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Simple Summary: This article aims to comprehensively review the current literature on the benefits
of awake craniotomy in gliomas of the non-dominant right hemisphere. A systematic review was
conducted using the PubMed and ScienceDirect databases. The literature search identified 74 sources,
including original articles, books, monographs, and review articles showing that awake surgery for
non-dominant-hemisphere gliomas improves patients’ outcomes.

Abstract: Awake surgery has become a standard practice for managing diffuse low-grade gliomas
(LGGs), particularly in eloquent brain areas, and is established as a gold standard technique for
left-dominant-hemisphere tumors. However, the intraoperative monitoring of functions in the right
non-dominant hemisphere (RndH) is often neglected, highlighting the need for a better understand-
ing of neurocognitive testing for complex functions in the right hemisphere. This article aims to
comprehensively review the current literature on the benefits of awake craniotomy in gliomas of
the non-dominant right hemisphere. A systematic review was conducted using the PubMed and
ScienceDirect databases with keywords such as “right hemisphere”, “awake surgery”, “direct electri-
cal brain stimulation and mapping”, and “glioma”. The search focused on anatomical and surgical
aspects, including indications, tools, and techniques of awake surgery in right cerebral hemisphere
gliomas. The literature search identified 74 sources, including original articles, books, monographs,
and review articles. Two papers reported large series of language assessment cases in 246 patients
undergoing awake surgery with detailed neurological semiology and mapping techniques, while
the remaining studies were predominantly neuroradiological and neuroimaging in nature. Awake
craniotomy for non-dominant-hemisphere gliomas is an essential tool. The term “non-dominant”
should be revised, as this hemisphere contributes significantly to essential cognitive functions in the
human brain.

Keywords: awake craniotomy; intraoperative monitoring; low-grade glioma; theory of mind; medial
ventral premotor cortex; prefrontal cortex
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1. Introduction

Awake surgery has become a common strategy in the contemporary management of
cerebral gliomas in eloquent brain areas in many neurosurgical institutions [1,2]. It serves
as an armamentarium for achieving the basic aims of neurosurgical oncology, namely, max-
imizing the extent of tumor resection (EOR) while preserving neurological functions [3].
An increased EOR is associated with improvements in the overall survival rate for pa-
tients with both low- and high-grade gliomas [4–14]. Initially, awake procedures were
predominantly employed in surgeries for the left cerebral hemisphere, considered an elo-
quent hemisphere, while the right hemisphere was often neglected due to its perceived
lesser importance in terms of functionality. However, the notion of the right hemisphere
having only a “minor function” is now being challenged, as subtle postoperative neu-
ropsychological complications in cognitive and behavioral functions have been reported
after right hemisphere surgery [1,2]. Key cognitive functions such as visuospatial and
social cognitions are determined by the non-dominant right hemisphere. Visuospatial
cognition involves spatial awareness, perception, and the representation of space, while
social cognition encompasses functions like empathy, theory of mind (TOM), nonverbal
language, facial expression recognition, and emotional prosody. The dogmatic concept of
hemispheric dominance localization and the fixed understanding of the right hemisphere
as non-dominant have led many neurosurgeons to underestimate its functional significance.
Cases of right-hemispheric lesions are often operated upon under general anesthesia, based
on the perceived low risk of permanent neurological sequelae, with a focus on monitoring
motor functions. Despite the importance of right hemisphere functions, there is a paucity of
literature on the use of cortical and subcortical mapping on the right hemisphere compared
to linguistic mapping in the left hemisphere [15–33]. This lack of interest may stem not
only from the underestimation of the right hemisphere’s contribution to cognitive function
but also from the intricacies of functional anatomy and the challenges involved in using
traditional bedside tasks in awake-surgical situations. In low-grade gliomas (LGGs), where
neuroplasticity is apparent before surgery and may persist during and after surgery, relying
solely on anatomical criteria for language functions may be unreliable [34–39]. A clear
understanding of the functions and symptomatology of the right cerebral hemisphere,
along with an analysis of the applicability of intraoperative testing methods, will enhance
neurosurgeons’ utilization of awake surgery in right-hemispheric lesions. Thus, we un-
dertook a comprehensive review of the current literature on the use of awake surgery in
right-hemispheric lesions.

