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Simple Summary: The heterogeneous response of cancer cells to targeted drugs is associated with
the state transition dynamics of a molecular network. Identifying combinatorial drug targets to
compensate for these heterogeneous responses can counteract adaptive resistance in cancer. To
achieve this, we developed an algorithm called “merged transition map”, which explores essential
state transition dynamics to identify combinatorial drug targets. Our analysis showed that drug-
induced state conflicts within the molecular regulatory motifs of a network can result in heterogeneous
responses. Moreover, we found that addressing these conflicts with additional perturbations can
synergistically improve drug efficacy. Compared to other network control algorithms, our approach
showed higher performance in drug efficacy of the suggested combinatorial target pairs with reduced
computational complexity. Furthermore, by applying the MTM on a Boolean network model, we
identified a new target combination that induces apoptosis in gastric cancer, supported by previous
experimental data.

Abstract: Inducing apoptosis in cancer cells is a primary goal in anti-cancer therapy, but curing
cancer with a single drug is unattainable due to drug resistance. The complex molecular network
in cancer cells causes heterogeneous responses to single-target drugs, thereby inducing an adap-
tive drug response. Here, we showed that targeted drug perturbations can trigger state conflicts
between multi-stable motifs within a molecular regulatory network, resulting in heterogeneous drug
responses. However, we revealed that properly regulating an interconnecting molecule between
these motifs can synergistically minimize the heterogeneous responses and overcome drug resistance.
We extracted the essential cellular response dynamics of the Boolean network driven by the target
node perturbation and developed an algorithm to identify a synergistic combinatorial target that
can reduce heterogeneous drug responses. We validated the proposed approach using exemplary
network models and a gastric cancer model from a previous study by showing that the targets
identified with our algorithm can better drive the networks to desired states than those with other
control theories. Of note, our approach suggests a new synergistic pair of control targets that can
increase cancer drug efficacy to overcome adaptive drug resistance.

Keywords: combinatorial drug targets; drug target discovery; network control; cell state transitions;
systems biology

1. Introduction

Despite advances in immunotherapy and surgical treatments of tumors, drug treat-
ment remains a principal strategy against cancer [1]. The advantages of anti-cancer drug
treatments lie in better and wider access to target cancer cells throughout the body with
higher sensitivity, recovery rates, and relative cost-effectiveness [2]. Recent developments
of anti-cancer drugs that specifically target mutated oncogenes or signaling molecules of a
regulatory network in cancer cells not only compensates for causes of tumorigenesis but
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also complies with the principles of precision medicine [3]. Nevertheless, the recurring
challenge is that cancer still cannot be treated with drug treatments, since it eventually
acquires resistance through repetitive drug treatments [4].

Drug resistance is classified into three types: primary, acquired, and adaptive [5].
Primary resistance occurs through the impact of pre-existing mutations on the regulatory
network that initiate tumorigenesis and block the effects of anti-cancer drugs. Acquired
resistance emerges when cancer cells accumulate additional mutations, causing them to
become unresponsive to treatment. Adaptive resistance, perhaps the most complex, arises
from undesirably activated regulatory motifs such as feedback or crosstalk during the
cancer cell state transition, which reduces drug efficacy [6,7]. Therefore, unlike primary
and acquired resistance, it is necessary to address the dynamic mechanisms of cell state
transitions after drug treatment beyond static information such as mutation profiles to
overcome adaptive resistance [8,9].

With recent developments in systems biology and control engineering, understand-
ing of dynamics of state transitions within various cellular networks have been greatly
improved [10,11]. In particular, a Boolean modeling scheme recapitulates the switch-like
behaviors of molecules within a regulatory network by representing a functional activity
of each node in the network with only ON (1) or OFF (0) states [12]. The scheme can suc-
cessfully implement the complex state transition dynamics of biological networks by using
parameter-free logical equations [13]. The activity of marker molecules can define cellular
phenotypes, often indicating cell viabilities and thus representing drug responses [14]. In a
nominal state without any external disturbance, the cellular network state naturally transits
towards a more stable state through a series of state transitions, which is known as a state
transition path. As a result, all the states eventually converge to attractors, those of a few
states with higher stabilities. These attractors can be represented as local valleys among an
attractor landscape, which is the plane surface of possible network states [15]. The stability
of each state on the landscape can be measured by the size of its basin of attraction, which
defines the relative size of neighboring states that converge to an attractor [16]. With this,
various studies on state control algorithms with Boolean networks have suggested probable
molecular targets called “control targets” to regulate cellular phenotypes by pinning or
permanently fixing the functional activity of each target node to ON (1, activation) or OFF
(0, inhibition) [17]. However, these strategies utilize only the initial and final states of
a network, which cannot recapitulate the drug response dynamics that trigger adaptive
resistance due to dynamic stochasticity after drug treatments.

