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Simple Summary: Reliable preoperative differentiation of pediatric brain tumors can be challenging.
While deep learning models have made significant progress in radiology, their use in pediatric
populations is limited, typically through limited data availability. In this proof-of-concept study, we
investigated the potential of a deep learning classifier trained on a multicenter data set of 195 children
to learn to differentiate between pilocytic astrocytoma and medulloblastoma, the two most common
infratentorial pediatric brain tumors, which in general present with overlapping imaging features.
Our model is validated against the assessment of five independent readers of varying expertise. The
final models performed strongly (AUC 0.986) on the unseen test set, correctly predicting the tumor
diagnosis in 62 of 64 patients (97%). Compared to human readers, the classifier performed significantly
better than relatively inexperienced readers and was on par with pediatric neuroradiologists with
specific expertise in pediatric neuro-oncology. Our work highlights the potential of deep learning
even in this challenging population and warrants future studies, including different tumor types and
diverse acquisition protocols.

Abstract: Medulloblastoma and pilocytic astrocytoma are the two most common pediatric brain
tumors with overlapping imaging features. In this proof-of-concept study, we investigated using
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a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We
developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given
the heterogeneity of imaging data (and available sequences), we used all individually available
preoperative imaging sequences to make the model robust to varying input. We compared the
classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors.
Overall, we included 195 preoperative MRIs from children with medulloblastoma (n = 69) or pilocytic
astrocytoma (n = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier
achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case
of each tumor type. Human reader accuracy ranged from 100% (expert neuroradiologist) to 80%
(resident). The classifier performed significantly better than relatively inexperienced readers (p < 0.05)
and was on par with pediatric neuro-oncology experts. Our proof-of-concept study demonstrates
a deep learning model based on automated tumor segmentation that can reliably preoperatively
differentiate between medulloblastoma and pilocytic astrocytoma, even in heterogeneous data.

Keywords: brain; pediatric brain tumor; MRI; artificial intelligence; deep learning

1. Introduction

Tumors of the CNS constitute the largest group of solid neoplasms in children and
adolescents [1]. Medulloblastomas, comprising 15–20% of all CNS tumors, constitute the
most common malignant CNS neoplasm in this age group. Low-grade gliomas, however,
are by far the most common pediatric CNS tumors, accounting for up to 40% of all CNS
tumors in childhood. Among these, pilocytic astrocytomas are the single most common
entity in children and young adults [2].

Modern imaging techniques have significantly improved the differentiation of low-
and high-grade lesions. Several guidelines providing detailed information for standard
imaging approaches are in place [3,4]. Usually, on MRIs, medulloblastomas appear iso-
to hypointense on T1w images and the T2w signal is variable and often heterogenous,
ranging from hyperintense to hypointense. They show restricted diffusion, (which may
help differentiate medulloblastoma from pilocytic astrocytoma) and, depending on the
subtype, variable enhancement and edema. Intralesional cysts can be found. MR spec-
troscopy can depict a high choline peak at 3.2 ppm and a taurine peak at 3.4 ppm [5–7].
Nevertheless, especially in very young children, atypical localizations for the respective
tumor subtype and in the relapse/recurrence situation, imaging features might be less
distinct, and neuropathological diagnosis following neurosurgical interventions remains
the mainstay of diagnosis.

Distinguishing medulloblastomas from pilocytic astrocytomas is already preopera-
tively clinically relevant for planning additional staging diagnostics, such as MRI of the
neuroaxis and CSF puncture and therapeutic procedures like the extent of neurosurgical
resection. While in both tumors a maximum safe resection is generally advised, for the
malignant entity of medulloblastoma it is even more prognostically imperative to com-
pletely resect the tumor, as residual tumors have repeatedly been shown to be of prognostic
importance [8]. CSF cytology and spinal MRI are required to accurately assess the extent of
disease in medulloblastoma (as per Chang stages [9]). Both CSF and spinal MRI analyses
are postoperatively at risk for false-positive findings (for example, due to hemorrhage or
unspecific postoperative change), and are therefore better scheduled preoperatively than
postoperatively [10].

