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Abstract: Signal transducer and activator of transcription 3 (STAT3) plays critical roles in 

tumorigenesis and malignant evolution and has been intensively studied as a therapeutic 

target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor 

activity in vitro and in vivo in experimental tumor models and several approved therapeutic 

agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 

inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably 

because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of 

anticancer drug development is lack of efficacy. Genetic interactions among various 

cancer-related pathways often provide redundant input from parallel and/or cooperative 

pathways that drives and maintains survival environments for cancer cells, leading to low 

efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other 

cancer-related pathways may provide molecular insight into mechanisms of cancer resistance 

to pathway-targeted therapies and strategies for development of more effective anticancer 

agents and treatment regimens. This review focuses on functional regulation of STAT3 

activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and 

reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies 

of STAT3 inhibitors.  

Keywords: genetic interaction; cancer; drug development; STAT3; Ras; EGFR; redox; 

reactive oxygen species; synthetic lethality 
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1. Introduction 

Signal transducer and activator of transcription 3 (STAT3) is known to promote tumor cell 

proliferation, survival, and invasion [1,2], mediate procarcinogenic inflammation while suppressing the 

host’s antitumor immunity [3], induce cancer stem cell renewal [4–6], enhance epithelial-mesenchymal 

transition [7,8] and angiogenesis [9,10], and generate positive autocrine and paracrine feedback loops 

between tumor cells and their microenvironments [11,12] by regulating expression of a number of 

cancer-related key proteins, cytokines, and growth factors. Ectopic expression of constitutive STAT3 is 

sufficient to induce transformation of rodent cells in vitro and tumor formation in vivo [3,13]. Constitutive 

activation of STAT3 has been reported in many human cancer cell lines and primary tumors, and this 

activation is associated with poor outcomes of a number of cancers. Inhibiting STAT3 expression or 

phosphorylation using antisense oligonucleotides and small-molecule inhibitors suppressed the growth 

of human and murine tumors in animal models [14–16], demonstrating that STAT3 is a potential target 

for cancer therapy. Substantial efforts have been devoted to developing strategies for pharmaceutical 

intervention directed toward STAT3 functions, including interrupting STAT3 dimerization and 

inhibiting its interaction with its upstream activating kinases or downstream DNA targets using 

oligonucleotides [17], peptides [18], and small-molecule inhibitors [19–22]. A number of STAT3 

inhibitors have been identified and evaluated their antitumor activity in vitro and in vivo in experimental 

tumor models [23–26]. Moreover, several U.S. Food and Drug Administration (FDA)-approved 

therapeutic agents are reported to function as STAT3 inhibitors. For example, pyrimethamine, an 

antimalarial drug [27,28], inhibits STAT3 phosphorylation and is in clinical investigation for treatment 

of leukemia [26,29]. In addition, sorafenib, an inhibitor of RAF and multiple other kinases [30,31] 

approved for the treatment of advanced renal and liver cancer, inhibits STAT3 phosphorylation, 

possibly by activating the phosphatase shatterproof 2 (SHP2), as knockdown of SHP2 expression 

inhibited sorafenib-induced STAT3 phosphorylated Y705 (pY705) dephosphorylation [32,33]. Arsenic 

trioxide, an inorganic compound used to treat leukemia, inhibits STAT3 phosphorylation possibly by 

inhibiting its upstream kinases [34,35]. Furthermore, auranofin, a thioredoxin inhibitor that is used to 

treat rheumatoid arthritis [36], inhibits Janus kinase 1 (JAK1)/STAT3 phosphorylation [37,38]. However, 

most STAT3 inhibitors have yet to be translated to clinical trials for cancer treatment, presumably 

because of pharmacokinetic, efficacy, and safety issues.  

Lack of therapeutic efficacy may be caused by low potency of the candidate drug in inhibiting its 

proposed target. Nevertheless, mutation analyses of primary cancer cells for genes encoding kinases or 

known to be associated with cancers have revealed that individual tumors may harbor multiple changes 

in such genes [39–42]. Several important signaling pathways are often cooperatively involved in 

tumorigenesis and malignant evolution of cancers [39–43]. As a result, interrupting just one of these 

pathways is often insufficient to induce cancer cell death in most cases because redundant input from 

different pathways drives and maintains downstream signaling, leading to low therapeutic efficacy 

because of inhibition of a single target [44,45]. Conceivably, agents that can modulate the functions of 

