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Simple Summary: Non-genetic transcriptomic plasticity plays a pivotal role in cancer cell resistance
to treatments. This study aims to elucidate the molecular mechanisms underlying the transcriptomic
evolution from diagnosis to relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL). We
conducted single-cell RNA sequencing analysis on paired diagnosis–relapse samples to address
this question. Using hdWGCNA, we constructed gene co-expression networks to identify relapse-
associated networks, modules, and hub genes, potentially indicative of leukemic drivers. Through
combining results from three pairs of patient samples, we identified the most discriminating genes
between diagnosis and relapse using sPLS-DA. A Cox analysis revealed their potential to identify
patients with lower survival in the AALL0434 cohort. These relapse hub genes are promising as
future therapeutic targets or relapse markers.

Abstract: Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with
a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using
single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagno-
sis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis
(hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified
relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed
genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB,
TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress
responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional
remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least
squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are
the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes,
respectively, for each patient). Applying a Cox regression method to these patient-specific genes,
along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated
three model gene signatures that efficiently identified relapsed patients within the cohort. Overall,
our approach identified new potential relapse-associated genes and proposed three model gene
signatures associated with lower survival rates for high-score patients.
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1. Introduction

Acute lymphoblastic T-cell leukemia (T-ALL) is a serious and aggressive form of
leukemia that can affect children and adolescents [1]. It arises from genetic mutations
favoring abnormal proliferation of T-cell progenitors and blocking their differentiation at
various stages, leading to the accumulation of immature and nonfunctional lymphoblasts
in bone marrow and blood [2].

T-ALL cases account for 15% of pediatric and 25% of adult cases of acute lymphoblastic
leukemia (ALL), and generally have a slightly worse prognosis compared to B-ALL. Unlike
B-ALL, targeted therapies and immunotherapies have not yet been proven effective for
T-ALL [3]. Although intensive treatments combining corticoids, anti-tumor antibiotics,
mitotic inhibitors, and antimetabolites achieve high cure rates (80–85%), T-ALL relapses still
have a dismal outcome for 70% of patients due to drug resistance [4]. It is therefore crucial
to identify vulnerabilities in resistant T-ALL cells to develop new selective drugs, guided
by an understanding of the molecular mechanisms underlying leukemia development
and resistance. Genetic profiling has already identified biological subgroups of T-ALL
associated with different gene expression programs and clinical outcomes [5].

The advent of single-cell RNA sequencing (scRNAseq) methods allows for the anal-
ysis of global gene expression at the level of individual cells, providing unprecedented
resolution of cancer mechanisms [6]. scRNAseq offers a comprehensive view of leukemic
cellular heterogeneity, highlighting subpopulations with distinct transcriptomic profiles
contributing to leukemia genesis and/or chemoresistance. We generated scRNAseq data
for paired samples obtained at diagnosis and relapse from three childhood T-ALL cases.
Utilizing high-dimensional weighted gene co-expression network analysis (hdWGCNA),
we deciphered the biological processes underlying leukemia evolution. WGCNA, a sys-
tems biology approach, clusters genes with similar expression patterns into co-expression
modules to reveal genes and their associated biological functions. hdWGCNA facilitated
the identification of hub genes, the most connected genes within a module, which are
considered potential disease drivers [7]. By comparing hub genes between diagnosis and
relapsed T-ALL samples, we elucidated mechanisms associated with treatment resistance
and identified relapse-specific hub pathways as potential therapeutic targets. Applying
various machine learning models to transcriptomic and clinical data from the TARGET
AALL0434 pediatric T-ALL cohort [8], we validated three gene signatures. These signatures,
using transcriptomic data obtained at initial diagnosis, could assign 85% of the 20 relapsed
patients to a low-survival group.