Recently, deep learning has enabled unprecedented advances in how clinicians can
use imaging data of CNS tumor patients to improve the diagnosis and prognosis of these
patients. Modern algorithms enable accurate volumetric segmentation of gliomas across
the clinical course of the disease [11,12], which allows for more objective response as-
sessment [13,14], which is now consequently also codified in the respective diagnostic
criteria [15–17]. Apart from objective volumetry, segmentation is another basis for subse-
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quent image analysis strategies [18], which have yielded important image-based biomarkers
for molecular subtyping [19,20] and the prognostication [21] of gliomas. In pediatric neuro-
oncology, fewer studies have used preoperative MRI to predict tumor biology [22,23].
Further, some of these studies were comparatively small (<100 patients), hindering the
development (and evaluation) of deep learning classifiers and highlighting the need for
multi-centric analysis.

Here, we aimed to develop a deep learning pipeline for automated tumor segmenta-
tion and classification into medulloblastoma and pilocytic astrocytoma in a challenging,
multicenter data set with high variability in imaging sequences (and their availability) as a
pilot study. We further evaluated this classifier against a group of radiologists with varying
expertise in pediatric brain tumor assessment.

2. Materials and Methods
2.1. Data Set

The German HIT network for children with tumors of the CNS variation is responsible
for the neuroradiology reference evaluations for most patients with CNS tumors recruited
to the different clinical trials and registries within the community. As such, most diag-
nostic images of German patients affected by CNS tumors are remotely and continuously
evaluated by the German neuroradiology reference center located in Augsburg. As young
adults, including individuals aged up to 21 years, are frequently treated at pediatric sites,
the reference network also includes MRI images from this age group. The six University
Medical Centers in Bavaria, Germany, are organized within the Bavarian Cancer Research
Center (BZKF). The pediatric branch of the BZKF is the KIONET, which comprises the six
pediatric hematology oncology units at the six University Centers (Augsburg, Erlangen,
TU München, LMU München, Regensburg, and Würzburg). In total, about 400 to 450 of
the 2010–2200 yearly diagnosed German children with malignancies are located in Bavaria.
Up to 65–70 of these are tumors of the CNS variation.

Most of the imaging studies included were completed according to the reference panel
recommendations of the HIT network (with some deviations as detailed below). Patients
were treated uniformly according to the different clinical trials initiated by the German HIT
network or outside clinical trials.

In general, MR images and, whenever available, CTs of patients with CNS tumors are
registered on a common data platform. In general, medical data and images are exchanged
and stored in the HIT network via the MDPE (medical data and picture exchange) server.
This server is operated by the central data management (ZDM) of the GPOH. The data
protection concept of this server allows the use of anonymized data for research purposes.
The patients and/or their legal guardians gave written informed consent.

For the purpose of this study, all images of affected patients diagnosed within the
previous 10 years within the KIONET were available for analysis in an anonymized way.

2.2. Image (Pre)Processing

Available preoperative MR sequences (T1w −/+ contrast, T2w, FLAIR, and ADC
maps) were rigidly coregistered and transformed into SRI space [24] using NiftyReg [25].
Following skull-stripping using HD-BET [26], we normalized images into [0; 1] within the
brain mask and performed automated tumor segmentation using the ensemble strategy
implemented in BraTS.Toolkit [27]. BraTS.Toolkit performs tumor segmentation (into
necrosis/cysts, contrast-enhancing tumor, and peritumoral edema) using several top-
performing algorithms from the BraTS (Brain Tumor Segmentation) challenge [28] and
fuses these candidate segmentations into a single consensus segmentation. For tumor
segmentation, four input sequences are necessary (T1w −/+ contrast, T2w, and FLAIR).
Missing sequences were imputed using a GAN-based strategy [29]. Note, however, that we
used these synthetic images only for segmentation, but not for downstream classification.
An attending neuroradiologist with over 10 years of experience in brain tumor imaging
(BW) checked all resulting segmentations. From the center of mass of the automatically
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segmented tumor core (i.e., the union of necrotic/cystic and contrast-enhancing tumor
areas), we extracted 96 × 96 × 96 patches for downstream classification.