After anti-cancer drug administration of a target molecule in the network, its state
changes gradually influence the state of other molecules in the network. The sequence of
which molecules are randomly affected depends on dynamic stochasticity, such as expres-
sion levels, molecular activity, and probability of physiochemical interactions [18]. Despite
a uniform regulatory mechanism of the molecular network, this results in drug influences
that activate different signaling cascades in cancer cells and ultimately form their own
stably activated regulatory motifs [19]. Molecular regulatory networks within a cell can be
subdivided into interconnected strongly connected components (SCCs) called multi-stable
motifs that have multiple stable states in their respective attractors [20]. However, as some
of these stable states are biologically undesirable, drug-treated cancer cells consist of unde-
sirably activated multi-stable motifs that then can inhibit desirably activated regulatory
motifs that increase drug efficacy. Thus, a population of single-drug-treated cancer cells
can heterogeneously be stabilized, and some of them may enter a drug-resistant state.
These diverse responses cause adaptive resistance to the anti-cancer drug, which requires
additional drug treatments in combination to compensate for the heterogeneous responses.
Hence, the question arises as to whether we can induce desirable homogeneous responses
in cellular systems by suggesting an optimal combination target for the given anti-cancer
drug treatment.

To answer this question, we have developed a new combinatorial target search al-
gorithm called “merged transition map” (MTM). The MTM considers essential network
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dynamics for identifying combinatorial control targets that reduce heterogeneous responses
of a given anti-cancer drug by extracting transition paths between initial and desired net-
work states. We applied the MTM to a gastric cancer model [21] to validate and test the
performance of our strategy. By extracting essential state transition dynamics induced by
target node perturbations, we revealed that competitive stabilization between multi-stable
motifs caused by the dynamic stochasticity of drug effects spreads throughout the network
and ultimately increases the heterogeneity of drug responses. Moreover, we found that
reducing dynamic stochasticity of the molecules with frequent activity changes during
the drug-induced state transitions can reduce competitive stabilization of multi-stable
motifs. In addition, this can also synergistically increase the efficacy of the given targeted
drug. We also discovered that conflicts between multi-stable motifs can steer the network
into undesired states that can cause adaptive resistance. Thus, the suggested MTM com-
binatorial target can overcome resistance by regulating the nodes interconnecting these
motifs. The MTM also identifies the nodes that frequently flip the most after a specific drug
perturbation, positioning them as optimal combination targets for the given drug. Our
findings underscore the possibility of the MTM identifying synergistic targets to counteract
adaptive resistance by diminishing heterogeneous drug responses. Altogether, our study
provides new insights into enhancement of a biological systems approach that can open a
new paradigm in identifying combinatorial targets to compensate adaptive drug resistance
in cancers.

2. Results
2.1. Controlling Frequently State-Flipping Nodes Reduces Heterogeneous Drug Responses

To topologically illustrate which node in a regulatory network flips the most after
perturbation, we measured the number of state flips of each network component based on
its relative localization within the entire network as shown in Figure 1a. We analytically
represented this by using an asynchronous Boolean model that is simplified but still
effectively encapsulates essential network topologies of the model (see Supplementary
Figure S1 for network logic equations and identified attractors). The relative topologically
positioned locations of each node, associated with the given target that is perturbed, can be
explored by measuring state-flipping frequencies of each node. Once the target is perturbed,
its effect competitively disseminates throughout the network and causes state conflicts with
the other nodes. These affected nodes ultimately flip their states until the entire network
states converge to three possible attractors of the target node-perturbed network. Through
that state transition path, the number of state flips from individual nodes may vary based
on their topological locations. Notably, the yellow and green multi-stable motifs are both
directly regulated by the perturbation node and exhibit mutual inhibition mediated by the
interconnecting node located between them. Note that the nodes from the yellow and green
motifs experience more state flips than the other nodes after the perturbation, indicating
that a number of state flips increases when the state conflict between the motifs is more
frequent. Moreover, the nodes located in between the conflicting motifs tend to flip the state
of nodes even more frequently. Thus, the interconnecting nodes between the multi-stable
motifs are intrinsically associated with state conflicts between these motifs and flip more
frequently after the target node perturbation.