2. Materials and Methods
2.1. T-ALL Patient’s Samples

Blood and/or bone marrow samples were obtained from Hôpital R. Debré, Hôpital
A. Trousseau (Paris, France), and Hôpitaux Civils de Lyon (Lyon, France) and processed
as described previously [9]. Informed consent of patients or of relatives was obtained in
accordance with the Declaration of Helsinki and the Ethic regulations. The research project
was approved by the ethics evaluation committee of Inserm (IORG0003254, FWA00005831).
Human T-ALL samples are detailed in Table S1A.

2.2. 10X Genomics Single-Cell Processing, Libraries Preparation, and Sequencing

DMSO frozen cells were quickly thawed, washed, and resuspended in PBS con-
taining 2% BSA. Cell viability was measured using NucGreen/Hoescht (Merck KGaA,
Darmstadt, Germany) staining, and only samples with a >80% cell viability were pro-
cessed. Cells were loaded on a Chromium Controller (10X Genomics, Pleasanton, CA,
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USA) with a target output of 5000 cells per sample. Reverse transcription, cDNA synthe-
sis/amplification, and library preparation were performed according to the 10X Genomics
protocol (Chromium Next GEM Single Cell 5’Reagent Kits v2 with feature barcoding). The
scRNA libraries were sequenced on an Illumina NextSeq 2000 (Illumina, San Diego, CA,
USA). The QC parameters are presented in Table S1B. The single-cell datasets have been
deposited on the Gene Expression Omnibus portal under series number GSE262271.

2.3. scRNAseq Data Analysis

Single-cell RNA-seq data were processed using the Seurat (5.0.2) pipeline [10] (https://
satijalab.org/seurat/articles/pbmc3k_tutorial, accessed on 20 April 2024) in R (version 4.2.3).
Quality control steps included demultiplexing the data and removing doublet cells and empty
droplets using the HTODemux function with default parameters. Cells were retained based
on the following criteria: (i) a percentage of expressed mitochondrial genes below 5% and
(ii) outliers of the number of detected genes (>200 for patient M104/M127, >300 for patient
M143/M148, >90 for patient M187/M187r). Subsequently, the data were normalized using
the Seurat NormalizeData function through the “LogNormalize” method, using the median
count number for each cell as the scale factor. Principal component analysis (PCA) was
performed on the top 2000 most variable genes. A UMAP (Uniform Manifold Approximation
and Projection) dimensionality reduction was then conducted on the scaled matrix, utilizing
the most important components (combination of all variables), defined as follows according
to the Jackstraw test [11]: M104/M127: first 28 components, M143/M148: first 26 components,
M187/M187r: first 31 components. The single-cell datasets generated for this study were
deposited on the Gene Expression Omnibus portal under the accession number GSE262272.
The R scripts used in this article can be found at Peyronlab.github.io.

2.4. Gene Co-Expression Network Constructions

A gene co-expression network (GCNs) approach can be utilized to unravel the com-
plexity of biological systems by associating genes involved in similar biological func-
tions and comparing different disease stages [12,13], such as diagnosis and relapse of
T-ALL in the present study. GCNs were generated using the R package hdWGCNA
(High-Dimensional Weighted Gene Correlation Network Analysis) version_0.3.01 package (https:
//github.com/smorabit/hdWGCNA, accessed on 20 April 2024), which analyzes co-
expression networks in scRNAseq data [14]. Since WGCNA [15] is sensitive to data sparsity,
we defined metacells (aggregates of small groups of transcriptomically similar cells) using
original scRNAseq data with the MetacellsByGroups function of hdWGCNA, and normalized
the data afterwards with the NormalizeMetacells function. Subsequently, we computed the
expression matrix defined by metacells and specified the soft-power threshold according to
the original WGCNA R package recommendations [7,15]

All standard analyses were conducted according to the official hdWGCNA pipeline,
which can be found at https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.
html, accessed on 20 April 2024.

2.5. Module Projection on Healthy T-Cells Dataset

The modules generated for each patient dataset were compared to a GCNs analysis
applied to healthy T-cells from the 10X Genomics Peripheral Blood Mononuclear Cells
(PBMC) reference dataset (https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_
filtered_gene_bc_matrices.tar.gz, accessed on 20 April 2024) to select leukemia-specific
modules using the ProjectModules function of hdWGCNA.