2.3. Model Development

We implemented a DenseNet Deep Learning model [30] to predict the tumor entity. In
brief, a DenseNet is characterized by dense connections within a layer, where each block
receives direct input from all blocks preceding it. This architecture helps to exploit feature
re-use to efficiently learn image features using comparatively small filter banks. The refer-
ence implementation of DenseNet121 in Keras (version 2.6; https://www.tensorflow.org/
versions/r2.6/api_docs/python/tf/keras/applications/densenet/DenseNet121, accessed
on 1 June 2023), which consists of 4 layers with 6, 12, 24, and 16 blocks, respectively, was
used for this study. Given the three-dimensional nature of our input images, we changed
the architecture to 3D convolutions and pooling operations and switched to a single (binary)
output neuron with sigmoid activation.

The input to our network consisted of 64 × 64 × 64 sized patches, where all available
imaging sequences were concatenated along the last axis. Missing sequences were replaced
using blank masks. During training, we random-cropped the 96 × 96 × 96 patches from
above as a data augmentation strategy, while for testing, we center-cropped patches (given
that the tumor core’s center of mass is the center of each patch). Besides this random
cropping, we also implemented random gamma adjustment, random Gaussian noise, and
random axis flipping as intensity or geometric augmentation strategies. In addition, to
improve the robustness of our network to missing sequences, we randomly blanked out
one input sequence. The network was trained using the Adam optimizer with a base
learning rate of 1 × 10−3 and cosine annealing schedule, and a batch size of 42 for a total
of 250 epochs using binary cross-entropy loss on an Nvidia Quadro RTX 8000 GPU with
48 GB of RAM.

2.4. Statistical Evaluation and Comparison

We assessed classifier performance in a hold-out test set (n = 64 patients) not used
during training. In addition, we provided MR images from these test set patients to five
pediatric radiologists and neuroradiologists with varying levels of expertise in pediatric
gliomas, asking them to classify tumors as either medulloblastoma or pilocytic astrocytoma.
To compare the proportion of samples correctly predicted between the classifier and the
human raters, we calculated the Z statistic as follows [31]:

Z =
p1 − p2√

2p(1 − p)/n

where p1 is the proportion of the correctly predicted n samples for the model (x1/n), p2 is
the respective proportion for the human rater, and p is their mean ((x1 + x2)/2 × n).

In addition, we plotted the feature representation (from the global average pooling
layer) for the test set data after tSNE (T-distributed Stochastic Neighbor Embedding) di-
mensionality reduction (employing “cosine” distance) using the scikit-learn (version 1.2.2)
implementation.

3. Results
3.1. Patient Characteristics

Our cohort comprised a total of 195 pediatric and adolescent patients with either
medulloblastoma (n = 69) or pilocytic astrocytoma (n = 126). The age distribution was
similar in both groups: the median age for patients with medulloblastoma was 8.5 years
(interquartile range 4.8–12.9 years) and 9.1 years (interquartile range 4.9–13.5 years) for
patients with pilocytic astrocytoma (p = 0.93, Mann–Whitney U test). Of all patients, sev-
enteen had a missing ADC map, six patients had missing T2w images, and five patients
had no non-enhanced T1w images. Also, with respect to imaging parameters, we ob-
served a high variability across patients. While contrast-enhanced T1w images tended

https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/keras/applications/densenet/DenseNet121
https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/keras/applications/densenet/DenseNet121
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to be acquired in an isotropic fashion with voxel sizes < 2 × 2 × 2 mm3, the remaining
sequences were mainly acquired in 2D, i.e., with a through-plane resolution usually exceed-
ing 4 mm. We performed a stratified split of this group into a training cohort of 131 patients
(n = 46 medulloblastomas and n = 85 pilocytic astrocytomas) and an independent test
cohort of 64 patients (n = 23 medulloblastomas and n = 41 pilocytic astrocytomas).