Figure 1b shows an average state-flipping ratio of each node, which defines a number
of states flipped from each node divided by the number of state transitions, throughout ev-
ery state transition path to one of three possible attractors after the target node perturbation.
These results further support the induced flipping frequency of the interconnecting node
during the competitive stabilization. Figure 1c shows that blocking the interconnection
between the motifs ultimately can reduce competitive stabilization by properly pinning the
frequently flipping node state according to the desired phenotype (see Section 4 for details).
Therefore, identifying the most frequently flipping node and properly controlling the node
in combination with the given target will enhance its effect by blocking the state conflicts
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between the multi-stable motifs and reducing competitive stabilizations responsible for
heterogeneous responses.
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turbed node. The gray node interconnects yellow and green multi-stable motifs with mutual inhib-
itory relationships. For the simplified representations, the number of state flips marked on each 
node accordingly after the given node perturbation from the upper-left node perturbation is meas-
ured from a randomly selected path in every possible state transition from a single nominal network 
attractor to a single regulated network attractor. (b) The bar graph shows the weighted state-

Figure 1. Conflicting interactions between multi-stable motifs increases node state flips after perturba-
tion. (a) Four multi-stable motifs, colored yellow, green, purple, and blue, have different topological
locations, with the given perturbation marked with an orange lightning. The yellow and green motifs
are mutually inhibiting each other and the interconnecting node in between, which are both regulated
directly by the perturbation node. The purple motif was directly regulated by the perturbation node,
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but did not interact with other motifs. The blue motif was not regulated by the perturbed node. The
gray node interconnects yellow and green multi-stable motifs with mutual inhibitory relationships.
For the simplified representations, the number of state flips marked on each node accordingly after
the given node perturbation from the upper-left node perturbation is measured from a randomly
selected path in every possible state transition from a single nominal network attractor to a single
regulated network attractor. (b) The bar graph shows the weighted state-flipping frequencies of each
node in the MTM with their respective colors and a perturbation mark. (c) Partial networks of the
yellow and green motifs and their interconnecting gray nodes show their gradual state flips from the
node perturbation to an attractor. Newly state-flipped nodes are numbered in orange.

2.2. MTM-Based Weighted Flipping Frequency Calculation Enables Synergistic Target Identifications

To systematically explore the dynamic repertoires after a target node perturbation
within a network, we utilized the MTM to extract the essential dynamics of node state
changes induced by the perturbation. Without external disturbances, a molecular network
resides in a few highly stable attractor states, forming an original attractor landscape. When
a perturbation, such as to molecule T, is introduced, it alters the molecular interactions
with its adjacent molecules, leading to the deformation of the original attractor landscape
into the T-regulated attractor landscape. This change destabilizes the original steady states
of the network, initiating state transitions to new stable attractor states through various
state transition paths. The altered node state of T progressively affects the other network
components, causing continuous flips of their states. Eventually, this results in the network
stabilizing into a new attractor state within the T-regulated landscape (Figure 2a). On the
other hand, the T-regulated attractor landscape of the network can return to its original
landscape once the target is unpinned (e.g., a decrease in the effects of the drug treatment
through degradation, excretion, or a conditional gene-knockout system.). As a result, the
network returns to its original attractor landscape and converges into a new attractor state
with a higher stability.

Figure 2b shows that these landscapes comprising essential dynamic information can
be merged to form an MTM, which then can be used to identify a synergistic target pair to
the given control target by comparing their flipping frequencies. Biologically, the molecular
network remains in a stable attractor state in the absence of external influences like drug
perturbations. Upon perturbation, the network state can only transit from attractors in the
original landscape to those in the regulated landscape. Therefore, the MTM captures all
potential state transition paths triggered by the perturbations. Consequently, we can drive
the states of drug responses towards desired states by extracting key state transitions from
the MTM and developing a control strategy for them. A schematic representation of how
the MTM can extract the essential dynamics of the network state transitions is shown in
Supplementary Figure S2.

We calculated desired state transition paths by utilizing the weighted flipping fre-
quencies of each node from the MTM within an exemplary Boolean network, as shown
in Figure 2c (see Supplementary Figure S3 for network logic equations and identified
attractors). These state transition paths can be categorized based on the relative phenotypic
preferences of each attractor into two types, desired (D) or undesired (U), according to the
relative phenotypic preferences of the attractors at both ends. Specifically, a state transition
path initiated from a relatively undesired attractor to a desired attractor is termed a “desired
path”. Conversely, a state transition path initiated from a relatively desired attractor to an
undesired attractor is termed an “undesired path”.
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Figure 2. The MTM can identify most frequently flipping node after the target node perturbation.
(a) From an exemplary network with a target node T, we can calculate two attractor landscapes, one
with nominal or T-regulated network, with a set of attractors identified respective to each landscape.
(b) When a target node is perturbed, the original landscape is transformed into a perturbed landscape,
where an initial attractor state may no longer be a stable attractor anymore after the perturbation.
The perturbed attractor landscape of the network can return to the original landscape once the target
is unpinned and converges into a new attractor state with higher stability. These landscapes can be
merged to form an MTM. (c) Schematic workflow of the MTM. Essential state transition paths in
the original or perturbed landscape are represented by blue or red arrows, respectively. From the
MTM, phenotypic preferences are color-coded from orange to green to represent undesired to desired
states. Transient states are in empty squares. The most frequently flipping node can be identified
with weighted flipping frequencies of each node by multiplying weighted probability (WP), sign of
transition types, phenotypic preferences (PP), approximated ratio of basin of attraction of the initial
attractor over the whole attractor landscape, and the number of state flips of each node within state
transition paths.