2.6. Module Preservation Statistics

We assessed the combined preservation statistics of Gene Co-expression Networks
(GCNs) by conducting 250 random permutations to confirm the presence of modules in
healthy T-cells [16]. Additionally, comparing the quality statistics of the modules to their
original dataset enabled us to evaluate the overall quality of the modules generated.

https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://satijalab.org/seurat/articles/pbmc3k_tutorial
https://github.com/smorabit/hdWGCNA
https://github.com/smorabit/hdWGCNA
https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html
https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
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These statistics were computed using the ModulePreservation function of the hdWGCNA
package, which provided various types of compound preservation statistics [6], distin-
guished here by the “.qual” or “.pres” suffixes. The “.qual” suffix measures module quality
by considering the dataset it originates from (the reference dataset) and evaluates the
closeness of its nodes and its uniqueness compared to other modules in the same network.
The “.pres” suffix indicates preservation statistics of a module constructed with the ref-
erence dataset in the projection dataset (in this case, healthy T-cells). We set Z-summary
thresholds according to the literature [16–18]. A Z-summary > 10 suggested strong module
preservation, while 2 < Z-summary < 10 indicated weak to moderate preservation, and
Z-summary < 2 suggested significant variation between the reference and projected mod-
ules. The MedianRank statistic was utilized to compare modules of different sizes [17]. We
considered all of these statistics in light of the notion that modules not preserved between
healthy T-cells and leukemic T-cells (Z-summary < 10) might elucidate T-ALL-specific
biological mechanisms [16].

2.7. Diagnosis–Relapse, Most Discriminating Genes

The top 25 hub genes for each module were selected according to their kME (Mod-
ule Eigengene-based connectivity) value, which provides a quantitative measure of how
closely their gene expression pattern aligns with the overall expression pattern of a
module (1st Component).

Next, we employed a sparse partial least squares discriminant analysis (sPLS-DA)
(R MixOmics package) to identify the most discriminant genes between diagnosis and
relapse [19]. During sPLS-DA, the contribution of each variable to the discrimination
between classes is measured through loadings. Loadings represent the direct regression
coefficients between the original variables and the latent components (linear combinations
of the original variables) extracted by the algorithm. Variables with the largest loadings
have the most influence in determining the components (Figure S4).

To optimize the discrimination capacity of sPLS-DA, the number of components was
chosen using the MixOmics perf function with 10 folds and 50 repetitions, and the tune
function was used to define the number of variables to be considered by components,
with 10 folds and 100 repetitions applied to different vectors, assigning each component
with different numbers of variables. Here, a vector is defined between a low and a high
limit, with a resolution used to narrow the interval between them. On each iteration the
resolution is increased based on the output of the tune function.

Once each patient’s library had been processed, the genes with the highest discrim-
inative power were extracted. For each loading vector, we recovered the top 10 genes
(or all for vectors containing less than 10 genes) with the best loading vector absolute
values per component.

2.8. Relationship between Gene Signatures and Survival

We then assessed the significance of these most discriminating genes in T-ALL patient
survival. Quantification was performed using Cox regression applied to the TARGET-ALL
cohort (n = 249) to investigate the relationship between time to relapse and the expression
of the signature genes. To streamline the selection process in our less intricate signature,
we employed Akaike Information Criterion (AIC) optimization with backward search,
considering all of the genes identified by sPLS-DA. This method allowed us to select the
most appropriate predictors, even incorporating variables that may not individually exhibit
significant effects, provided they contribute slightly to improving the overall model fit
without overly complicating it. We evaluated the significance of these highly distinguishing
genes in determining survival among T-ALL patients by employing Cox regression on the
TARGET-ALL cohort, which consists of 249 patients.
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3. Results
3.1. scRNAseq Analysis of Three Paired Diagnosis–Relapse T-ALL Samples