2. Materials and Methods

The objective of our clinical review was to enhance understanding and elucidate the
methods employed for the intraoperative evaluation of right-hemispheric functions by
comprehensively reviewing the most reliable intraoperative function-targeted tests.

Literature Search: This review utilized the PubMed and ScienceDirect databases for
data retrieval. The search strategy involved the keywords “right hemisphere”, “awake
surgery”, “direct electrical brain stimulation and mapping”, and “glioma”. The literature
search was conducted from November to December 2023. The initial screening involved
eliminating duplicate papers, followed by filtering based on titles, abstracts, and full-text
assessment to ensure the inclusion of relevant studies. Particular attention was given to
papers focusing on anatomical and surgical aspects, evaluating the nuances of indications,
tools, and techniques specific to awake surgery in gliomas located in the right cerebral
hemisphere. All selected papers were required to be written in English.

Inclusion criteria: papers meeting the following criteria were included in our review:

• Relevance to awake surgery in gliomas of the right cerebral hemisphere.
• Presentation of anatomical and surgical considerations.
• Discussion of indications for awake surgery in the right hemisphere.
• Exploration of tools and techniques used during intraoperative assessment.
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Exclusion criteria: papers were excluded if they did not meet the inclusion criteria or
if they were not written in English.

Data extraction: data extraction was systematically carried out, focusing on key aspects
such as:

• Anatomical considerations specific to the right hemisphere.
• Surgical techniques employed during awake surgery for right-hemispheric gliomas.
• Indications for utilizing awake surgery in the right cerebral hemisphere.
• Evaluation methods and tools for intraoperative functional assessment.

Quality assessment: the selected papers underwent a quality assessment to ensure the
reliability and validity of the information provided. This involved evaluating the study
design, methodology, and the clarity of the reported results.

Synthesis of results: a synthesis of the findings from the selected papers was conducted
to provide a comprehensive overview of the current state of knowledge regarding awake
surgery in right-hemispheric lesions, with a focus on anatomical considerations, surgical
techniques, and intraoperative functional evaluation methods.

3. Results

Our comprehensive literature search yielded a total of 74 sources (Figure 1), compris-
ing original articles, books, monographs, and review articles. However, only two original
papers provided detailed insights into a large series of language assessment cases. These
studies collectively included 246 patients who underwent “surgery with awakening and
intraoperative electrostimulation mapping”, providing extensive information on neurologi-
cal semiology and mapping techniques. It is noteworthy that most of the remaining studies
primarily focused on neuroradiological and neuroimaging aspects.
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of the study.

3.1. Understanding Syndromes and Symptoms of Right-Hemispheric Lesions and Their
Intraoperative Tests

Objective neuropsychological studies have reported that cognitive and behavioral
deficits after brain surgery are often evident even in the right hemisphere [40]. Therefore,
for an optimal quality of life, particularly in patients with extended survival, such as those
with low-grade gliomas, the resection of right-sided tumors should be performed using
awake surgery with cortical and axonal electrostimulation mapping [41,42]. The central
roles of the right hemisphere encompass motor execution and control, visual processes,
spatial cognition, verbal and nonverbal semantic processing, executive functions (such as
attention), and social cognition (mentalization and affect). In this section, we will review
the fundamental clinical symptoms and signs that develop in lesions of right hemisphere
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tumors during intraoperative direct electrical stimulations, along with the corresponding
intraoperative testing methods.

