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Abstract: Movement of tumours, mostly by respiration, has been a major problem for
treating lung cancer, liver tumours and other locations in the abdomen and thorax. Organ
motion is indeed one component of geometrical uncertainties that includes delineation and
target definition uncertainties, microscopic disease and setup errors. At present, minimising
motion seems to be the easiest to implement in clinical practice. If combined with adaptive
approaches to correct for gradual anatomical variations, it may be a practical strategy. Other
approaches such as repainting and tracking could increase the accuracy of proton therapy
delivery, but advanced 4D solutions are needed. Moreover, there is a need to perform clinical
studies to investigate which approach is the best in a given clinical situation. The good news
is that existing and emerging technology and treatment planning systems as will without
doubt lead in the forthcoming future to practical solutions to tackle intra-fraction motion
in proton therapy. These developments may also improve motion management in photon
therapy as well.
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1. Introduction

Movement of tumours, mostly by respiration, has been a major problem for treating lung cancer,
liver tumours and other locations in the abdomen and thorax. Organ motion is indeed one component
of geometrical uncertainties that includes delineation and target definition uncertainties, microscopic
disease and setup errors [1]. Respiratory movements are dependent to some extend on the location of
the tumour (e.g., close or away from the diaphragm) and some characteristics of the lungs such as the
presence of bullous emphysema [2–7]. In case of lung cancer with mediastinal lymph node involvement,
it has been demonstrated that the movement of the primary tumour and the lymph nodes is not necessarily
in the same phase [7], with the consequence that solutions that only take care of the movement of the
primary tumour risk to induce systematic errors for the lymph nodes. The differential movement of the
primary tumour and the lymph nodes is not only occurring during the delivery of a radiation fraction,
but also between fractions [8]. Besides baseline shifts of primary tumours, the relative position of the
primary tumour to individual lymph nodes, between lymph nodes and between the primary tumour, the
lymph nodes and the bony anatomy and the carina changes between fractions [9]. It is clear that the
optimal coverage of the CTV (clinical target volume) of the primary tumour and of the lymph nodes
poses considerable challenges in view of the intra- and inter-fractional movements that are not the same
for all targets. Excellent reviews have already been published on tumour movements in proton therapy
(for example, [10–15]), but here we will place more emphasis on tracking and robust planning.

2. Tackling Movements in Photon Therapy

2.1. Respiratory Correlated Imaging

At present, four-dimensional (4D) CT imaging has been widely introduced to get insight in the
respiration-induced changes and is now considered standard of care in lung cancer radiotherapy [16].
Motion compensated cone beam CT (MC-CBCT) have been developed as well [17]. Because both
4D-CT and 4D-MC-CBCTscans contain artefacts due to residual motion and breathing irregularities,
the mid-ventilation and later the mid-position reconstruction scan was developed [18,19]. These
methodologies ensure that no systematic errors of respiratory motion are entered into the treatment
planning process.

2.2. Population-Based Margins

A very frequently used method to take into account geometrical uncertainties are population-based
margins [20]. Amongst others, the so-called “van Herk recipe” calculates the margin around the CTV
that is needed to deliver at least 95% of the prescribed dose to 90% of the patients [20]. To calculate the
CTV to PTV (planning target volume) margin, apart from the SD (standard deviation) of the systematic
and random errors, the width of the penumbra modelled by a cumulative Gaussian and the inverse
cumulative standard-normal distribution at the prescribed PTV minimum dose level. In the lung where in
photon therapy the increased range of secondary electrons results in a broadening of the beam penumbra,
the additional margin for random errors is small. Systematic errors therefore have a dominant effect on
the cumulative dose, especially in the lungs.
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2.3. Individualised Margins

The ITV (internal target volume) encompasses all motion and shape changes over the respiratory
cycle [21]. In the mid-position (MidP) technique, the time-average position of the tumour and the
standard deviation of the motion are derived from the 4DCT scan [20]. The MidP concept leads to
smaller volumes than the ITV, without jeopardizing target coverage [22,23]. This is because respiratory
motion blurs the dose distribution similar to random errors, indicating that the effect of respiratory
motion during treatment delivery is small even for considerable tumour motion. It is clear that this
situation is completely different in proton therapy.

3. Tackling Movements in Proton Therapy

The interest in proton therapy is mostly fuelled by the dose reduction proximal to the tumour and the
absence of dose distal from the target. This results in a decrease of the integral dose to the patient and
improved sparing of OAR a few centimetres from the target. The lateral penumbra of protons though is
larger than that of photons [24]. Because of the range uncertainties, the distal fall-off of protons is rarely
used to spare an OAR that is within 1–2 cm to the target volume in the direction of the beam. Moreover,
a simple concept such as the PTV is not suitable for proton therapy as geometrical uncertainties distort
the dose distributions because of range uncertainties [25].