Our analysis workflow is depicted in Figure 1A. Initially, the scRNAseq data from three
paired diagnosis–relapse pediatric T-ALL samples (patient characteristics are provided in
Table S1A) were analyzed using UMAP (Figure 1B). For libraries one (patient #1, samples
M104/M127) and two (patient #2, samples M143/M148), we observed a clear separation of
diagnosis vs. relapsed cells, indicating significant transcriptomic differences. Conversely,
some degree of overlap was observed between the two samples from library three (patient
#3, samples M187/M187r). This overlapping pattern was evident in the global UMAP
representation of the six samples (Figure S1), demonstrating both inter- and intra-patient
transcriptomic heterogeneity. This heterogeneity was less pronounced for the diagnosis
and relapse samples from patient #3.
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Figure 1. Analysis workflow and presentation of the paired T-ALL samples. (A) Schematic workflow
of the analysis strategy. (B) UMAP graph of the different scRNAseq cells for the three paired samples
at either diagnosis (diag), diagnosis with corticoïd resistance (corticoR), or relapse (rel). Different
modules have different colors. The colors are not conserved between diagnosis and relapse states.

3.2. Construction of Gene Co-Expression Networks

Next, we applied hdWGCNA to the data from each library to construct and visualize
gene co-expression networks (GCNs). From these GCNs, we extracted gene modules
corresponding to genes with similar expression trends, which are represented by UMAP
(Figure 2). Each module was labeled with the top gene exhibiting the highest kME. A
ForceAtlas (version 0.1, https://github.com/analyxcompany/ForceAtlas2, accessed on
20 April 2024) representation displays the relationships between the modules (Figure S6).

https://github.com/analyxcompany/ForceAtlas2
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The hdWGCNA approach highlighted 37 modules (Table S1C), and the differential expres-
sion between diagnosis and relapse states is shown in Figure S2. Among them, 29 were
observed only in leukemic cells and not in normal T-cells (Figures S3 and S4, Table S1D).
The distribution of these leukemic modules was as follows: diagnosis: one for patient
#1, four for patient #2, eighteen for patient #3; relapse modules: one for patient #1, three
for patient #2, and two for patient #3. We observed significant diversity in the modules
at relapse between the three patients (Table S1E). Nevertheless, some similarities could
be observed. Analysis of the “relapse” modules (Table S1F) shows that patients #1 and
#3 both express a module involved in antigen processing and presentation. Genes of the
NF-κB family were observed in patient #1. Patient #2 upregulated a module participating
in cytoplasmic translation, ribosome biogenesis, initiation and elongation of translation, as
well as a module comprising FOS/FOSB/JUN/JUND genes. Patient #3 displayed a module
with genes (TUBB, TUBA1B) that could be involved in cytoskeleton remodeling.
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Figure 2. UMAP representation of gene co-expression networks. Nodes are genes, while edges
are co-expression relationships between genes and hub genes of each module. The node size is
scaled by kMEs. Plotted with hdWGCNA. Different modules have different colors. The colors are
not conserved between diagnosis and relapse states. Subfigures represent the different samples:
diagnosis samples (left) vs. relapse samples (right).



Cancers 2024, 16, 1667 7 of 13

3.3. Search for Conserved Relapse-Associated Hub Genes

We compared the gene networks for each library to select the most conserved hub
genes. Initially, we observed that genes associated with MHC class I complex (HLA-A/B,
beta-2M) were common to the three patients, along with two Krüppel-like factors: KLF2/6.
Additionally, ten other genes (EIF1, EEF1B2, FTH1, UBC, EMP3, MIF, HSP90AB1/AA1,
NME1/2, ARL4C) were common in at least two patients.