multiple cancer-related targets and/or pathways will improve the efficacy of cancer therapy because 

they are more likely to have a broad anticancer spectrum and less likely to induce therapy resistance 

than single-target anticancer agents. Indeed, multitarget agents such as sorafenib and sunitinib, which 

block several kinases, have proven to be useful clinically for cancer treatment and have a broader 
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spectrum of activity than single-target agents such as erlotinib and gefitinib [46]. The knowledge on 

genetic interactions among cancer-associated pathways may facilitate development of multitarget 

agents or rational design of combinatorial therapy using single-target agents to enhance therapeutic 

efficacy. This review describes potential interactions of STAT3 with other cancer-associated pathways 

and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors. 

2. STAT3-Associated Single-Gene Diseases  

The human STAT3 gene is located on chromosome 17q21.31 and encodes two major isoforms of 

STAT3 proteins via alternative mRNA splicing: STAT3α (p92) and STAT3β (p83). A 55-residue  

C-terminal transactivation domain of STAT3α is deleted in STAT3β and replaced by seven unique  

C-terminal residues (CT7) whose functions remain undefined [47]. Both isoforms contain STAT 

protein interaction, DNA-binding, and Src homology 2 (SH2) domains, but only STAT3α contains a 

transactivation domain at the C-terminus.  

Targeted disruption of the murine Stat3 gene leads to early embryonic lethality. Stat3-deficient 

embryos have exhibited rapid degeneration from embryonic day 6.5 to embryonic day 7.5 [48]. 

Ablation of isoform-specific gene expression demonstrated that Stat3β is not required for viability of 

mice but is involved in inflammation because mice with deficiency of Stat3β were viable and fertile; in 

contrast, Stat3α-deficient mice died within 24 h after birth [49]. In comparison with Stat3
−/−

 mice that 

die at early stages of embryonic development [48], expression of Stat3β rescues the embryonic 

lethality of a Stat3-null mutation, and Stat3β alone can induce transient transcription of acute-phase 

genes, suggesting that although Stat3β does not have a transactivation domain, it may induce the 

expression of specific Stat3 target genes by interacting with other transcriptional factors. A study of 

green fluorescent protein-tagged Stat3α and Stat3β demonstrated that the two isoforms have distinct 

intracellular dynamics, with Stat3β exhibiting prolonged nuclear retention and reduced intranuclear 

mobility, especially following ligand stimulation, and prolonged nuclear retention but not reduced 

intranuclear mobility mapping to the CT7 domain of Stat3β [50]. 

De novo dominant-negative mutations in the DNA-binding domain of STAT3 have been identified 

in autosomal dominant or sporadic cases of hyperimmunoglobulinemia syndrome (HIES; or Job 

syndrome) in humans [51]. These mutations rendered patients’ peripheral blood cells defective in 

responding to interleukin (IL)-6 and IL-10 stimulation. De novo deficiency mutations of STAT3 have 

also occurred in the SH2 domain [52,53] and the transactivation domain [53,54] of STAT3 in patients 

with HIES from different ethnic groups [55]. These dominant-negative mutations in STAT3 impaired 

the development of IL-17-producing T cells, which is critical to the clearance of fungal and 

extracellular bacterial infections and may be the underlying mechanism of susceptibility to recurrent 

infections commonly seen in HIES patients [56–58]. 

There are only a few reports of STAT3 gene mutation in human cancer cells. In one report, a patient 

with HIES owing to STAT3 mutation had a subsequent primary parotid gland diffuse large B-cell 

lymphoma [59]. Because HIES patients are predisposed to lymphoma [60], STAT3 mutations may 

occur with other types of lymphoma in HIES patients. Mutations in the SH2 domain that lead to 

constitutive activation of STAT3 were recently reported in patients with human inflammatory 

hepatocellular adenoma, a benign liver tumor, suggesting that STAT3-activating mutations play roles 

in human tumorigenesis [61]. In contrast with STAT3 gene mutations, constitutive activation of 
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STAT3 and/or STAT5 at the protein level has occurred in many human cancer cell lines and primary 

tumors. For example, persistent activation of STAT3 and STAT5 has been reported in breast cancer, 

lung cancer [62], glioma [63], liver cancer [15], pancreatic cancer [64,65], and nasopharyngeal 

carcinoma [66] cases. STAT3 also is activated in 77% of lymph node metastases and 67% of bone 

metastases of prostate cancer [67]. In addition, constitutive JAK3 and STAT5 activation has been 

observed in patients with T-cell leukemia caused by human T-cell leukemia virus type 1 [68]. High levels 

of STAT3 protein expression have been associated with poor tumor differentiation and/or development of 

metastasis and poor survival rates in leukemia [69], lymphoma [70], osteosarcoma [71,72], glioma [63], 

gastric adenocarcinoma [73,74], colorectal cancer [75,76], bladder cancer [77], and cervical squamous 

cell carcinoma [78] cases. These data demonstrate the critical roles of the STAT3 pathway in 

malignant progression. 