3.1.1. Lesions on the Frontal Lobe near the Superior Frontal Gyrus Involving the
Supplementary Motor Area (SMA): Assessment of Supplementary Motor Functions

When a lesion is located on or near the pre- or postcentral gyri, motor-evoked potential
(MEP) and somatosensory-evoked potential (SSEP) monitoring become mandatory, offering
real-time information to the neurosurgeon about the state of the primary motor area
and corticospinal and corticonuclear tracts. However, it is equally crucial to monitor
supplementary motor functions. Axonal stimulation of the SMA, frontal aslant tract (FAT),
and fronto-striatal tracts in awake patients performing continuous movements can result in
disturbances of motor initiation and control, ranging from complete arrest to an involuntary
acceleration of movement. While postoperative SMA syndrome is generally considered
transient, Briggs et al. (2021) reported that neglecting the preservation of FAT fibers
(originating from the supplementary motor area) can lead to permanent deficits in 13% of
patients [43]. Furthermore, unilateral subcortical direct electrical stimulation of the right
hemisphere can not only disrupt left movement but also affect the movement of both hands
during a bimanual coordination task [44].

A higher microstructural organization of the bilateral FAT is associated with lower
acceleration and deceleration amplitudes for reach and reach-to-grasp movements, indicat-
ing more efficient visuomotor processing and leading to smoother movement trajectories.
Testing involves instructing patients intraoperatively to move both hands in parallel to
speech (dual task), assessing the possible occurrence of acceleration or complete arrest
(hemicorporeal akinesia) indicative of SMA syndrome (Table 1).

3.1.2. Deep Frontal Lobe Lesions Involving the FAT: Assessment of Executive Functions

Several studies have emphasized the role of the right FAT in executive functions.
Executive functions, encompassing inhibition, working memory, planning, and monitoring,
are often associated with the frontal lobe, and their impairment can have significant negative
implications for an individual’s social and professional life [45,46]. The right hemisphere’s
modulatory role in the cortico–subcortical network of higher mental functions has been
supported by findings, with fibers anterior to the corticospinal tract originating from the
supplementary motor area, lateral premotor cortex, and the depth of the precentral sulcus,
forming the fronto-striatal tract [47].

Despite the importance of the right frontal lobe for cognitive and emotional functions,
intraoperative monitoring of these functions has been rare due to the complex nature
of emotional functions and the challenge of adapting standard bedside tasks to awake
surgery conditions. However, dysexecutive disorders can significantly impact a patient’s
quality of life by deteriorating abstract reasoning, judgment abilities, and reducing mental
flexibility. These behavioral disturbances, particularly in social life, can manifest as social
inappropriateness, extreme ebullience, and aggression [48]. In some cases, lesions involving
the right frontal lobe may initially manifest mildly and be less obvious than language and
motor disabilities. Moreover, the intraoperative assessment of corresponding functions
poses technical challenges, and recovery from symptoms depends on the extent of injured
fibers. Testing executive functions intraoperatively is particularly challenging due to their
complicated nature, with only a minority of the published reports available in the current
literature. Some authors have adapted the Stroop test for awake brain surgery, utilizing it
for intraoperative monitoring of frontal functions. The Stroop test assesses the functioning
of the anterior cingulate cortex, which is crucial for managing conflicts. The presence of the
Stroop effect can be evaluated as a measure of the anterior cingulate cortex’s functioning.
This test offers the advantage of high specificity for use in awake surgery as it can assess
three basic functions of the anterior cingulate cortex: intention to action (dysfunction causes
akinetic mutism), motor initiation, and inhibitory function (suppressing inappropriate
responses). Other testing methods such as the Wisconsin Card Sorting Test, Trail Making
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Test, Nelson Modified Test, and Spatial Memory Test require at least 20 min for evaluation
and are not suitable for intraoperative conditions. The common characteristics of these
tests, demanding more time to plan and involving hand movements for drawing, make
them time-consuming, potentially explaining their limited use in intraoperative settings.