3.4. Identification of Diagnosis–Relapse Discriminating Genes

By constructing modules and hub genes subnetworks, we filtered 36,000 starting
features down to only a few hundred involved in different co-expression networks. Se-
lecting potential predictors, we identified 29 modules (see Section 2.3), each containing
25 hub genes, resulting in 481 unique hub genes (Table S2A). Among these, 110 scaled
genes defined by the Seurat workflow at the intersection of the three libraries were ana-
lyzed through sPLS-DA (Table S2B). This analysis provides an overall view of the ability of
genes to best discriminate leukemic cells between relapse and diagnosis, without concern
for the multicolinearity of the variables (Figure 3).Cancers 2024, 16, x FOR PEER REVIEW  9  of  15 
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extract the genes with the highest discriminative potential between diagnosis and relapse cells. The
pair of samples for each patient is shown by a biplot.
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The discrimination between cells from diagnosis or relapse was less pronounced for
patient #3 compared to patients #1 and #2. This reduced transcriptomic disparity for patient
#3 could be attributed to a shorter diagnosis–relapse interval (M187/M187r: 11 months)
compared to patient #1 (M104/127: 19 months) and patient #2 (M143/148: 23 months). A
statistical method was employed to highlight the most important genes, distinguishing
diagnosis from relapse. It identified 67 unique genes distributed as 44, 35, and 31 highly
discriminating genes for patients #1, #2, and #3, respectively. A Gene Ontology (GO)
analysis of these genes is presented in Figure S3. Thirteen genes were found in common
between the three patients (Figure 4 refers to the different gene lists in Table S2C,D).
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Figure 4. Venn diagram to illustrate the number of genes in common between the three libraries,
recovered from sPLS-DA. The diagram was made with the VennDiagram package on R. The red
cartouche highlight the 13 common genes.

3.5. Establishment of Library Gene Signatures and Correlation with Patient’s Survival

To assess whether these three groups of highest discriminating genes could be associ-
ated with patient outcomes, a Cox survival regression analysis was conducted using the
transcriptomic and clinical data from 249 T-ALL patients from the TARGET AALL0434
pediatric cohort. A stepwise model selection using an AIC criterion was performed,
and one survival model was identified for each library. Models 1, 2, and 3 consist of,
11, 7, and 7 genes, respectively (Table S2E).

Subsequently, a scoring system was developed for each model by multiplying the
expression level of each gene by its corresponding Cox coefficient (Figure S5). A “high
score” (above the median score expression) was associated with a shorter survival for the
patient (Figure 5). Each model score could classify 85% (17 patients), 80% (16), and 90% (18)
of the 20 relapses of the cohort in the “High-score” group, respectively.
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In these models, the augmented expression of certain genes was associated with an
increase in the score for the patients, as follows: DUSP6, HSP90AA1, TPX2, TUBA1B, and
ZFP36 (model 1); NDC80, TUBA1B, and ZFP36 (model 2); and DUSP6, HSP90AB1, and
MIF (model 3). Conversely, an increased expression of the following genes was associated
with a lower score: ACTB, HES4, HMGB2, JUNB, PHGDH, and TUBB (model 1); CD52,
DUSP2, MKI67, and TUBB (model 2); and CDK2AP2, JUN, PFN1, and RPS6 (model 3)
(Table S2E). Our findings consistently revealed p-values well below the conventional signif-
icance threshold of 0.05 for Kaplan–Meier plots. This demonstrates the highly significant
power of these gene signatures in discriminating between patients who experienced re-
lapses and those who did not. Specifically, 60% of relapses were similarly assigned to the
three models, with 15% in models 1 and 2, 15% in models 1 and 3 and, finally, 10% in
models 2 and 3 (Figure S6). Figures S7–S9 display optimal values of variables for sPLS-DA,
results of the Cox regression models and Risk parameters of the Kaplan-Meier analysis.

4. Discussion

Cancer cell resistance to treatments can arise due to intrinsic genomic instability [20]
and non-genetic mechanisms generating transcriptomic plasticity [21,22]. In this study,
we employed a systems biology approach, hdWGCNA, to analyze single-cell RNAseq
transcriptomic data obtained from three paired diagnosis–relapse cases of pediatric T-ALL,
aiming to unravel the mechanisms of relapse. Our focus was on relapse-associated gene
networks and hub genes, examining their conservation across the patients. Hub genes,
representing the most connected genes within their module, are considered as potential
drivers or significant players of relapse. However, further biological experiments are
necessary to evaluate their true driver potential.

