transducer and activator of transcription 3 (Stat-3) relays intra- and extracellular signals
to the nucleus, mediates transcription of target genes and thus plays a key role in cell survival,
motility and tumorigenesis across several human malignancies [83]. Stat-3 is a constitutively activated
oncogenic transcription factor in SCCHN [84]. Its activation is an early event in SCCHN carcinogenesis,
implicating that its inhibition may be a potential chemopreventive strategy [85]. Peyser et al. recently
demonstrated that targeting of Stat-3 with a small molecule inhibitor, Stattic, exerted a chemopreventive
effect against chemically-induced oral cancer in a preclinical mouse model (p = 0.04) [86]. Stat-3
inhibitors are currently in development and testing in early-phase clinical trials for the treatment of
advanced solid malignancies. Stat-3 as a chemoprevention target in SCCHN merits further exploration.

5.3. CCR7

Chemokine receptor 7 (CCR7) is a transmembrane protein that is expressed by migrating cells,
to home in to lymphoid tissues which express its ligands [87]. Upregulation of CCR7 expression in
SCCHN is associated with increased tumor cell survival, invasiveness, potential for metastases, and
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resistance to treatment [88,89], making it an important pathway to elucidate to better understand
its contribution to tumorigenesis. Mburu and colleagues employed immunohistochemical staining
on a tissue microarray of 47 SCCHN patient tumors to determine if CCR7 upregulation impacted
progression-free survival (PFS) and overall survival (OS) [90], and found that it was indeed associated
with significantly worse median PFS (p < 0.013) and OS (p < 0.026). Yang et al. reported that
praline-rich tyrosine kinase 2 (Pyk-2) is activated when CCR7 binds with its ligand CCL19 in SCCHN
cells [91]. The same group of authors then demonstrated that Pyk-2 acts as an important downstream
signaling player of the CCR7 pathway in SCCHN by regulating CCL19 dependent tumor cell migration,
metastasis and viability [92]. Monoclonal antibodies targeting chemokine receptors are being tested in
clinical trials against a variety of cancer types, particularly lymphomas and leukemias [93]. Preclinical
testing in SCCHN/pre-malignant cell lines and mice models is warranted for possible exploration as a
chemopreventive option.

5.4. TAK1

Transforming growth factor β activated protein kinase 1 (TAK1) was initially identified to be
a key regulator of inflammation and cell survival [94] and brings about these effects, in part, via the
downstream mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB). Pan and
colleagues reported that TAK1 activation is associated with increased CCR7 expression in breast cancer
cells [95]. Huang et al. confirmed that the converse is also true—TAK1 inhibition by 5Z-7-Oxozeaenol
(5Z-O) was associated with suppression of downstream signaling and CCR7 downregulation in breast
cancer cell lines, resulting in decreased tumor growth and lymphatic invasion when tested in vivo in
mouse axillary lymph nodes [96]. Singh et al. described that TAK1 promotes cell viability in KRAS
dependent colon cancer cells [97,98]. Xenografted tumors in mice were created using KRAS dependent
cell lines. Selective inhibition of TAK 1 by intraperitoneal injection of 5Z-7-oxozeaenol resulted in
significant regression of tumors within 6 days of treatment. Novel TAK1 inhibitors are currently
in development for therapeutic trials in KRAS enriched tumor types such as pancreatic cancer [99].
This ubiquitous signaling pathway merits further study in SCCHN cell lines.

5.5. NF-κB

NF-κB is a transcription factor implicated for its role in cancer cell survival and acquisition of
chemotherapeutic resistance, including to cisplatin [100,101]. Yan and colleagues have reported that
highly metastatic SCCHN cell lines overexpress NF-κB (p < 0.01) [102], and their in vitro treatment with
selective inhibitors reduces cell invasiveness. In nude mice, the authors also found decreased lymph
node and lung metastases. Unfortunately, clinical trials with bortezomib alone or in combination
with chemotherapy in SCCHN have shown disappointing response rates [103,104]. Trials studying its
potential role in combination with radiation with or without systemic therapy have completed accrual
and are yet to be reported (NCT00629226, NCT01445405, NCT00011778, NCT00329589). Nonetheless,
this remains an important pathway is most tumor types, including SCCHN, and warrants further
exploration in the chemoprevention setting.