3.1.3. Lesions of the Medial Part of the Frontal Lobe Involving the Cingulate Gyrus:
Assessment of Social Cognition

Social cognition encompasses theory of mind, nonverbal language—primarily facial
emotion recognition—and empathy. Despite the lack of consensus on the anatomical de-
marcations of social cognition function, several studies have indicated that these functions
are distributed across various regions of the “facial network,” including the anterior cin-
gulate gyrus, the medial ventral PFC, the gyrus rectus, the medial aspect of the superior
frontal gyrus, both occipito-temporal cortices, and the posterior part of the right superior
temporal sulcus (STS) (Figure 2). Consequently, any lesion infiltrating these areas may
lead to disorders in one or several functions of social cognition. Transcranial magnetic
stimulation of the posterior part of the right STS has been shown to improve the recogni-
tion of emotions in healthy volunteers [49]. The cingulum, which links the rostral medial
prefrontal cortex/anterior cingulate and the medial posterior parietal cortex (including the
posterior cingulate cortex and ventral precuneus), is involved in the default mode network
and may participate in some aspects of conscious information processing. The disruption
of this subcortical connectivity on the posterior cingulate cortex can lead to a breakdown in
consciousness in awake patients, resulting in transient behavioral unresponsiveness and a
loss of connectedness to the external environment [50]. Another study supported the role of
the right hemisphere in emotional and behavioral disorders in patients with frontotemporal
lobar degeneration (FTD), positing a dominant role of the right hemisphere for emotional
functions [51–55]. There are also reports about the role of the amygdala and insula in facial
emotion recognition. The scattered nature of social cognition functions suggests using
corresponding testing methods in cases where any of these centers are affected by lesions.
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Figure 2. Basic functional–eloquent regions of the right hemisphere. (A) Lateral view of the right
hemisphere. VFC (ventral frontal cortex) in pink and TPJ (temporoparietal junction) in yellow,
and interconnecting subcortical pathways are depicted. (B) Medial view of the right hemisphere.
Middle ventral prefrontal cortex (mvPFC) and anterior cingulate gyrus can be observed. (C) Bottom
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which is responsible for the facial network. There is also a deep layer of IFOF illustrated connecting
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prefrontal cortex. (D) Coronal section of the posterior frontal lobe. FAT: frontal aslant tract, which is a
subcortical tract connecting the preSMA and IFG, is illustrated.
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It is noteworthy that emotion recognition was also tested by the left insular lobe in a
study involving 13 patients, where it was found that there was an insignificant decrease in
emotion recognition [49]. Testing for facial emotion recognition can be conducted using
Ekman’s six primal facial emotions (anger, happiness, fear, surprise, disgust, and sadness),
with a testing time of 10 s per image. Other testing methods, such as “Reading the Mind in
the Eyes”, may be more challenging in intraoperative settings due to the observation of only
the eyes. Additionally, methods like the JACMAN (Japan, Caucasian brief affect recognition
test), involving 56 items measuring different aspects of expressions and multiple items
representing each aspect, are time-consuming and not intraoperatively applicable.

3.1.4. Lesions of the Temporoparietal Region: Assessment of Visuospatial Function

We have not identified a standard anatomically defined area for the cortical center
of visuospatial function. Instead, several cortical regions and subcortical tracts have been
suggested as responsible areas for visuospatial cognition, validated through direct electrical
stimulation. These areas include the ventral frontal cortex (VFC), corresponding generally
to the middle frontal gyrus (MFG) and inferior frontal gyrus (IFG), the temporoparietal
junction where the inferior parietal lobule (comprising two gyri—supramarginal and
angular) meets the superior temporal gyrus, and finally, the insula. The manifestation of
irritation or dysfunction in these regions will ultimately result in unilateral neglect (UN).

3.1.5. Lesions Localized Deep in the Basal Surface of the Right Occipito-Temporal Area,
Involving ILF, IFOF, and SLF: Assessment of Visuospatial Cognition