3. Genetic Interactions and STAT3 Activation 

Genetic interactions are functional cross-talks among genes, which regulate or compensate for one 

another in many signaling and/or metabolic pathways, leading to phenotypic changes, including 

disease status (synthetic sickness) and viability (synthetic lethality or semilethality) alterations. 

Genetic interactions have been used by investigators to identify genes that are crucial to the survival of 

certain oncogene-transformed cells [79–82] or that sensitize cells to chemotherapy [83,84] or to find 

small molecules that selectively induce the death of oncogene-transformed isogenic cells [85–87]. 

Several models have been proposed to account for these genetic interactions [88–90], including the 

components of parallel pathways that combine to regulate an essential biological function, subunits of 

an essential multiprotein complex, or components of a linear essential pathway (Figure 1) [91]. Thus, 

key components in the signaling pathways that regulate STAT3 functions or regulate parallel pathways 

involved in similar biological processes or common downstream targets as STAT3 may be partners of 

genetic interactions with STAT3. The status and functionality of these partners are critical determinants 

of cellular fate when the functionality of STAT3 is disrupted. 

Figure 1. Diagram of genetic interactions. (A) The essential biological function E is 

regulated by pathways A and B. A functional change in either of these pathways, such as a 

mutation in A1 or B1, is insufficient to induce dysfunction of E. However, the simultaneous 

presence of a mutation in A1 and a mutation in any of B1, B2, or B3 induces dysfunction 

of E (or phenotype changes). Thus, A1 has genetic interaction with B1, B2 and B3, and 

vice versa; (B) The essential biological function E is regulated by pathway A alone, in 

which A2 is a multiprotein complex composed of X, Y, and Z, while A3 has homologues 

of α, β and γ. Genetic interaction may exist among X, Y and Z, and among A3α, β and γ.  
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STAT3 is activated by tyrosine phosphorylation in response to stimulation of a variety of cytokines, 

such as IL-6, leptin, prolactin, erythropoietin, and thrombopoietin, and growth factors, such as epidermal 

growth factor (EGF), fibroblast growth factor, insulin-like growth factor, hepatocyte growth factor, 

platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) [92–96]. 

Interaction of those ligands with their receptors in a cell triggers receptor phosphorylation by intrinsic 

receptor tyrosine kinases or non-receptor protein tyrosine kinases such as JAK and Src family members, 

resulting in translocation of STAT3 protein from the cytoplasm to the phosphorylated receptors and 

further STAT3 phosphorylation at Y705 by these kinases (Figure 2). Once phosphorylated, STAT3 

forms dimers and translocates to the nucleus, where it activates expression of its target genes [97,98]. 

In addition, STAT3 has been identified in mitochondria [99] and some endosomes in the  

cytoplasm [100]. Mitochondrial localized STAT3 was independent of Y705 phosphorylation and 

DNA-binding activity but required for Ras-mediated oncogenic transformation. In contrast, enrichment 

of STAT3 in some endosomes is stimulated by IL-6 and dependent on pY705, co-localized with 

myeloid differentiation primary response gene 88 (MYD88), and enhanced by dominant-negative 

mutants of GTPase dynamin II [100]. Interestingly, a gain-of-function mutation of MYD88 that 

promotes cell survival via activation of IL-1 receptor-associated kinase 1, nuclear factor (NF)-κB, and 

JAK/STAT3 signaling is frequently found in cases of a subtype of B-cell lymphoma [101]. 

Knockdown of MYD88 expression has significantly inhibited secretion of IL-6 and phosphorylation of 

STAT3 in B-cell lymphoma cells. 

Figure 2. Diagram of STAT3 pathways. STAT3 is activated by upstream receptor  

tyrosine kinases, intracellular kinases, or histone acetyltransferases and regulates a diverse 

biological functions. 