To identify the optimal target, we explored the most frequently flipping node from
the undesired paths by comparing weighted flipping frequencies of each node within
the network. MTMs can be factorized into a series of consecutive state transition paths,
either D or U. The significance of each transition path from the overall drug response
dynamics was considered by multiplying the weighted parameter proportional by the ratio
of the basin of attraction from each initial attractor for the corresponding transition path.
We quantitatively identified the optimal target node with the highest weighted flipping
frequency as a synergistic target pair to the given target node by multiplying the weighted
probability of each state transition, the number of state flips in each path, significance value
of each transition path, and their transition types (see Section 4 for details). Stabilizing
the identified node, which shows the most frequent state flips in undesired paths, into
a desired state can eliminate these unwanted state transitions, thereby enhancing drug
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efficacy. As a result, the MTM successfully identified node S from the exemplary network
as the most synergistic combinatorial target of the given node T, which is validated by
computational simulations of synergistic effects in every possible two-node combination
(see Supplementary Figure S4 for an overall workflow chart).

2.3. MTM Suggested Synergistic Pairs That Are in Well Accord with Prior Knowledge

We applied the MTM to a logical model of gastric cancer cells to validate that our
approach can identify synergistic target pairs that are well in accord with previous studies.
Flobak et al. constructed a gastric cancer cell logical model with 75 nodes and 149 links,
discovered synergistic drug pairs from their model (Figure 3a), and experimentally val-
idated them with the AGS gastric cancer cell line [21]. Their identified synergistic drug
pairs were PI3Ki and TAK1i, MEK1i and PI3Ki, AKTi and MEK1i, and TAK1i and AKTi,
which consisted of three multi-stable motifs in the network. By applying the MTM in the
model, we identified the three synergistic pairs—AKTi and MEK1i, MEKi and PI3Ki, and
TAK1i and AKTi—that were consistent with their results in addition to our novel target
pair with supporting evidence [22,23]: PI3Ki and NFkBi (Figure 3b). These results showed
that the MTM can successfully predict synergistic effects of the gastric cancer model that
are concordant with previous studies. In summary, the MTM is able to recapitulate the
essential drug response mechanisms within an experimentally validated model.
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Figure 3. Identification of novel synergistic target pairs using the MTM. (a) The logical Boolean model
of gastric cancer has two phenotypic nodes, antisurvival and prosurvival. The desired phenotypic
node, antisurvival, is colored green, while the undesired phenotypic node, prosurvival, is colored
orange. Four of the identified synergistic target pairs are filled or bordered according to the same
color. Three of the identified multi-stable motifs related to the synergistic pairs, TAK1, MEK1, and
PI3K, are boxed in black dots. (b) The MTM suggested synergistic targets that are well in accord
with the previously identified pairs. Weighted state-flipping frequencies of every node in each of the
targets are plotted. (c) Each synergistic pair suggested by the MTM shows a similar mechanism: one
target regulates multi-stable motifs to drive desired states, while the other target blocks the negative
interactions between the motifs. The targets blocking the negative interactions are in bold letters. The
negative interactions blocked by the targets are depicted with solid black links.
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Figure 3c shows that the synergistic target pairs identified by the MTM are topolog-
ically aligned with the targets determined using multi-stable motifs and their intercon-
necting nodes. It shows that the given regulatory targets, including AKTi, MEKi, and
TAK1i, regulate their multi-stable motifs, while their corresponding pairs—MEKi, PI3Ki,
and AKTi, respectively—are their inhibitory interconnecting nodes. Thus, the MTM not
only successfully identified synergistic target pairs that are consistent with previous studies
but also interpreted the synergistic mechanism of these pairs with structural information of
the network.

2.4. MTM Reveals Novel Synergistic Pairs That Differ from Other Control Theories

Due to the absence of established algorithms for identifying optimal synergistic targets
for a given drug, we compared the control effectiveness of the MTM with other general
target search algorithms. For this, we implemented feedback vertex set (FVS) [24], stable
motif control (SMC) [25], and systematic perturbation simulation (SPS) [26] to identify
synergistic target pairs using these strategies accordingly. These algorithms utilize different
approaches to search for network control targets with the given network model: (1) FVS
uses structural information of a network to disconnect all feedback loops and identifies con-
trol targets of the resulting tree-like network structure, (2) SMC decomposes a network into
various motifs with dynamic information that can be used to identify control targets from a
succession diagram of attractors, and (3) SPS calculates every possible state transition to
identify the most effective synergistic targets by manually pinning the states of every possi-
ble two-node pair, though with high computational complexity. To quantitatively analyze
the control effect of each method, we applied them in the same models and measured their
relative changes in phenotypic preference in averaged network states after regulating those
targets accordingly (Figure 4). For FVS and SMC, which proposed numerous control target
sets to exactly control the network into a desired state, we computed the average control
effectiveness of every possible two-node pair combinations from the suggested sets. We
then compared these results with the target pairs suggested by the MTM to determine the
relative effectiveness of each. A detailed explanation of calculating control effectiveness is
provided in the Section 4.