By delving into the complexity of leukemic transcriptomes through hdWGCNA, we
constructed gene co-expression networks, consisting of functional modules comprising
genes with closely intertwined expression profiles associated with relapse vs. diagnosis.
We extracted the top 25 hub genes exhibiting the highest connectivity within their mod-
ule. Analysis of the different relapse modules revealed considerable diversity among the
three patients, suggesting that resistance mechanisms may vary widely among individuals.
Nonetheless, some commonalities were noted. For example, at relapse, all three patients
expressed modules containing genes of the MHC class I complex (HLA-A/B, beta-2M) in-
volved in antigen presentation, indicating a potential role in immune interference and
contributing to resistance. Additionally, patient #1 exhibited modules expressing genes of
the NF-κB family, while patient #2 displayed a module comprising FOS/FOSB/JUN/JUND
genes, highlighting transcriptional plasticity. Patient #3 showed a module with genes
potentially involved in cytoskeleton remodeling, as follows: TUBB, TUBA1B. Overall, the
hdWGCNA approach proved valuable in identifying some molecular mechanisms associ-
ated with relapse. To further explore common relapse-dysregulated genes, we searched for
“relapse” hub genes shared by all three patients. Aside from HLA-A/B and beta-2M genes,
two Krüppel-like factors, either KLF2 or KLF6, were found, respectively, in samples from
patient #3 and patients #1 and #2.

The zinc-finger transcription factors of the KLF family play crucial roles in various
physiological and pathological processes, particularly during development. While KLF2
and KLF6 are implicated in T-cell biology, their exact roles remain largely undefined [23].
KLF2 expression rapidly extinguished after T-cell activation may promote quiescence,
survival, and migration, whereas KLF6 has dual roles depending on the cellular context.
KLF6 acts as a tumor suppressor in various solid cancers (colorectal, prostate, glioma) [24],
but may also support cancer progression in certain contexts [25]. Notably, KLF6 could
participate in T-ALL resistance by inducing iNOS, as observed in the Jurkat T-ALL cell
line [26]. Additionally, KLF6 has been implicated in the transforming activity of the
oncogenic fusion protein AML-1-ETO in Acute Myeloid Leukemia (AML) [27].

Ten other genes shared at least two patients among them, suggesting that relapse
could be associated with cooperative perturbations in translation (RPs, EIF1, EEF1B2), iron
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metabolism (FTH1), immunity (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), and
metabolism (NME1/2, ARL4C).

From the 481 unique genes identified in the diagnosis and relapse modules, a sPLS-DA
approach identified 41, 35, and 31 genes, respectively, for each of the three patients, showing
the highest discrimination between diagnosis and relapse transcriptomes. Subsequently,
we applied COX regression using transcriptomic and clinical data obtained at diagnosis
from 249 T-ALL patients in the pediatric TARGET AALL0434 cohort. An AIC optimization
generated model prediction signatures consisting of 11, 7, and 7 genes for each pair of
diagnosis–relapse samples. Each of the three models efficiently attributed 80 to 90% of the
20 relapses in the cohort to the high-risk group, associated with a shorter patient survival
as defined by the model. Notably, 60% of relapses were assigned to the high-risk group by
the three models. As the cohort only provides transcriptomic data at diagnosis, we could
not assess the expression of the model signatures in relapsed patients.