Studies on the direct electrical stimulation of the right optic radiation in awake pa-
tients have shown that beyond the primary visual cortex, stimulation can induce inhibitory
phenomena such as blurred vision or the impression of a shadow, as well as “excitatory
phenomena” manifested as visual hallucinations and metamorphopsias. Stimulation of
the right inferior longitudinal fasciculus (ILF) may lead to left visual hemiagnosia, result-
ing from the disruption of occipital visual input and the fusiform gyrus [56]. These data
support the key role of the inferior longitudinal fasciculus in visual recognition in the
right hemisphere. Additionally, stimulation of the SLF II and supramarginal gyrus can
cause disturbances in spatial cognition and a rightward deviation in line bisection tests.
Cortical centers in these right perisylvian regions provide information about the position
and motion of our body in space, playing a critical role in regulating body position in
relation to external space [57–60]. This perisylvian neural network is vital for the neural
transformation of converging vestibular, auditory proprioceptive, and visual inputs into
spatial representations [49]. These findings underscore the pivotal role of the right hemi-
sphere fronto-parietal network in spatial awareness and visual scene processing. Some
studies have even suggested a role of the right SLF in vestibular syndrome inducing vertigo,
indicating its contribution to body posture and spatially oriented actions [47].

Testing: various assessment tests for hemispatial neglect have been described in the
literature. The Catherine Bergego Scale, comprising 10 everyday tasks observed by the
doctor during self-care activities, is one example [61,62]. However, it is not suitable for
intraoperative settings. Other tests, such as clock face drawing and butterfly drawing tests,
may be time-consuming and inconvenient for patients in a lying position.

Intraoperative testing: two tests are particularly well-suited for intraoperative settings
due to their reliability and feasibility, taking less than 5 min and being easy in nature:

Line bisection test (Alberts test): in this test, the patient marks the center of a given
horizontal line. Rightward displacement of the bisection indicates irritation of the cortical
or subcortical regions of spatial cognition. A lateral deviation of the patient’s mark from
the midline of approximately 5 mm is considered a positive result.

Target cancellation test: patients are presented with a collection of simple, distinct
shapes (a star, triangle, square, and circle) randomly arranged with a bisecting vertical
line dividing the array into equal halves. Patients are instructed to mark or “cancel” the
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specified targets or objects in both the right and left fields. Note that these tests may not be
suitable for patients with hemianopia, as they may yield false positive results.

3.1.6. Lesions Localized in Temporal Lobe and Insula: Assessing Emotional Prosody

Emotional prosody, a fundamental aspect of social cognition, is associated with cortical
centers primarily located in the superior temporal gyrus and partially in the inferior frontal
gyrus. However, some studies have also reported cortical activation sites in the right
supramarginal gyrus (SMG) with the middle and superior temporal gyri with functional
magnetic resonance imaging (fMRI) [49]. It is crucial to note that linguistic prosody is
processed in both hemispheres, indicating that its function is not solely anatomically
confined to the right side. The impact of the right ventral pathway on non-verbal semantics
has been explored in numerous studies. Patients with low-grade gliomas (LGGs) involving
ventral tracts underwent awake craniotomy, revealing disturbances in non-verbal semantic
functions during tests. Semantic impairments, such as semantic verbal paraphasia during
naming tasks at the level of the pars triangularis, dorsolateral prefrontal cortex, and
opercular cortex, were observed [63,64]. Similar findings were confirmed at the subcortical
level, inducing verbal semantic impairment in the right inferior fronto-occipital fasciculus
(IFOF), emphasizing the critical role of the right ventral stream in these processes [65]. The
right superior longitudinal fasciculus (SLF) has also been investigated for its crucial role in
simultaneous enrollment of both verbal and non-verbal functions—language and spatial
cognition—during the performance of dual tasks (limb movement and object naming)
in awake craniotomy with direct electrical stimulation [66]. Direct electrical stimulation
helps elicit symptoms by triggering cortical centers and subcortical tracts. However, these
symptoms will not persist if the corresponding areas are preserved. Studies following
aggressive resection of parietal lobe gliomas without subcortical mapping have reported
that 13% of patients experienced postoperative dysphasia [10]. Fan et al. found that the
right anterior insula was linked with the affective–perceptual form of empathy, while the
left insula was associated with both the affective–perceptual and cognitive–evaluative forms
of empathy. The role of the insula in empathy and social cognition has been confirmed
in lesion studies [2]. Testing: emotional prosody is assessed through tests where patients
are asked to read different sentences with specific emotional tones. The performance in
these tests is subjectively analyzed by an expert physician to determine whether patients
exhibit aprosodic or normal prosody. The complexity of these tests and their subjective
interpretations explain the challenges in investigating prosody during awake surgery,
contributing to the absence of a standardized procedure.