We showed that the average control effects of targets suggested by the MTM are more
substantial than the other corresponding models (Figure 4a). We also showed that our
results using the MTM can identify synergistic targets and that their control effects are
comparable to those using the SPS strategy with the most effective target sets. Moreover, we
presented that the average time consumption during computational simulations using the
MTM was much less than that of using the SPS (Figure 4b). Finally, we further presented
that the MTM can identify novel synergistic target pairs that were not identified using the
FVS or SMC (Figure 4c). These results indicate that the control target identification using
the MTM can identify more optimal and novel synergistic targets than those of the other
algorithms in terms of both control effectiveness and computational complexity.
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of the MTM, five synergistic targets with the highest weighted flipping frequencies were selected.
The left side of the graph shows the control effectiveness in controlling the exemplary network in
Figure 2b. The right side of the graph shows the control effectiveness in controlling the gastric
cancer network in Figure 3a. (b) The graph compares the time consumed for the target identification
using MTM, FVS, SMC, and SPS strategies on the gastric cancer network model. Each algorithm is
iteratively performed five times. (c) The novel synergistic target pair identified by the MTM in the
gastric cancer model, PI3Ki and NFkBi, is colored yellow. The suggested control targets by FVS and
SMC are colored purple and green, respectively.

3. Discussion

It has long been suggested that evolutionary gains in network complexity in a cell are
not merely incidental but the results from adaptive capacities that reinforce information
processing [27]. Our results indicate that the conflicts between multi-stable motifs cause
heterogeneous responses upon a perturbation, which may not be beneficial to cells. Such
varied responses may be detrimental to the cells, which may ultimately become diminished
through natural selection, since uniform responses might be more efficient in optimizing
their responses to external stimuli. Yet intriguingly, these conflicting structures between
multi-stable motifs are more prevalent in biological networks than in random networks (see
Supplementary Figure S7 for further details). These structures commonly appear across
various gene sets, suggesting that the conflicting dynamics induced by positive feedback
loops are a prevalent feature of cellular networks selected over evolutionary time [28].
Cancers, being evolutionarily flexible, often exhibit heterogeneous responses to single
drug treatments due to their possession of diverse cancer hallmarks, providing survival
advantages [29]. This suggests that conflicting dynamics between multi-stable motifs
in fluctuating environments may confer survival benefits, but also complicate achieving
desired cell states with single-drug treatment [30]. Thus, understanding how these multi-
stable motif structures are mutationally enriched in cancers and dynamically affect each
other is crucial for overcoming adaptive drug resistance in cancers. The MTM suggests
combinatorial targets based on essential network dynamics independently of tissue contexts
and holds promise for identifying synergistic drugs across cancer types.

The general control target search algorithms focus on modulating every node state
within a network converging to a desired state. This approach often necessitates the
perturbation of a substantial number of target nodes for proper network controls. However,
to control the phenotype of a cancer cell to a specific desired state, it is not imperative
to regulate every node within the network. Instead, modulating a few marker nodes
that determine the phenotype is sufficient. Moreover, simultaneously controlling a large
number of target nodes is nearly infeasible. These biological aspects underscore that
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effective control strategy of biological networks should prioritize control of phenotypic
marker nodes through a realistic number of target nodes. In our study, we focused on
the biological feasibility of the control targets identified. Our approach is based on two
key considerations. First, the challenge in cancer therapy is not the identification of new
drug target genes, but rather addressing the prevalent issue of drug resistance in well-
established target drugs. To this end, the MTM algorithm pinpoints the most synergistic
drug targets within given perturbations of target nodes. Second, given the impracticality
of controlling multiple genes or biological molecules within a cell, we limited the number
of control targets to two. As a result, the MTM can show practical applicability on target
identifications to overcome drug resistance in cancers, enhanced over prior control theories.