3.2. Deep Learning Results

The entire processing runtime (including registration, skull-stripping, segmentation,
and classification) amounted to less than 5 min per sample on a standard workstation with
a GPU (12 GB VRAM). In the independent test cohort, the developed classifier showed a
very high area under the receiver operating characteristic curve of 0.986 (Figure 1).
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Figure 1. Receiver operating characteristic curve of the DenseNet model in the test set. AUC, Area
under the curve.

Using a pre-defined decision threshold of 0.5 to binarize the predictions, 62 out of
64 samples (97%) were correctly classified as either medulloblastoma or pilocytic astrocy-
toma in comparison to neuropathological diagnosis according to the WHO classification,
which was used as the gold standard. The model misclassified one pilocytic astrocytoma
and one medulloblastoma. For these two cases, representative central slices are shown
in Figure 2. For correctly predicting medulloblastoma, this translated into a sensitivity of
0.96 and a specificity of 0.97. For pilocytic astrocytoma, sensitivity was 0.97 and specificity
0.96, consequently. In total, the resulting classifier had an averaged F1 score of 0.96 and a
Matthews correlation coefficient of 0.93.

To investigate the learned representations of the two different tumor types, we ad-
ditionally plotted the features (taken from the global average pooling layer immediately
before the classification head) after dimensionality reduction with tSNE (T-distributed
Stochastic Neighbor Embedding), as shown in Figure 3. For the vast majority of samples,
the two tumor types show a clearly distinct clustering; only for one case each (which are
the two misclassified cases as shown in Figure 2) were the representations not distinctive.
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between medulloblastoma (blue) and pilocytic astrocytoma (orange), highlighting the robust sep-
arations in the learned representations. tSNE, T-distributed Stochastic Neighbor Embedding; MB,
medulloblastoma; PZA, pilocytic astrocytoma.

3.3. Sequence Importance

To better understand the importance of the different sequences for tumor classification
(and to evaluate the robustness of our model to missing data), we performed an additional
experiment where we intentionally blanked out each input sequence (FLAIR, T1w, T1w+c,
T2w, and ADC) in turn and re-calculated the AUC for the test set. Coming from an AUC of
0.986 when using all available data, the test set performance remained stably high when
omitting ADC (0.983), FLAIR (0.963), T1w (0.984), or even T1w+c (0.987). Only upon the
exclusion of T2w images did we observe a noticeable drop in performance (AUC 0.92).

3.4. Expert Comparison

To compare our model to human raters, we asked five radiologists with varying levels
of expertise in pediatric brain tumor imaging to classify the 64 test set cases. The results
are summarized in Table 1. For the two experts from the Neuroradiological Reference
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Center for the pediatric brain tumor (HIT) studies of the German Society of Pediatric
Oncology and Hematology, the classification performance was very similar (in one case
identical) to our model. The two expert mistakes were different cases than the classifier.
For the remaining three raters, the classification accuracy of our deep learning model was
higher, in particular for the two neuroradiological residents with expertise in adult brain
tumor imaging but without relevant prior experience in pediatric brain tumors. Here, the
proportion of correctly classified cases was significantly higher for the deep learning model
compared to both readers (p < 0.05 each).

Table 1. Results for the DL-based model and the human raters.

Accuracy F1 MCC *

DL Model 0.97 0.96 0.93

Expert Rater 1 1 1 1

Expert Rater 2 0.97 0.96 0.93

Pediatric Radiologist 0.92 0.91 0.82

Resident 1 0.87 0.86 0.72 *

Resident 2 0.84 0.81 0.66 *
* denotes a significantly (p < 0.05) higher accuracy for the DL-based model. MCC, Matthews Correlation
Coefficient.