Table 1. Right-hemispheric functions and correlated neurological deficits, their testing methods, and
surgical considerations.

Functional Area Gyrus
Responsible
Subcortical

Tract
Function Deficit Testing Methods

Awake
Intraoperative

Assessment

1 Ventral frontal
cortex (vPFC)

MFG
IFG

SLF III
SLF II
IFOF

Visuospatial
cognition

Somatoparaphrenia
Anosognosia
Unilateral neglect
Allochiria

Line bisection
test
Alberts test [67]
Catherine
Bergego Scale
(CBS) [62]
Target
cancellation test
Clock face
drawing
Butterfly
drawing

Line bisection
test
Target
cancellation
test
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Table 1. Cont.

Functional Area Gyrus
Responsible
Subcortical

Tract
Function Deficit Testing Methods

Awake
Intraoperative

Assessment

2 Temporoparietal
junction (TPJ)

SMG,
both MTG

STG (posterior
part)

IFOF

Right UF +
corticolimbic
system with
bilateral
mvPFC and
orbitofrontal
cortex and
precuneus

Visuospatial

Social
cognition

empathy,
TOM

Somatoparaphrenia
Anosognosia
Unilateral neglect

Constructional apraxia
Emotional dysprosody
Undermentalizing
(autistic)
Overmentalizing
(schizophrenic)
accentuation

Line bisection
test
Alberts test
CBS

Benton Visual
Retention Test
[68]

“Reading the
mind in the eyes”
test [53].
False belief vs.
photo

Line bisection
test
Target
cancellation
test

3
Medial ventral
prefrontal cortex
(mvPFC)

Ant.Cingulate
gyrus
Gyrus rectus
Medial SFG

Social
cognition
(empathy
TOM)

“Mind blindness”
Undermentalizing
(autistic)
Overmentalizing
(schizophrenic)
accentuation

“Reading the
mind in the eyes”
test.
Strategic game
Trait judgement
Social animations
Rational actions

Reading the
Mind in the
Eyes

4

Facial network,
temporal part.
SMG, left insular
area.

Bilateral FFG
posterior STS
IFG,
orbitofrontal
gyrus
mvPFC61
anterior
cingulate gyrus,
gyrus rectus
medial SFG

UF
Facial
emotion
recognition

Ekman’s face test
Japan, Caucasian
brief affect
recognition test

Ekman’s faces

5 Emotional prosody
IFG
SMG
rt STG

AF Emotional
prosody Emotional dysprosody

Storytelling with
an intonation or
listening to a
prosodic text
with emotional
background.

No
intraoperative
test
documented in
literature

6 Empathy

Bilateral mvPFC
Bilateral TPJ
STS
paracingulate
IFG, cingulate
gyrus, and
amygdala

UF Showing
empathy

Reading the
Mind in the Eyes
False belief vs.
photograph
Strategic game
Trait judgement
Social animations
Rational actions

Reading the
Mind in the
Eyes
Balanced
Emotional
Empathy Scale
(BEES)

7 Theory of mind

Bilateral mvPFC
Bilateral TPJ
STS
Lat orbitofrontal
gyrus
MFG, cuneus
precuneus, and
STG

Corticolimbic
system

Theory of
mind

“Mind blindness”
Undermentalizing
(autistic) [53,55]
Overmentalizing
(schizophrenic)
accentuation

4. Discussion

A study involving 658 consecutive cases [69] of intraoperative somatosensory-evoked
potential (SEP) monitoring conducted by authors from Essen, Germany, demonstrated that
the sensitivity of neurophysiological intraoperative monitoring (IOM) is typically around
80% [1]. The primary objective of IOM is to promptly identify patients at risk of neurological
impairment during surgery, enabling the surgical team to react promptly. This underscores
the limitation of relying solely on IOM under general anesthesia for the optimal preservation
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of complex motor functions. Studies utilizing the direct electrical stimulation of the right
hemisphere by various authors have revealed significant interindividual structural and
functional variabilities, particularly at the cortical level [2]. This variability is attributed
to the complex networking of white matter tracts, emphasizing that no single function is
mediated by a single cortical area [70,71]. Instead, it results from the interactions of large-
scale subcircuits, allowing for neural reshaping over time to compensate for injury [72].