Within each model signature, increased expression of certain genes (DUSP6, HSP90AA1,
HSP90AB1, TPX2, TUBA1B, ZFP36, NDC80, ZFP36, MIF) was associated with a higher
relapse risk, while increased expression of others (ACTB, HES4, HMGB2, JUNB, PHGDH,
TUBB, CD52, DUSP2, MKI67, CDK2AP2, JUN, PFN1, RPS6) was associated with a lower
risk of relapse. This suggests that the expression levels and functions of the identified
model genes may reveal specific biological processes or mechanisms influencing patient
survival. For instance, resistance to treatments could be associated with modifications in
signaling, metabolic, and proliferative pathways (DUSP2, DUSP6, RPS6, PHGDH, MKI67,
CDK2AP2), a higher capacity to deal with stress responses (HSP90AA1, HSP90AB1), disrup-
tions in gene expression programs (HES4, HMGB2, ZFP36, JUN, JUNB), or modifications
of the cytoskeleton (ACTB, NDC80, TUBA1B, TUBB, PFN1). Interestingly, MIF expression
has been reported as an independent prognostic factor in ALL patients [28]. These inte-
grated bioinformatic approaches represent the initial stride towards identifying prospective
therapeutic target genes.

5. Conclusions and Perspectives

While T-ALL is treated with chemotherapeutic drugs targeting major functions such
as DNA metabolism and cell division, there is growing interest in tailored treatments for
personalized medicine [4]. Dissecting cancer heterogeneity through single-cell RNAseq
could support the development of precision drugs [29]. The analysis of paired diagnosis–
relapse in primary T-ALL samples reveals both common and specific events during relapse.
Defining the exact role of the potential relapse-associated genes will require (i) studying
their role in relevant PDX models and (ii) analyzing a larger number of paired samples to
cover T-ALL genetic heterogeneity [5], which likely favors the existence of different modes
of resistance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16091667/s1, Figure S1. UMAP analysis of the 3 diag-
nosis and 3 relapse paired samples from three childhood T-ALL. Patient#1: M104 (diag), M127 (rel).
B. Patient#2: M143 (diag with cortico resistance), M148 (rel). C. Patient#3: M187 (diag), M187r (rel);
Figure S2. Differential analysis of module expression. A. Patient#1: M104 (diag), M127 (rel).
B. Patient#2: M143 (diag with cortico resistance), M148 (rel). C. Patient#3: M187 (diag), M187r (rel);
Figure S3. Rank-statistics of preservation of the projection of modules on healthy T-cells for each
patient with 250 random permutations; Figure S4. Z-statistics (Zsummary quality & Zsummary
preservation) of preservation of the projection of modules on healthy T-cells for each patient with
250 permutations. When Zsummary > 10 then we consider a strong evidence that the module is
preserved. If 10 > Zsummary > 2 then we consider a weak to moderate evidence for preserva-
tion [https://doi.org/10.1371/journal.pcbi.1001057]. Quality stats (.qual) tells about the repro-
ducibility of the modules in the reference dataset. On the other side, the preservation stats (.pres)
tells about the reproducibility of the reference modules in the test dataset in other words here
the healthy T-cell PBMC dataset. Small modules (<100) tend to be less preserved but also have
very low quality. Therefore, always check the .qual stats before drawing some conclusion about

https://www.mdpi.com/article/10.3390/cancers16091667/s1
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the preservation of a reference module in the test dataset [https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3024255/. TextS1—Section 4]; Figure S5. Functional enrichment of the modules with
GO databases. For each GO database (GO_Biological_Process_2021, GO_Cellular_Component_2021,
GO_Molecular_Function_2021) the most enriched set per module is showed for each patient; Figure S6.
ForceAtlas (left: diagnostic/right: relapse). Nodes are genes while edges represent co-expression
links between genes and module hub genes. The top hub genes per module are labeled. node size
is scaled by kMEs; Figure S7. Plots of the determination of the optimal values of variables selected
for each components for the sparsity parameters in sPLS-DA for each pair of patients (M104/M127,
M143/M148, M187/M187r) with 10 folds of the M cross-validation and 100 times the Cross-Validation
process is repeated (A) and associated values (B).; Figure S8. Results of the Cox regression models
alimented with sPLS-DA genes. Figure S9. Risk parameters for the different libraries, according to
the Kaplan Meier plots from Figure 5. Table S1: List of modules; Table S2: List of hub genes.
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