4. Discussion

Reliable preoperative differentiation of medulloblastoma and pilocytic astrocytoma
can be challenging. Deep learning models may meaningfully support clinicians in this
task. However, the development of these tools is typically limited by small sample sizes,
particularly in single-center studies [32]. Here, we performed a proof-of-concept study
demonstrating how a deep learning pipeline encompassing segmentation and classifica-
tion can leverage a highly heterogeneous imaging data set to train a reliable classifier
with a strong performance (AUC 0.986). We further demonstrate that our model per-
forms rather positively when compared to highly specialized and experienced pediatric
neuroradiologists from the Neuroradiological Reference Center for the pediatric brain
tumor (HIT) studies of the German Society of Pediatric Oncology and Hematology and
outperforms neuroradiology residents. Our results pave the way for larger, multicenter
studies, including further pediatric tumor entities, to train generalizable image classifiers
for clinical applications.

An increasing number of deep learning-based approaches for tumor detection and
segmentation or classification in adult neuro-oncology is on record. At the same time,
remarkably fewer studies exist in pediatric neuro-oncology, as highlighted in a recent
review by Madhogarhia and colleagues [32]. These authors identify limited sample sizes
(particularly in single institutional studies) as one major challenge for developing such
models in pediatric patients. Many of the studies in this review contained data sets of fewer
than 100 patients, which impairs the training of robust deep learning models. In contrast,
we curated a large, heterogeneous data set from the six University Medical Centers in
Bavaria, Germany, organized within the Bavarian Cancer Research Center (BZKF). This
“exposure” of the DenseNet model during training to a large variety of patients and MR
scanners—to account for technical variations—translated into a highly efficient classifier.
Notably, the cases the model misclassified are different from the cases in which the human
raters erred. This “complementarity” of errors highlights the potential for a high-level joint
assessment by a deep learning model and radiologists to correct each other’s mistakes,
which would lead to 100% accuracy, at least in our cohort. In addition, deep learning
models promise to incorporate additional information, for example, from clinical data,
other imaging modalities such as PET or CSF cytology, and genomic analyses, supporting
clinicians in diagnostic (and therapeutic) decisions even preoperatively: Tumor resection
following neoadjuvant chemotherapy has been a long-standing hope in pediatric neuro-
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oncology, i.e., the prospect of complete resection of a smaller lesion with the potential of
fewer permanent neurological deficits stands out. Knowing in advance the histology (and
potentially also the molecular background) of a lesion employing AI imaging in conjunction
with liquid biopsy and potentially other imaging technologies such as PET may lead such a
project to success.

Some studies into the imaging-based differentiation of pediatric brain tumors in-
vestigated the importance of individual MR sequences. Among the commonly acquired
sequences, T2w images [33] and ADC maps from diffusion-weighted imaging [34,35]
have been identified as particularly helpful in this task. Consequently, we included these
sequences wherever available. Upon experimental evaluation of sequence importance
(through round-robin omission), we found that T2w stood out for its relevance for correct
classification in our setting.

As with any real-world data set, we observed missing (or corrupted, e.g., by motion)
sequences. Instead of excluding such cases (as is usually the case), we specifically opted
to make our classifier robust to missing data. Handling missing data is an active area of
research, and several strategies have been devised to deal with this. With recent develop-
ments in generative AI, models have been developed to synthesize missing sequences from
existing data. The use of these models has, for example, been demonstrated for tumor seg-
mentation [29], and we subsequently employed this strategy for automated segmentation
as well, given the availability of a pre-trained model. For the classification, however, we
specifically opted for a different strategy, as to our knowledge, no task-specific generative
network is available. Here, we adopted a random drop-out strategy, i.e., we randomly
deleted input sequences during training as part of our augmentation pipeline. Recently,
such a strategy has also been demonstrated to achieve state-of-the-art results in brain tumor
segmentation [36] and provide an attractive additional strong augmentation paradigm for
training. Further, when including multiple input sequences, care must be taken not to
overfit the classifier by adding excessive imaging “noise”, with potentially harmful conse-
quences for generalizability [37]. The random drop-out strategy we employed provides
additional regularization to avoid overfitting.