4.1. Direct Electrical Stimulation (DES)

Direct electrical stimulation (DES) is a pivotal technique used in neurosurgery for the
functional mapping of eloquent cortical areas and subcortical white matter tracts [12]. By
delivering low-amplitude electrical currents directly to specific brain regions, DES allows
neurosurgeons to assess functional integrity and determine the localization of critical
structures during awake craniotomy procedures.

4.1.1. Stimulation Parameters

During DES, electrical currents are typically delivered using specialized electrodes,
such as bipolar or monopolar probes, which are inserted into the brain tissue under direct
visualization. The stimulation parameters, including frequency, duration, and intensity of
electrical pulses, are carefully adjusted based on individual patient factors and the specific
functional regions being targeted. Common stimulation frequencies range from 50 to 60 Hz,
with pulse durations of 1 to 5 milliseconds and intensities typically ranging from 1 to
10 mA.

4.1.2. Site Selection Criteria

The selection of stimulation sites is guided by preoperative neuroimaging data, includ-
ing functional MRI (fMRI) and diffusion tensor imaging (DTI), which provide information
about the spatial relationship between the tumor and eloquent brain regions. Additionally,
intraoperative electrocorticography (ECoG) may be used to identify areas of abnormal
electrical activity indicative of functional significance. Stimulation sites are strategically
chosen to encompass language, motor, and cognitive areas potentially at-risk during tumor
resection, with particular attention to regions proximal to the lesion and critical white
matter pathways.

4.1.3. Protocols for Patient Safety

Ensuring patient safety during DES procedures is paramount. Neurosurgeons ad-
here to strict protocols to minimize the risk of adverse events, including seizures and
neurological deficits. Prior to stimulation, patients are typically administered antiepileptic
medications to reduce the likelihood of seizure activity. Additionally, continuous intra-
operative monitoring of neurological function, including speech and motor responses,
allows for real-time assessment of the effects of electrical stimulation on brain function.
Stimulation is incrementally delivered, starting at low intensities, and gradually increasing
to threshold levels while closely monitoring for any signs of functional impairment. If a
significant functional response is elicited, such as speech arrest or motor weakness, the
stimulation is immediately ceased to prevent permanent neurological deficits.

Research on neuroplasticity has highlighted that functions cannot be reliably localized
solely based on anatomical criteria [4]. The individual organization of the cerebral cortex
varies among individuals, emphasizing the importance of individualized mapping for safer
resection with minimal neurological consequences. Positive mapping aids in better surgical
approach selection and the delineation of lesion resection limits, crucial for avoiding
permanent postoperative neurological deficits [5–7].

The involvement of the right hemisphere becomes evident in cases of injury or post-
operative damage to eloquent zones of the left hemisphere. For instance, resection of the
left supplementary motor area (SMA) can lead to SMA syndrome, with patient recovery
demonstrated by functional magnetic resonance imaging (fMRI) revealing compensation
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by recruitment of the right-sided SMA and ipsilateral primary motor cortex [8]. Reports
have also indicated that the resection of insular low-grade gliomas (LGGs) involving deep
gray matter nuclei may not cause cognitive disorders due to compensation through recruit-
ment of parallel subcortical pathways. High-order cognitive processes are sustained by
large-scale networks distributed throughout the brain, challenging the concept of specific
functions attributed to cortical regions. Focal cortical electric stimulation demonstrates
specific dysfunction but may not fully reveal the functioning of subcortical circuits. Localiza-
tionism can be misleading for neurosurgeons, particularly in cases of higher-order cognitive
functions, emphasizing the crucial need for intraoperative cortical/subcortical mapping.