In passive systems (broad beams), only range uncertainties caused by anatomy variations need to
be addressed. In pencil beam scanning (PBS) systems, however, there is the potential interference
between beam delivery dynamics (active delivery) and motion of target and organs at risk. The
robustness of the dose distributions will also depend on the type of scanning chosen, uniform scanning
or intensity-modulated proton therapy (IMPT). In uniform scanning, every energy layer is scanned
uniformly, leading to a flat dose plateau in a homogeneous medium. Heterogeneous anatomies need to
be compensated by a range compensator, as in passive systems. In IMPT, there is 3D modulation of the
intensity in order to achieve a uniform dose to the target without the need of a range compensator. Every
incident beam may deliver a uniform dose (single field uniform dose or SFUD) or only the combination
of all incident beams lead to a homogeneous dose. In this review, we will cover active systems only,
assuming that all issues related to breathing for passive systems must be addressed for active systems,
the reverse statement being not always true.

The effects of motion on proton beam dose distribution has been reviewed elsewhere [10]. Motion
affects dose distribution by dose blurring, dose deformation due to anatomy variation and the
interplay effect. Possibilities to tackle these problems are margins [11,26–30], minimise motion [31],
rescanning [27,32–38] tracking [39–53] and robust planning [54–56]. The latter two will be discussed
in more detail.

Given the sensitivity of PBS beam spot range calculation based on imaging data, the image quality in
terms of motion artefacts will need to be improved. In PBS proton therapy, the total dose distribution also
consists of a large number of proton beam spots, showing approximately Gaussian distributions laterally
with σ = 4–7 mm, and a typical low dose plateau followed by a sharp Bragg peak (BP) at the distal part
of the dose deposition. Any relative displacement of these sharp spot dose depositions will cause local
over and under-dosages inside the target volume, hampering the robustness of the dose distributions to
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motion-related range variations. On the other hand the need for adequate 4D imaging might be higher
for proton therapy that for photon therapy.

Tracking and Gating

Like in photon therapy, beam tracking involves the 3D position of each pencil beam that is adjusted
to the real-time variation in patient geometry [39–41]. Theoretically, this tackles all the problems of
movement. Apart from being technically very demanding in proton therapy, tracking may not be suitable
for all moving targets such as mediastinal lymph nodes unless more convenient tracers are developed
and the problem of different movement of the primary tumour and each individual lymph nodes can be
addressed. However, for some locations such as liver tumours, tracking may be the optimal solution.

In coin lesions in the lung, it may be necessary to implant fiducial markers to visualize the tumour
location in planar kV imaging [42]. In general, it is important that the fiducial marker is visible/detectable
in the radiographs however for PT one should also consider the perturbations in the dose distribution
caused by the implant. Newhauser et al. [43] and Giebeler el al. [44] have performed Monte Carlo
simulations for pelvic PT to investigate the use of different materials and marker sizes in combination
with PT, They conclude that stainless steel is more suitable in terms of perturbation then the existing
gold markers generally used in photon therapy. Also tantalum has been used in PT of the eye as fiducial
marker material. The interest of treating moving tumours with PT will stimulate development for novel
types of fiducials in the coming years. A remaining disadvantage of fiducial markers in or close to the
target is the limited information about the position of the OAR in the proximity of the tumour. Dedicated
study focusing on this issue and the need for that information in PT of moving tumours is required. Also
the development of integrated real-time 3D imaging, such as MRI [45], integrated in radiation therapy
treatment units currently happening for photon therapy will at some point move to PT.

An interesting technology is prompt gamma [PG] range verification [46], which allows for real-time
verification of the BP position during PT delivery. During their transport in the patient, some protons
suffer nuclear interactions, leaving the target nucleon in an excited state. The fast component (“prompt”)
of the decay process leads to the generation of several secondary particles, including protons, deuterons,
alphas and gammas. These gammas may leave the patients and can be imaged by appropriate camera
designs [47]. It has been shown that the fall-of of the prompt gamma signal is well correlated with the BP
position. Bom et al. [48] have investigated a prompt gamma solution, where showed that under common
therapy conditions enough data may be collected during one spot-step (in the order of 10 ms). With this
they anticipate a performance with this system which could be used to monitor real-time the location of
the BP. The question is whether real-time feedback to the BP steering with PG is a possibility. The PG
imaging as such delivers information about the range, but no does not contain anatomical information
about the target location. When a deviation is detected of range, the only way to respond would be
to change the beam energy, to correct for that. The reason why the BP can me multiple, the change
of patient position of internal anatomical changes. If however the internal anatomy shifts without large
changes in local densities, the PG as such would not deliver any info of even detect a deviation. However,
at least PG can become an interesting technology when it comes down to real-time verification any type
of respiratory correlated treatment approach.
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Once the target volume can be localized in real-time during breathing, it has to be decided what
kind of adaptation of the treatment parameters is used to correct for organ motion. Schätti et al. [49]
advised motion management applying gating, breath-hold or tracking for motion amplitudes exceeding
10 mm. Gating is one approach where the beam on/off is triggered by the target position, whether or not
combined with patient involving breath-hold. As was pointed out by Matsuura et al. [50], on the short
term gated PT approach seems to be the most feasible for use in a clinical setting for compensation of
respiratory motion in the near future. Most state-of-the-art PT systems have a beam control interface,
allowing beam triggering by 3rd party devices such as optical surface tracking, spirometers or tension
belts registering breathing motion. As the selected gate is covering a substantial part of the breathing
motion, and there exists inter-cycle variability of breathing motion, it should be further investigated
whether rescanning/repainting is required for this level of residual motion in PT. Tsunashima et al. [51]
have investigated gated PT using a synchrotron-based pulsed beam and described the synchronization
issue of the respiratory gate level and synchrotron magnet excitation cycles. For a similar setup Matsuura
et al. [50] investigated the relation between the dose errors and the motion characteristics, varying
different parameters such as BP sharpness, spot size, spot spacing and number of required re-paintings.
They also quantified the interaction between the direction of the motion and the spot scanning directions,
in terms of dose distortion. Cyclotron based systems with continuous beams or pulsed beam at high
frequencies do not suffer from synchronization issues during gated PT delivery. The delay or latency to
trigger on/off the beam is of the order of size of a pulse length, hence milliseconds.