 

The activity of STAT3 is also regulated by serine phosphorylation and lysine acetylation. 

Phosphorylation of S727 in STAT3 by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated 

kinase (ERK) may enhance or be required for STAT3/DNA interaction [102,103] and promote 

tumorigenesis independently of pY705 [102,104]. Blockage of S727 phosphorylation via 
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transgenic mice [105]. Nevertheless, S727 phosphorylation also has negatively regulated Y705 
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between the STAT3 and NF-κB pathways [110]. A recent study demonstrated that multiple  

lysine-acetylation sites adjacent to Y705 are essential for pY705 phosphorylation in STAT3 [111]. 

Within cells, STAT3 activity is also regulated by several inhibitory molecules that prevent its 

continued activation. For example, tyrosine dephosphorylation of receptors and JAK receptor-associated 

phosphatases lead to inactivation of JAKs and prevent further STAT activation [112–114]. Histone 

deacetylases and NAD-dependent deacetylase sirtuin-1 inactivate STAT3 by reversing lysine 

acetylation [109,111,115]. Moreover, expression of STAT3-activated suppressor of cytokine signaling 

(SOCS) proteins [116,117] or cytokine-induced SH2 protein [118] provides negative feedback for 

JAK/STAT activation. SOCS proteins bind directly to and inhibit the activity of tyrosine-phosphorylated 

JAKs and cytokine receptors. Also, phosphorylated STAT proteins can be inactivated in the nucleus 

via dephosphorylation [119] or by interaction with the nuclear protein inhibitor of activated  

STAT [120,121] or cytoplasmic protein aplasia Ras homolog member I [122]. The latter protein was 

found to form a complex specifically with STAT3 in the cytoplasm, preventing IL-6-induced STAT3 

accumulation in the nucleus and inhibiting STAT3-dependent promoter activity while only moderately 

affecting STAT3 phosphorylation [122]. In addition, tripartite motif 8 (TRIM8) interacts with protein 

inhibitor of activated STAT3 (PIAS3), which inhibits IL-6-ependent activation of STAT3. Ectopic 

expression of TRIM8 cancels the negative effect of PIAS3 on STAT3 activation via either degradation 

of PIAS3 in the ubiquitin/proteasome pathway or exclusion of PIAS3 from the nucleus. 

The complexity of STAT3 activity regulation networks suggests that pharmaceutical inhibition of 

STAT3 activity can be achieved with a variety of mechanisms. Small-molecule inhibitors of upstream 

kinases JAK, Src, and Bcr-Abl are predicted to inhibit STAT3 activation. Indeed, the JAK inhibitors 

INCB16562, AZD1480, and tofacitinib (CP-690550) have potently blocked STAT3 signaling, suppressed 

cancer cell proliferation, or induced apoptosis in vitro and tumor growth in vivo [123–125]. 

Additionally, the JAK inhibitors ruxolitinib and tofacitinib have been approved for treatment of 

myelofibrosis [126–128] and rheumatoid arthritis [129,130], respectively. However, depletion of c-Src 

by small interfering RNA (siRNA) and sustained inhibition of Src by dasatinib led to JAK-dependent 

STAT3 activation in lung cancer cells in vitro and in vivo [131]. Phosphorylated STAT3 levels were 

initially decreased but strongly increased after sustained treatment with dasatinib, suggesting the 

existence of a compensatory feedback pathway that supports cancer cell survival by regulating STAT3 

activity [132]. 

4. Cross-Talk of STAT3 with Other Cancer-Associated Pathways 

4.1. RAS Pathway  

As members of a subfamily of small guanine nucleotide-binding proteins, Ras proteins (HRAS, 

KRAS, and NRAS) cycle between active GTP-bound and inactive GDP-bound forms [133,134]. 