5.6. TP53/p63

p53 is a tumor suppressor protein which serves as a key regulator of genes associated with cell
cycle arrest during times of DNA damaging processes such as inflammation [105]. P53 mutation is
an early step in SCCHN carcinogenesis, and also the most frequently detected molecular aberration,
having been reported in 50–80% of cases in some series [74,106]. It is also associated with
alcohol/tobacco use, and worse clinical prognosis [107,108]. Extensive research over several decades
has focused on attempting to restore p53 function via drug therapy, but this has not translated into
clinical benefits.

P63, which is a family member of p53, has been reported to be overexpressed in up to 80% of
squamous malignancies [109]. Through its upregulation, Rocco and colleagues showed that it facilitates
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SCCHN cell survival via p73 suppression, [110] which, much like p53, mediates cell apoptosis. Given
the significance of this pathway in SCCHN, efforts need to be targeted early on to prevent OPML
progression to frank malignancy.

6. HPV-Related Oropharyngeal Carcinoma

HPV-Related Oropharyngeal Carcinoma (HPV-OPC) presents a unique challenge for devising
chemoprevention strategies, given the distinct biology of the disease. The HPV-16 strain has emerged
as an increasingly frequent etiologic factor for the development of oropharynx cancer (OPC) [11]. HPV
viral proteins E6 and E7 promote cell cycle progression and viral DNA replication in mucosal epithelial
cells via p53 tumor suppressor protein degradation and retinoblastoma tumor suppressor protein
ubiquitination, respectively [111,112]. A cross-sectional study of over 5000 participants using their
rinses and testing for HPV DNA by polymerase chain reaction (PCR) estimates that approximately
7% of the adult population harbor active oral HPV infection, with the prevalence being higher among
men than women [113]. Analysis of registry data from Wayne State University has also revealed
racial disparities, with African-Americans having a significantly lower rate of HPV-OPC versus other
races (odds ratio 0.14, 95% CI 0.05–0.37), despite adjusting for tobacco and alcohol use [114]. Another
recent report by Zandberg et al. from the University of Maryland similarly shows significantly greater
likelihood of HPV-OPC patients to be white, and also notes that there has been a significant increase in
HPV-OPC among both white and black patients when comparing data from 1992 to 2007 [115]. In the
1990s, 33% of Caucasian patients had HPV-OPC, and none among black patients. In the 2000s, 17.7% of
black patients and 54% of Caucasian patients had HPV-OPC, suggesting a rising trend among all races.

Commercially available vaccines contain the inactive L1 viral capsid protein from different HPV
sub-types, eliciting a virus neutralizing antibody response and preventing initial infection with the
HPV types in the vaccine [116]. In the double-blind randomized Costa Rica Vaccine trial, Herrero et al.
evaluated the efficacy of the bivalent HPV 16/18 vaccine in reducing oral HPV infection four years
following vaccination [117]. A total of 7466 women were randomized to receive the HPV16/18 vaccine
or hepatitis A vaccine as control. At the four-year study visit, the control group had 15 prevalent
HPV16/18 infections while the vaccine group had one, resulting in a vaccine efficacy of 93.3% (VE).
The study was limited in its assessment because baseline oral HPV status was not obtained, as it was
not initially designed to evaluate VE against oral HPV infections. Given the gaps in our knowledge
pertaining to the natural history of oral HPV infection, we also cannot directly infer that the vaccine
would prevent OPC. Vaccination cannot be used to treat established infections [118] and according to
data from the National Immunization Survey-Teen, 2015, community uptake remains lower than the
Tdap and meningococcal vaccines (63% for girls and 50% for boys) [119]. To overcome some of these
limitations, therapeutic HPV vaccines, which aim to generate a cell-mediated immune response to HPV
oncoproteins E6/E7, are being developed for use in people with prevalent HPV infection and would
likely be invaluable as a cancer prevention measure [120]. These are currently under investigation.