For tumour tracking in photon therapy usually the beam aperture is adjusted to the continuously
changing tumour position. Solutions such as robotic gantry tracking [52], DMLC tracking [53] and
gimballed linac tracking [54] are being used in clinical practice. None of these solutions is taking into
account the changes in radiological path length to the target depth, related to changes in local anatomy in
the beam portal. As these approaches are usually applied in SBRT settings, it is assumed that this effect
is compensated for by the large number of beam orientations. In a PT PBS treatment, where the number
of beams usually does not exceed 3, this assumption might not hold.

Essentially the scanning beam of a PBS system could be ideally suited for real-time pursuit of a
moving tumour. The scanning magnet speed for lateral deflection of the beam is high enough to adapt
the beam spot position to the target position, superimposing motion compensation on the layer beam
spot scanning. The location of the pencil beam can be changed every 10 ms. With axial beams in
the thoracic region, and the most prominent motion component in craniocaudal direction, this can be
handled by the scanning magnets. The question rises whether also energy switching should play a role
to compensate for changes in radiological path length. The time resolution is 2 orders of size larger in
this depth direction, ranging from 100 ms with mechanical range shifting to 1 s for modification of the
energy upstream in the proton beam line. These will result in an internal latency of the system which
might have to be compensated by forward prediction of the tumour motion.

4. Robust Planning

A plan is said to be “robust” if the treatment plan quality is within requirements in the presence of
uncertainties (beam and patient model) [10]. The most satisfactory solution is to explicitly account for
these uncertainties in the optimisation cost function. Several methods have been proposed for robust



Cancers 2015, 7 1148

planning [55–57]. They minimize either the worst-case dose in every voxel (correlation between voxels
disregarded) or the worst-case scenario (correlation preserved). Typically, robust optimisers take as
parameters a generic range uncertainty and the magnitude of systematic setup errors in 6 directions.
To date, none of the proposed optimisation methods include full 4D optimization, that is, optimizing
the dose distributions using all phases of a 4D-CT as already implemented by some groups for photon
techniques. Therefore, margins (ITV) are still required to ensure robustness against breathing motion.

The dose calculation algorithm has also a significant influence on the robustness of the treatment
plan. Because of the presence of heterogeneities, range uncertainties may be larger with conventional
(analytical) algorithms than with accurate Monte Carlo simulations [58]. Dose calculations algorithms
based on Monte Carlo simulations are typically much slower than analytical algorithms, which prevented
their generalized introduction in treatment practice. However, the simplification of the physics and the
introduction of dedicated computing architecture gave rise to Monte Carlo based algorithms able to
compute dose distributions in a fraction of a minute [59,60].

The interplay effect may be addressed during robust treatment planning. The effect of breathing
motion alone (without interplay) can be quantified by computing the dose from the full treatment plan
(all spots) on every data set of a 4D-CT scan. The effect of the correlation between beam delivery
and breathing should also be simulated by associating the spots to the breathing phases according to
their respective time patterns. Obviously, the resulting dose distribution depends on the initial breathing
phase. The contribution of the interplay effect to the degradation of treatment plan quality can then be
isolated by analysing the differences between the plan computed with breathing motion alone and the
plan simulating the correlation of breathing and delivery motions [61]. Such dose computing scheme
could be introduced in a robust optimization loop, which could lead to a pattern of spots that minimizes
the interplay effect. Monte Carlo simulations have also here an advantage because their computation
time does not scale with the number of CT data sets [62].

5. Conclusions

Motion management or intra-fractional movement is being addressed in many studies, but no clinical
standard for proton therapy has to the best of our knowledge emerged. The issue is indeed much more
complex for proton therapy than for photons. At present, minimising motion seems to be the easiest to
implement in clinical practice. If combined with adaptive approaches to correct for gradual anatomical
variations, it may be a practical strategy. Other approaches such as repainting and tracking could increase
the accuracy of proton therapy delivery, but advanced 4D solutions are needed. Moreover, there is a need
to perform clinical studies to investigate which approach is the best in a given clinical situation.

The good news is that existing and emerging technology and treatment planning systems as will
without doubt lead in the forthcoming future to practical solutions to tackle intra-fraction motion in
proton therapy. These developments may also improve motion management in photon therapy as well.
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