Several motif-based network control theories exist, and identifying targets regulating
each of these motifs within a network is crucial to govern the entire network [31]. In addi-
tion, numerous system biological strategies have been developed to measure phenotypic
changes according to modified expressions of a gene set [32]. Together with constructed
Boolean models of cancer, in silico simulations, which implement those control theories that
aid in predicting drug responses and interpret molecular mechanisms, have been widely
used in various targeted cancer therapies [33]. A common way to regulate the entire gene
set is by identifying their master regulator, a gene that regulates certain gene sets, as a
control target [34]. However, heterogeneous responses of the gene sets and multi-stable
motifs can dramatically reduce the control effects. Our results have revealed that these
conflicts between the motifs, rather than the efficacy of a certain control target, give rise to
the heterogeneous drug responses of the given anti-cancer drug. Thus, our MTM-based
network control strategy can identify novel and effective synergistic pairs to common
pharmacological targets that can reduce heterogeneous drug responses.

Experimental validations on control targets identified by analyzing cellular network
models are crucial for substantiating in silico studies such as the MTM. However, measur-
ing the dynamics of the mutual inhibitions between feedback loops proposed in this study
requires extensive labor and resources. Therefore, instead of in-house experiments, we
opted for an indirect validation method. We assessed whether the MTM identifies combina-
torial targets mentioned in previous research utilizing two network models with extensive
experimental validations [21,35]. Additionally, we referenced supporting experimental pub-
lications for a novel combination not covered in the studies [22,23]. While these studies may
not be fully oriented to reproducing the mutual state conflict between positive feedback
loops, the consistency between the MTM analysis results and actual drug responsiveness of
cancer cell lines suggest their validity. Uncertainties in this study can be addressed through
further analysis of various cancer cell models recapitulating network dynamics with a focus
on positive feedback loops and supplementing time-series experimental data on network
dynamics associated with drug response [36]. In clinical practice, despite the identification
of major cancer-related genes and the development of targeted drugs for each mutation,
adaptive resistance remains as a challenge with single-drug treatment. The MTM, initially
designed to identify combination targets that minimize adaptive resistance for specific
anticancer drugs, leverages the inherent drug response dynamics of cancer cell networks
with minimal intervention. This approach can mitigate drug overuse, which can lead to
toxicity issues, making MTM highly applicable in clinical settings [37].

In this study, we applied the MTM specifically to single-node perturbations induced
by small-molecule inhibitors. However, it is important to note that many cancer treatments
such as lipid nanoparticles or siRNAs/mRNAs typically influence multiple molecular
targets at once. This results in more significant changes in network states than what is
observed with small-molecule treatments. Despite the complexity introduced by treatments
that simultaneously affect various molecules within a network, the MTM remains applicable
to identify the most synergistic target pair reducing heterogeneous responses. The key
to its applicability lies in the fact that regardless of how many molecules are affected by
the perturbation, the attractor landscape of the cancer cell network undergoes a single but
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significant change due to the treatment. This change prompts state transitions within the
network, all of which can be effectively analyzed using the MTM.

In biological networks, heterogeneous cellular responses to external stimuli are com-
monplace. Our MTM-based target identification approach, which reduces competitive
stabilization, offers a robust method for analyzing network dynamics. The heterogeneous
cellular responses common in biological networks to external signals make our MTM-based
target identification strategy versatile for analyzing network dynamics. This approach
is effective across various network models, whether deterministic or stochastic. This is
because iterative simulations with numerous random initial states can bring randomness of
the stochastic nature of biological networks to synchronous Boolean or ordinary differential
equation (ODE) networks with deterministic logics. For instance, we have shown that
extracting the MTMs and identifying synergistic targets based on state-flipping frequencies
are also effectively applicable in synchronous Boolean network models (see Supplementary
Figure S5 for details) [35]. Thus, competitive stabilization of a network state is not merely
an artifact of stochastic or asynchronous updating of logic of Boolean models.

Two questions arise from our findings. First, two of the suggested targets by the MTM
may not be interchangeable, even though it suggests combinatorial synergistic targets of a
given target drug. In addition, the optimal synergistic pair of a specific target suggested
by the MTM is designated to the given target and can be changed when the identified
synergistic target is reversely assigned as a new given target. However, it is comprehensive,
since synergistic target pairs in cancer therapies often play different roles in regulating
cell states [38]. Second, some of the synergistic pairs for a certain drug target, which is
located relatively lower in a hierarchy from the network, cannot be identified. However,
this aligns with biological expectations, since common molecules targeted by cancer drugs
generally reside at higher hierarchies in the network to regulate a wide range of downstream
molecules [39] (see Supplementary Figure S6 for further details). Therefore, our strategy
of identifying synergistic targets using the MTM is generally applicable to any modeling
scheme without compromising the biological insights for cancer therapeutics.