In a prior study, Zhou et al. developed a machine learning classifier to differentiate
pediatric posterior fossa tumors on MRIs [38]. They report high AUC values for the
classification of medulloblastoma and pilocytic astrocytoma. Similar to our findings, they
report that non-expert radiologists have lower accuracy than their classifier model. A key
difference to our model is their reliance on hand-crafted radiomics features extracted from
manually drawn tumor masks: prior studies have shown that differences in segmentation
critically affect the feature stability and hence, the reproducibility of results [39]. We
thus chose a patch-based approach (centered around the center of mass of the tumor
segmentation) paired with an automatic segmentation module, enabling a fully-automated
image analysis without the need for manual interference. Coupled with our random
cropping augmentation, our model should, therefore, be robust against minor differences
in seed voxel location, i.e., as long as the seed voxel is placed well inside the tumor,
downstream classification stability should not be affected. This robustness against input
variations is a strength of our approach.

Quon et al. report on developing a 2D slice-wise deep learning classifier for differenti-
ating medulloblastoma, pilocytic astrocytoma, diffuse midline glioma, and ependymoma
in a large cohort of 617 children [40]. Their final ensemble classifier had an F1 score of
0.8, albeit in a more challenging multi-class classification. Again, in line with our results,
they found that when comparing model performance with radiologists, in particular, less
experienced readers have lower diagnostic accuracy. As opposed to our work, only axial
T2w slices were used due to the 2D slice-wise design. Conceptually, our 3D concate-
nation approach allows the deep learning model to capture relevant synergies between
the different modalities and offers another explanation for the higher performance we
observe in our model. This improved differentiation of medulloblastoma and pilocytic
astrocytoma can also be seen when comparing the representations in feature space. tSNE
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plotting shows a clear separation of the two tumor types, where medulloblastomas cluster
particularly tightly.

We acknowledge some limitations of our work. First, our analysis focused on medul-
loblastoma and pilocytic astrocytoma, excluding other entities such as ependymoma or
diffuse midline glioma. While these are the two most common infratentorial tumors in
children, and their preoperative differentiation has clinical relevance, this creates a specific
context for this study and clearly labels our study an experimental proof-of-concept study.
Also, owing to the retrospective nature of this study, with several cases diagnosed in the
early 2010s, molecular diagnoses as outlined in the 2021 WHO classification of brain tumors
(CNS5) [41] were only available for some cases. This precluded training classifiers for
molecular alterations (such as BRAF for pilocytic astrocytomas or the medulloblastoma
subgroups [22]), which, of course, is an attractive future research direction given the impor-
tance of these markers for diagnosis and also, in part, therapeutic stratification. Second,
segmentation and downstream patch-based classification are separate tasks in our pipeline.
Despite efforts to improve segmentation, particularly for pediatric brain tumors in the 2023
BraTS challenge [42], jointly optimizing both tasks holds promise for further improving
performance. With the broader availability of manually annotated pediatric brain tumor
data sets, end-to-end optimized deep learning approaches for joint segmentation/detection
and classification of pediatric brain tumors are therefore an attractive follow-up extension
to our study. Lastly, when considering the possibilities of joint human and AI assessment of
pediatric brain tumors, explainable AI strategies are another attractive avenue of research.
Recent advances in joint learning representations from text (e.g., radiology reports) and
medical images, such as BioMedCLIP [43], offer intriguing opportunities for improving the
interaction between radiologists and deep learning models: by allowing the latter to offer
textual explanation, the otherwise seemingly intractable decision made by a deep learning
classifier can be retraced by a radiologist.

5. Conclusions

In summary, we developed and validated a robust deep learning model for the au-
tomated precise differentiation of medulloblastoma from pilocytic astrocytoma in a large,
heterogeneous data set of pediatric brain tumor patients. Based on our proof-of-concept
study, demonstrating how reliable, fully automated classifiers (including tumor segmenta-
tion) can be trained from heterogeneous multicenter data, our work highlights the potential
of deep learning models to make this expert knowledge broadly available. In future stud-
ies, we will implement additional entities and prospective data sets to further validate
our approach.
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