Despite the importance of mapping right-hemispheric functions, there is currently
no standardized test battery for assessing these functions in intraoperative settings. De-
veloping more accurate and easily applicable neuropsychological tests for mapping right-
hemispheric lesions is essential. The challenge lies in the multidisciplinary team’s respon-
sibility, including neurosurgeons, neuropsychologists, psychiatrists, and neurologists, to
address the demands of intraoperative settings, considering the time-consuming nature of
available neurocognitive tests.

4.2. Limitations of Current Studies and Future Directions

While existing literature has provided valuable insights into neurosurgical mapping
techniques and their clinical applications, it is essential to acknowledge several limita-
tions inherent in the current body of research. These limitations contribute to gaps in
our understanding and highlight areas for further investigation to advance the field. One
notable limitation is the variability in study methodologies, including differences in patient
populations, lesion characteristics, mapping techniques, and outcome measures [9]. Such
heterogeneity makes it challenging to compare findings across studies and draw definitive
conclusions regarding the efficacy and generalizability of specific mapping approaches [73].
Moreover, many studies examining the utility of neurosurgical mapping techniques were
limited by relatively small sample sizes, which may have affected the statistical power
and robustness of their findings. Larger, multicenter studies with standardized protocols
are needed to validate the effectiveness of these techniques across diverse patient pop-
ulations and clinical settings. Additionally, while awake craniotomy has emerged as a
valuable tool for preserving language and cognitive functions during brain surgery, its
applicability may be limited by patient factors such as anxiety, cooperation, and tolerance
of the procedure. Future research should explore strategies to optimize patient selection,
enhance intraoperative monitoring, and mitigate potential adverse effects to maximize the
benefits of awake surgery while minimizing patient discomfort. Furthermore, the current
literature predominantly focuses on mapping techniques for language and motor func-
tions, with less emphasis on cognitive domains such as memory, attention, and executive
function. Future studies should investigate the feasibility and efficacy of incorporating
comprehensive cognitive mapping protocols into neurosurgical practice to minimize post-
operative cognitive deficits and improve overall patient outcomes. Emerging technologies,
such as functional neuroimaging modalities (e.g., functional MRI, diffusion tensor imag-
ing, etc.) and intraoperative neurophysiological monitoring techniques, offer promising
avenues for advancing our understanding of brain function and refining surgical mapping
approaches [10,11]. Continued research in these areas may lead to the development of
more precise and individualized mapping strategies that optimize functional preservation
while maximizing tumor resection. In conclusion, while neurosurgical mapping techniques
have revolutionized the management of brain lesions, there remain important challenges
and opportunities for further research. Addressing the limitations of current studies and
exploring novel methodologies and technologies will be crucial for advancing the field and
improving patient outcomes in neurosurgical practice.
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5. Conclusions

In summary, this review of intraoperative neurophysiological studies underscores the
critical role of awake craniotomy with intraoperative electrostimulation mapping in gliomas
affecting the non-dominant right hemisphere of the brain. The term “non-dominant” may
not be entirely suitable for the right hemisphere, given its significant contribution to individ-
ual and social life by providing fundamental and irreplaceable cognitive functions [74,75].
The loss of these functions can lead to a substantial deterioration in quality of life. While
there are ample reports on intraoperative language and motor functions, the assessment of
executive cognitive functions such as memory, calculation, emotions, and working mem-
ory has been reported in limited quantity. This underscores a notable underexposure of
executive functions controlled by the right hemisphere. There is a clear need to shift the
paradigm and evolve assessment methodologies in this direction. Based on the analysis
of the current literature review, it is advisable to incorporate intraoperative mapping, par-
ticularly in patients with little or no preoperative neurological deficits. This approach can
enhance the understanding and preservation of the intricate cognitive functions associated
with the right hemisphere, ultimately contributing to improved surgical outcomes and
postoperative quality of life.
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