4. Materials and Methods
4.1. Boolean Network Models and Simulation Schemes

We employed Boolean models with asynchronously updates. In this framework, vari-
ables can only be 1 or 0 to represent the activity of the corresponding biological component
as “active” or “inactive”, respectively. Each Boolean network component and its relation-
ship with other nodes can be represented using Boolean operators AND, OR, and NOT. The
logical regulatory equation assigned to each component updates the state of corresponding
components and causes the state flips between 1 and 0. During each simulation step, one of
the variables is randomly selected and updated according to its logical regulatory equation.
The stochastic spreading of serial molecular state flips through the network is implemented
in Boolean modeling by asynchronously updating a state of randomly selected single
node for each step of network state change. In the case of the gastric cancer model [21],
we followed multileveled variables (named prosurvival, antisurvival, Caspase3/7, and
CCND1) and their corresponding logical formulae.

4.2. Identification of Every Possible Attractor

To identify every possible attractor in a Boolean network, we implemented the algo-
rithm suggested by He et al. This algorithm identifies attractors from a simplified Boolean
network by determining constant nodes according to the network logic, perturbation in-
puts and initial states [40]. We hard-coded such an algorithm with MATLAB R2021a. All
the identified attractors were validated by verifying whether they remained within the
identified states during network simulations.
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4.3. Calculation of Phenotypic Preference for Each Attractor

To determine the phenotypic preference of each attractor, we first established the
phenotypic marker nodes and desirable network states of each model. For attractors that
remain within a single state, the corresponding state value of the marker node directly
represents the phenotype of that attractor. Conversely, for those with multiple states,
such as a complex attractor in an asynchronously updating Boolean modeling scheme,
the phenotype is represented by the average state value of marker nodes across these
states. In case of the gastric cancer model suggested by Flobak et al. [21], we adhered to
the phenotypic outputs delineated by the authors. We also defined that the state of the
antisurvival node has a higher value than that of the prosurvival node as our desirable
attractor.

4.4. Calculation of State Transition and MTM Extraction

To induce the state transitions of network models, we pinned the corresponding target
node state as 1 (ON) or 0 (OFF), ensuring their states remained fixed during the simulations.
Then, we iteratively simulated the state transitions by using every possible attractor of
the model before and after the pinning and target perturbation as initial and final states,
respectively. Every state transition from the initial states to reachable attractors from the
perturbed network is then merged into a MTM.

4.5. Calculation of State-Flipping Frequency for Each Node in the MTM

The state-flipping frequency of each node within an MTM is calculated by following
three steps. First, state transition probabilities of each transition within the MTM are
calculated by assuming that state transition probabilities for consecutive states are evenly
distributed in every branch. Second, the MTM is factorized to state transition paths, each
anchored by attractors at both ends. Phenotypic preferences of each path are assigned by
comparing relative preferences of the both attractors. Third, we calculate the weighted
flipping frequency of each node by adding every multiple of state-flipping numbers from
the state transition probability of the path and the phenotypic preference, as well as state
transition types. The weighted probability of each state transition path is calculated by
multiplying the factor of corresponding transient states according to their outgoing edges.
The phenotypic preferences are then multiplied by 1 if the path is desirable or −1 if
undesirable. A factor of 1 is multiplied in the state transition types if the transition is
included within the regulated attractor landscape (regulated transitions), or a factor of −1
is multiplied if the transition is included within the original attractor landscape (reversal
transitions).

4.6. Estimating Significance of Each Transition Path Using Approximated Basins of Attraction

Due to the computational complexity of calculating the basin size of each attractor
in an asynchronously updated Boolean model, we employed an approximation method.
We estimated the basin of each attractor by tracing a number of converged attractors from
a pool of sampled initial states. To sample the initial states, we randomly choose the
state of each node in the network between 1 and 0 in uniform distribution. We choose
10,000 non-overlapping initial states and trace converged attractors from each initial state
to approximate the basin size of each attractor. To calculate the significance of a specific
transition path, the ratio for the number of converged initial states to the starting attractor
within the path over 10,000 initial states is multiplied by the weighted flipping frequency
of that path.

4.7. Identification of Multi-Stable Motifs and Interconnecting Nodes

After calculating every possible attractor from the original attractor landscape as well
as every reachable attractor from these attractors once regulated, we identified network
motifs, which are SCCs, that possess at least two distinct stable states in attractors. The
existence and a parametric region of multi-stability from the identified network motifs
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is then measured with BioSwitch, developed by Yordanov et al. [41], which computes
bifurcation diagrams of network motifs from the limit points. The interconnecting nodes
between the multi-stable motifs are identified by the PathLinker algorithm, which connects
source nodes to target nodes on a given network structure by calculating k-shortest paths,
developed by Gil et al. [42].