Binding of Ras with GTP is facilitated by guanine nucleotide exchange factors (GEFs) via catalysis of 

the release of GDP and is required for the interaction of Ras with target proteins [135]. Intrinsic 

GTPase activity enhanced by GTPase-activating proteins [136] converts GTP to GDP, leading to 

inactive GDP-bound Ras. Ras mutations that diminish GTPase activity or decrease GDP-binding 

capacity render Ras in a constitutively active GTP-bound status. Activating mutations in RAS genes 
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are among the most frequently observed oncogenic mutations in human cancer cases. In the absence  

of a Ras mutation, increased Ras activity in human cancer cells frequently results from gene 

amplification [137,138], gene overexpression [139], or an increase in activity of upstream signals from 

tyrosine kinase growth factor receptors such as Her2 and EGF receptor (EGFR) [140,141]. Activation 

of EGFR results in the assembly of Grb2 and the Son of Sevenless (SOS) complex; SOS is one of the 

guanine nucleotide exchange factors that activate RAS [141,142]. RAS activation has resulted in 

stimulation of a wide range of downstream signaling pathways, most notably the RAF/mitogen-activated 

protein kinase (MAPK) kinase (MEK)/ERK [143,144] and phosphoinositide 3-kinase (PI3K)/AKT/ 

mammalian target of rapamycin pathways. GTP-RAS binds directly to and activates the catalytic 

subunit of PI3K p110 independently of the regulatory subunit PI3K p85 [145,146].  

Both Ras and STAT3 proteins are activated by EGFR [96,141,147] and suppressed by the 

microRNA let-7 [148–151], and both of them regulate the common downstream targets, such as 

cyclin D1 [152–154], Bcl2 family proteins [155–158], Rho family GTPases [159–161], hypoxia-inducible 

factor-1α [162,163], and VEGF [9,164], suggesting that Ras and STAT3 mediate certain parallel, 

complementary, or coordinated biological processes (Figure 3). In fact, STAT3 has been found to be 

an important factor in Ras-mediated oncogenic transformation. Ras transduction in different cell types 

has induced secretion of the cytokine IL-6, whereas knockdown of IL-6 expression, genetic ablation of 

the IL-6 gene, and treatment with a neutralizing anti-IL-6 antibody has retarded Ras-driven 

tumorigenesis [65,165]. A recent study demonstrated that mitochondrial STAT3 is required for  

Ras-induced malignant transformation [99]. This function of STAT3 may be involved in glucose and 

energy metabolism and does not require Y705 phosphorylation or the presence of intact SH2 and 

DNA-binding domains but does require S727 phosphorylation.  

Figure 3. Ras and STAT3 mediated parallel pathways for EGFR and let-7. Ras and 

STAT3 has common upstream regulators and downstream targets.  
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from PanIN to invasive pancreatic ductal adenocarcinoma [65]. Disruption of Socs3, an endogenous 
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and JNK signals are required for STAT3 transcriptional activity induced by the Src oncoprotein [167]. 

STAT3-mediated gene regulation by v-Src is strictly Ras-dependent in NIH 3T3 cells, as STAT3 

function is completely abrogated by expression of dominant-negative Ras or Rac1. 

Both Ras and STAT3 regulate the activity of Rho-family small GTPases. STAT3 regulates Rac1 

activity by interacting with the Rac1 activator betaPIX in the cytoplasm, thereby modulating the 

organization of the actin cytoskeleton and cell migration [159]. Although evidence of Rho  

GTPase-mediated Ras activation is lacking, researchers have shown that Rho GTPases such as RhoA, 

Rac1, and Cdc42 can regulate STAT3 phosphorylation and nuclear translocation [168]. Rho GTPases 

are required for G protein-coupled receptor (GPCR)-mediated JAK/STAT signaling [169].  

GPCR-stimulated Rac activation resulted in generation of reactive oxygen species (ROS), which in 

turn activated the JAK/STAT pathway. Rho GTPase can also activate STAT3 through direct interaction 

with it [170], via the IL-6 autocrine pathway [171,172] or Rho-associated kinase [173]. STAT3 

mediates RhoA-induced NF-κB and cyclin D1 expression and NF-κB nuclear translocation [173].  

In addition, Rac1 is a key mediator of IL-6/gp130-induced STAT3 S727 phosphorylation by  

SEK-1/MKK-4 [174]. 

The interaction between STAT3 and Ras signaling pathways suggests that the functional status of 

STAT3 affects responses of cancer to treatment with agents targeting these signaling pathways. 

Indeed, a study of response to treatment with the MEK inhibitor AZD6244 using a panel of lung cancer 

cell lines revealed that activation of the STAT3 pathway is associated with resistance to AZD6244 [175]. 