7. Epstein-Barr Virus-Related Nasopharynx Carcinoma

Human infection with Epstein-Barr virus (EBV) is very common among all populations and has
life-long persistence [121]. In 1973, EBV was first detected by in situ hybridization in nasopharynx
carcinoma (NPC) tumor cells [122], and is now associated with most cases of NPC, particularly in
the high-incidence regions of China and south-east Asia [123,124]. EBV encodes several surface
glycoproteins of which gp350 is the most abundant, and has been the most widely studied and
deployed of all vaccine immunogens [125]. Several early-phase in-human trials have tested
recombinant and vaccinia virus expressing gp350 vaccines, and some were able to induce the
production of neutralizing antibodies against EBV [126–130]. Therapeutic vaccines, targeting latent
membrane proteins (LMP1/2) and aiming to induce cellular immunity, have also been tested in
patients with NPC, with some patients demonstrating T-cell and clinical responses [131–135]. These
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will be further tested in placebo-controlled trials, and may hold promise in future prevention trials
for EBV-NPC.

8. Immune Checkpoint Inhibition

The activity of PD-1 inhibition in squamous cell cancer of the head and neck has led to FDA approval
of pembrolizumab and nivolumab in platinum-refractory recurrent or metastatic disease [136–138].
This has been followed by proposals to study PD-1-directed antibodies in oral premalignant lesions.
A trial nearing activation [NCT02882282] will administer four doses of pembrolizumab to patients with
oral intra-epithelial neoplasia and the molecular high-risk profile of LOH at 3p14 and/or 9p21, plus at
least at one additional chromosomal site (4q, 8p, 11p, 13q, or 17p) for patients with no prior oral cancer,
or LOH at 3p14 and/or 9p21 for those with a prior history of invasive oral cancer. Given intravenous
administration, the high cost of PD-1 antibodies and the approximately 15% risk of high grade toxicities
necessitating immunosuppressive therapy or hospitalization, the ultimate utility of this approach is
likely to depend on identifying patients who are not just at high risk for subsequent invasive cancer,
but who are at high risk for death from head and neck cancer.

9. Nano-Chemoprevention

The use of nanotechnology-based regimens for cancer prevention was first introduced as a
concept by Hasan Mukhtar in 2009 as a way to improve the systemic delivery and bioavailability
of promising chemopreventive agents [139]. The authors encapsulated green tea polyphenol
epigallocatechin-3-gallate (EGCG) in polylactic acid-polyethylene glycol nanoparticles and found that
EGCG exerts its proapoptotic, anti-angiogenic effects with over a 10-fold dose advantage. Sulfikkarali
et al. evaluated the chemopreventive efficacy of free naringenin (a naturally occurring plant flavonoid
known to have anti-inflammatory and anti-cancer effects [140]) versus naringenin-loaded nanoparticles
(NARNP) against 7,12-dimethyl benz(a)anthracene (DMBA) induced oral SCC developed in the buccal
pouch of golden Syrian hamsters [141]. Oral administration of NARNP completely prevented tumor
development in DMBA painted animals whereas 30% of animals treated with free naringenin and
DMBA developed oral SCC. Resveratrol is a dietary polyphenol with demonstrated anti-tumor
proliferation effect in several tumor models [142]. However, its clinical applicability has been
limited due to its extreme photosensitivity, low chemical stability and limited bioavailability. Recently,
nanoformulations have been successfully developed to deliver sustained doses of reserveratrol in
cell cultures and animal models. Most recently, Li et al. reported significantly greater inhibition of
SCCHN cell lines with nanoformulations of salvianolic acid B, compared to an equivalent amount
of free salvianolic acid B [143]. Nano-chemoprevention could thus hold promise in overcoming
pharmacokinetic, pharmacodynamic and toxicity limitations in a future generation of chemoprevention
trials studying promising agents with restricted clinical application on account of these issues.

10. Future Perspectives

Head and neck cancer chemoprevention has entered a molecularly defined era of personalization.
However, from our past attempts, we have learned that our greatest payoff would come from
improving on our understanding of the biology of the earliest stages of carcinogenesis. Key to this
would be a large-scale, multi-institutional effort to genomically characterize precancerous lesions, akin
to the TCGA. Given that only a fraction of premalignant lesions progress to invasive cancers, it is
important to develop prognostic biomarkers that identify high-risk lesions and predictive biomarkers
that can ideally be incorporated into the eligibility criteria, used as targets for novel therapies, and serve
as endpoints on the future generation of clinical trials. This strategy would embody the advent of
precision medicine in cancer chemoprevention, ensure appropriate utilization of our current knowledge
and resources, and maximize our chances at success.
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