4.8. Determination of Control Type for the MTM Identified Synergistic Targets

To hinder serial state flip propagation between multi-stable motifs, a proper control
type of ON or OFF state should be selected for pinning the synergistic target identified
by the MTM. If the control effect of the given target node affects the identified synergistic
target by turning it OFF, it has to be pinned to ON state for interfering its propagation,
and vice versa. According to the control type of the given target node and the signs of
connected interlinks between motifs and the identified target, the control effect of the
given perturbation propagated to the synergistic target node is calculated. For this, we
perform signal flow analysis to estimate signal propagation after perturbation using only
topological information of the network [43]. As a tendency for an altered state of the
identified synergistic target to be ON or OFF is calculated based on the given control node
using signal flow analysis, the control type of the synergistic target can be determined as
the opposite of this state.

4.9. Identification of Synergistic Target Pairs Using Network Control Theories

We implemented the original algorithms of FVS [24] and SMC [25] using hard-coded
codes of Python 3.7.6. To compare the control effectiveness of the known control target
search algorithm with the MTM, we limited the number of control target nodes to two.
This adaptation was necessary because original algorithms often suggest controlling more
than two nodes. We evaluated the control efficacy of every possible two-node pair selected
from these suggested target lists and calculated their average control effectiveness. For
instance, if a strategy proposes controlling nodes A, B, and C, we assessed the control effect
on phenotypic nodes when controlling A and B, B and C, and C and A, respectively, to
derive an average efficacy for two-node controls. To calculate average control effectiveness
of target nodes suggested by the FVS, every possible two-node pair in the suggested target
nodes is regulated and their corresponding phenotypic changes of attractors are measured.
To calculate the average control effectiveness of two-node pairs suggested by the SMC,
every succession path to desired steady states in a succession diagram is selected. Then,
every possible two-node pair suggested from those succession paths is regulated and their
corresponding phenotypic changes of attractors are measured. In the case of the MTM, five
synergistic targets with the highest weighted flipping frequencies were selected.

4.10. Curation of Biological Network Structure from the OmniPath Database

To extract the biological network structures, we downloaded the OmniPath network
structural data file from the archives (https://archive.omnipathdb.org/ (accessed on 28
March 2024)) [44]. The downloaded versions of two interaction data files were uploaded
on 14 June 2018, and 26 April 2019. Those two data files were merged, and interactions
without signs or directions were removed. Then, the interactions were cross-validated by
leaving the links with confidence level A of the DoRothEA signed target gene–transcription
factor interaction data [45]. Finally, the network with the largest number of connected
components, with 3877 nodes and 10,814 links, was selected as a curated OmniPath network
structure.

4.11. Randomization of Network Structure While Preserving Degree Distributions

To randomize link connections between the nodes from the curated OmniPath network
structure, we first selected two non-overlapping nodes in pair and their outgoing links, as
well as their corresponding target node. We then swapped these target nodes from each
pair for a sufficient number of iterations. We discretely increased the number of iterations

https://archive.omnipathdb.org/
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from 10% to 50% of a total number of links in the network by 10% increments for repeatedly
generating randomized network structures in groups of 10. As a result, 50 randomized
network structures were generated.

4.12. Extraction of Multi-Stable Motif Structures from the Curated OmniPath Network

To extract the multi-stable motifs with specific network structures from the curated
OmniPath network and its randomized networks, we implemented the “pattern join”
method suggested by Patra et al. [46], which iteratively screens the existence of a specific
motif structure by joining smaller motifs within a network. The numbers of specific multi-
stable motif structures overlapped from the given network were systematically explored
by hard-coded MATLAB R2021a simulations.

5. Conclusions

Based on our results, we suggest that development of a control theory to reduce the
heterogeneous responses on given perturbations by utilizing network dynamics is imper-
ative to identify synergistic combinatorial targets to overcome adaptive resistance. We
highlight the critical role of state conflicts emerging between multi-stable motifs induced
by targeted drug perturbations on triggering adaptive drug resistance in targeted cancer
therapies. Our study focuses on a common network structure featuring two mutually
inhibitory multi-stable motifs, a configuration that leads to state conflicts and consequently
heterogeneous drug responses and adaptive resistance. Notably, we revealed that combina-
torial control of the interconnecting node with the given perturbation can resolve the state
conflicts between the motifs. This induces the entirety of the states in a cancer network to a
desired state by reducing heterogeneous drug responses. Since state conflicts occur only
during transitions followed by perturbation, analyzing essential network dynamics and
the state-flipping frequencies of each molecule in the transition paths between attractors is
crucial for identifying efficient synergistic combinatorial targets.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers16071337/s1. Figure S1: The logic equations of exem-
plary network models; Figure S2: The schematic representation of MTM and random stabilizations;
Figure S3. The logic equations of exemplary network models; Figure S4. An overall workflow
chart of the MTM based synergistic target identification; Figure S5. Identification of previously re-
ported synergistic target pairs of the synchronously updated Boolean network model through MTM;
Figure S6. Topological characteristics of synergistic pairs suggested by the MTM; Figure S7. Multi-
stable motifs and their mutual inhibitions are common in biological network structure.
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