Inhibiting STAT3 activity with siRNA or a small-molecule inhibitor dramatically sensitized lung 

cancer cells to treatment with AZD6244 both in vitro and in vivo. Similarly, investigators observed a 

synergistic effect between a PI3K inhibitor and a STAT3 inhibitor in human gastric cancer cells 

harboring KRAS mutations [176]. Moreover, small molecules that induced synthetic lethality in KRAS 

mutant cancer cells [87,177] were found to be a novel class of STAT3 inhibitors [178,179], demonstrating 

that genetic interaction between Ras and STAT3 pathways can be explored for genotype-specific 

anticancer therapeutics. 

4.2. EGFR Pathway  

EGFR-mediated signaling pathways are known to be a driving force in lung tumorigenesis and have 

been extensively investigated as targets for cancer therapy. Activating EGFR mutations are detected in 

about 10%–17% of human lung adenocarcinoma cases, with higher percentages in women and patients 

with no smoking history [39,180–182]. In addition, EGFR gene amplification and overexpression have 

been reported in 20%–60% of primary non-small cell lung cancer tumors [183,184]. Amplification of 

the EGFR gene has been observed in colorectal cancer [185,186], pancreatic cancer [187,188], head 

and neck cancer [189], and glioma [190] cases. Inducible expression of human lung cancer-related mutant 

EGFR genes in transgenic mice caused the development of lung adenocarcinoma, whereas stopping 

inducible expression of the mutant EGFR genes led to lung tumor regression [191,192], demonstrating 

that activating EGFR mutations are required and sufficient for lung cancer tumorigenesis and 

malignancy maintenance. Small-molecule inhibitors (erlotinib, gefitinib, and afatinib) and a monoclonal 

antibody (cetuximab) targeted to EGFR have been used for treatment of lung, colorectal, head and 

neck, and pancreatic cancers. 
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STAT3 is identified because of its activation by tyrosine phosphorylation in response to exposure to 

EGF and IL-6 [96]. Activation mutations of EGFR have been reported to activate STAT3, which is 

required for the oncogenic effects of EGFR mutations [193,194]. EGFR can activate STAT3 via direct 

recruitment and activation of STAT3 [195], upregulation of IL-6 expression, and activation of the 

gp130/JAK/STAT3 pathway [194] or activation of STAT3 by activating non-receptor tyrosine kinases 

such as Src and Pyk2 [196,197]. An in vitro study using recombinant proteins demonstrated that 

STAT3α and STAT3β formed stable complexes with EGFR and were phosphorylated in tyrosine by 

the EGFR and activated for binding to DNA [198]. Activation of EGFR results in autophosphorylation 

of several tyrosine residues in EGFR, which provide docking sites for direct recruitment of downstream 

substrates. In EGFR, pY1068 and pY1086 are the docking sites for STAT3 [195] and Grb2, an SH2 

domain-containing adaptor protein [199,200]. In contrast, Shc, another SH2 domain-containing 

adaptor protein, binds to Y1148 and Y1173 in EGFR [190,201], whereas phospholipase Cγ binds to 

Y992 [202] and the protein tyrosine phosphatase SHP-1 binds to Y1173 in EGFR [203]. 

As a key downstream mediator of the EGFR signaling pathways, STAT3 is crucial to EGFR-mediated 

cell growth in vitro. Inhibition of STAT3 expression by an antisense oligonucleotide dramatically 

suppressed the transforming growth factor-α/EGFR-mediated growth of transformed epithelial cells [204]. 

STAT3 is critically involved in EGFR-induced cancer cell migration and invasion [205,206]. Moreover, 

EGFR physically interacts with STAT3 in the nucleus, leading to transcriptional activation of 

inducible nitric oxide synthase [207], suggesting that STAT3 functions not only as a downstream 

mediator of EGFR but also as a partner of EGFR in regulating diverse biological functions. In addition 

to EGFR, STAT3 is activated by many other growth factor receptors, such as PDGF receptor [208,209] 

and MET [210,211] (Figure 2). STAT3 may be a mediator of MET-induced resistance to anti-EGFR 

therapy. In cancer cells with high MET activity, inhibition of EGFR activity alone likely is not sufficient 

to abrogate STAT3 activity. Synthetic lethal screening of an EGFR-centered signaling network using a 

siRNA library revealed that STAT3 is one of the targets that synergize with EGFR antagonists to 

reduce cancer cell viability and tumor size [84]. Inhibition of the STAT3 pathway has been shown to 

overcome resistance of lung cancer [212,213], head and neck cancer [214], pancreatic cancer [215], 

and glioma [216] to anti-EGFR therapy. Furthermore, treatment of cancer cells with EGFR inhibitors 

such as afatinib and dacomitinib can activate the IL-6/JAK/STAT3 signaling pathway, which in turn 

induces resistance to these agents [217]. Inhibiting IL-6/JAK/STAT3 signaling or STAT3 activity 

alone with antisense oligonucleotides, siRNA, or small-molecule inhibitors can dramatically sensitize 

cancer cells to treatment with EGFR inhibitors [212,214,217]. 

4.3. Reduction-Oxidation Pathways  

In reduction-oxidation (redox) reactions, a molecule’s oxidation state changes because of a gain or 

loss of electrons. Inside a cell, redox metabolism is balanced by production and elimination of ROS, a 

group of oxygen- or nitrogen-containing molecules that are highly active in redox reactions. Produced 

in living organisms via a wide range of physiological process, ROS can serve as second messengers in 

response to exposure to growth factors, hormones, and cytokines. For example, H2O2 participates in 

essentially all receptor tyrosine kinase-mediated signal transduction, including EGF, PDGF, insulin, 

and cytokines [218,219]. Also, ligand-receptor interactions can induce the production of ROS, which 
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regulates the intracellular activity of key signaling components, including protein kinases and protein 

phosphatases [218], and is required for cell proliferation [220], adhesion [221], migration [222,223], 

differentiation [224], oncogenic transformation [225], and apoptosis [226–228]. ROS also are involved 

in several critical steps in cancer initiation and progression, including somatic mutations and genome 

instability in cancer cells [229–231], epithelial-mesenchymal transition [230,232], metastasis [233–235], 

angiogenesis [236,237], and maintenance of stem cell status [238,239]. Nevertheless, deregulation  

of redox metabolism in cancer cells caused by overexpression of oncogenes such as Ras [225],  

c-Myc [231], c-Abl [240], and Src [241] and growth factor receptors such as c-MET [230], insulin-like 

growth factor receptor [242], EGFR [243], and VEGF receptor [244] may render cancer cells more 

vulnerable than normal cells to oxidative stress-induced death [245,246]. Indeed, ROS generation and 

consequent oxidative damage are among the major mechanisms by which radiotherapy [247,248] and 

chemotherapy [249] induce apoptosis. 

Cellular ROS may have either a stimulatory or inhibitory effect on STAT3 signaling depending on 

the cellular context or level or duration of ROS generation in a cell. Oxidative stress has been reported 

to stimulate the JAK/STAT pathway [250–252]. Also, H2O2 stimulates the activity of the STAT 

kinases JAK2 and TYK2 and activates STAT1 and STAT3 in fibroblasts, lymphocytes, and cancer 

cells. Activation of STATs by PDGF is markedly inhibited by the ROS scavenger N-acetyl-L-cysteine 

and diphenylene iodonium, indicating that ROS production contributes to STAT activation in response 

to PDGF exposure. These findings demonstrate that the JAK/STAT pathway responds to intracellular 

ROS induction and that PDGF uses ROS as second messengers to regulate STAT activation [250]. 

Stimulation of the JAK/STAT cascade by angiotensin II requires O2
−
 anions generated by the 

NAD(P)H oxidase system [253]. ROS are mediators of GPCR-stimulated Rac activity and subsequent 

activation of the JAK/STAT pathway [169]. Increasing evidence suggests that the cellular redox state 

is involved in regulating tyrosine phosphatase activity via reversible oxidization of catalytic cysteine to 

sulfenic acid (Cys–SOH) [254–256]. Moreover, cell death caused by oxidative stress triggers secretion 

of IL-11 from dying cells because of ERK2-mediated activation of the transcriptional factor Fra-1, 

leading to STAT3 activation and compensatory proliferation of neighboring cells [257]. Interestingly, 

ROS do not induce tyrosine phosphorylation of STAT3 in SYK-deficient human leukemia cells. Inhibition 

of SYK activity by a small molecule prevents ROS-induced activation of STAT3 and overcomes the 

resistance of human B-lineage leukemia and lymphoma cells to ROS-induced apoptosis [258], 

indicating that SYK plays an indispensable role in oxidative stress-induced STAT3 activation in B-cell 

leukemia and lymphoma cells. 

Evidence also suggests that ROS attenuate cytokine-induced JAK/STAT activation [259–261]. Four 

cysteine residues in the catalytic domain of JAK2 (Cys866, Cys917, Cys1094, and Cys1105) provide a 

mechanism for redox regulation in JAK2 via oxidation and reduction of these residues [262]. JAK2 is 

catalytically inactive when oxidized; its activity can be restored via reduction to the thiol state. In 

addition, nitric oxide can markedly suppress endogenous tyrosine phosphorylation of JAK3 and 

STAT5 [257] and leptin-mediated activation of STAT3 [260]. Nitric oxide and other thiol oxidants can 

inhibit the autokinase activity of murine JAK2 in vitro, presumably via oxidation of crucial dithiols to 

disulfides in JAK2. The autokinase activity of JAK3 responds in a similar fashion to exposure to thiol 

redox reagents in vitro and nitric oxide donors in vivo. Treatment with parthenolide, an anti-inflammatory 

compound, increases intracellular ROS level and inhibits JAK1 and STAT3 activation but stimulates 
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the MAPK pathways. Pretreatment with the antioxidant N-acetyl-L-cysteine completely suppressed the 

inhibitory effect of parthenolide on JAK1 and STAT3 [259]. The cysteine residues in STAT3 can be 

modified by S-glutathionylation in response to mild oxidative stress, attenuating IL-6-mediated 

STAT3 activation, as glutathionylated STAT3 is a poor substrate for JAKs [263]. 

In contrast to many reports on ROS-mediated changes in STAT3 activity, only a few reported 

studies have examined regulation of ROS levels by STAT3. In cardiomyocytes, constitutively active 

STAT3 protects against hypoxia- and/or reoxygenation-induced injury by scavenging ROS via 

upregulation of expression of manganese superoxide dismutase and its enzyme activity [264] and via 

upregulation of expression of the ROS scavengers metallothioneins [265]. Depletion of mitochondrial 

STAT3 has resulted in decreased ATP production and triggered ROS production [266,267]. This 

cross-talk between STAT3 and redox pathways suggests that STAT3 plays a critical role in oxidative 

stress-mediated cancer therapy. In fact, the STAT3 inhibitors developed in our laboratory [178,179] 

drastically induced ROS generation in the susceptible cancer cells [179,268,269]. Scavenging of ROS 

using antioxidants such as nordihydroguaiaretic acid, aesculetin, baicalein, caffeic acid, and flavonoids 

abolished their apoptosis-induction activity [268,269], demonstrating the critical roles of oxidative 

stress in antitumor activity induced by this class of STAT3 inhibitors. 

5. Conclusions and Perspectives 

Efficacy and toxicity are the two major issues in drug development. A survey of anticancer agents 

evaluated in human studies from 1991 to 2000 demonstrated that only about 5% of those entering 

clinical trials were approved for clinical use, and the majority of treatment failures in late-phase 

clinical trials of candidate anticancer agents resulted from a lack of efficacy of the drugs [270–273]. 

Genetic interactions among pathways cooperatively involved in initiation and maintenance of 

malignancy indicate that the therapeutic efficacy of single-target therapy for cancer is highly dependent 

on the cellular context of signaling networks. Single-target therapy may be highly effective for cancers 

that are addicted to certain oncogenes. For example, treatment of various cancers in humans with the 

EGFR inhibitors erlotinib and gefitinib [274] and the BCR-Abl inhibitor imatinib [275] already has 

been successful. Nevertheless, the success of such single-target therapeutics relies on the identification 

of potential responders in patient populations. The use of EGFR mutations as biomarkers to identify 

responders has greatly contributed to the success of gefitinib [181,274,276] and erlotinib [181], 

because both gefitinib [277] and erlotinib [278,279] failed to be beneficial in randomized phase 3 trials 

in unselected patient populations. 

The advances in knowledge about networks of genetic interactions are expected to impact strategies 

for enhancing the therapeutic efficacy of anticancer therapy. The interactions of the STAT3 pathway 

with other cancer-related pathways, such as the Ras, EGFR, and redox pathways, indicate that 

simultaneous targeting of several key molecules in these pathways using either combination therapy or 

agents capable of modulating the functions of multiple targets will be required for effective cancer 

therapy. Our own experience in anticancer drug development demonstrated that genetic interactions 

can be exploited for the development of anticancer agents targeting multiple pathways and that 

performing robust compound optimization once a lead compound is identified is critical, as 
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compounds with similar chemical structures and in vitro activity may have dramatically different in 

vivo toxicity and efficacy profiles. 
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