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Simple Summary: Deep-learning-based radiogenomic (DLR) models show promising performance
in assisting with lung cancer care. The primary aim of our study was to develop and validate a
DLR model to predict EGFR mutation status in non-small-cell lung cancer (NSCLC) patients. Using
990 patients from two clinical trials, the study employed a machine learning pipeline that analysed CT
images with manually selected tumour regions. Two deep convolutional neural networks segmented
lung masses and nodules from 3D regions of the CT image. The combined radiomics and DLR
model achieved 88% accuracy in predicting EGFR mutations, outperforming individual models.
The semantic features extracted from CT images also contributed to accurate predictions. The
study suggests that this AI-based model in combination with CT semantic features could serve as a
non-invasive biomarker that aids in predicting EGFR mutation status with significant accuracy.

Abstract: Purpose: The authors aimed to develop and validate deep-learning-based radiogenomic
(DLR) models and radiomic signatures to predict the EGFR mutation in patients with NSCLC, and to
assess the semantic and clinical features that can contribute to detecting EGFR mutations. Methods:
Using 990 patients from two NSCLC trials, we employed an end-to-end pipeline analyzing CT images
without precise segmentation. Two 3D convolutional neural networks segmented lung masses
and nodules. Results: The combined radiomics and DLR model achieved an AUC of 0.88 ± 0.03
in predicting EGFR mutation status, outperforming individual models. Semantic features further
improved the model’s accuracy, with an AUC of 0.88 ± 0.05. CT semantic features that were found to
be significantly associated with EGFR mutations were pure solid tumours with no associated ground
glass component (p < 0.03), the absence of peripheral emphysema (p < 0.03), the presence of pleural
retraction (p = 0.004), the presence of fissure attachment (p = 0.001), the presence of metastatic nodules
in both the tumour-containing lobe (p = 0.001) and the non-tumour-containing lobe (p = 0.001), the
presence of ipsilateral pleural effusion (p = 0.04), and average enhancement of the tumour mass above
54 HU (p < 0.001). Conclusions: This AI-based radiomics and DLR model demonstrated high accuracy
in predicting EGFR mutation, serving as a non-invasive and user-friendly imaging biomarker for
EGFR mutation status prediction.
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1. Introduction

Non-small-cell lung cancer (NSCLC) accounts for the majority (85%) of all lung cancer
cases. The two most common histopathologic subtypes are adenocarcinoma and squamous
cell carcinoma [1]. In the modern era of personalized and precision medicine, the mutational
testing of selected genes for NSCLC remains a standard practice to categorize patients
into responders and non-responders. This includes testing for mutations of the epidermal
growth factor receptor (EGFR), a cell surface receptor activating cell growth and survival,
which when mutated confers sensitivity to tyrosine kinase inhibitors. Some common
clinical characteristics seen in patients with EGFR mutations are non-smoking status,
adenocarcinoma histology, female sex, and East Asian ethnicity [2,3].

A lung mass Trucut biopsy is a must for histological and mutational analysis seeking
to further develop a plan of treatment. However, it is not always feasible to obtain adequate
tissue samples from a biopsy for mutational analysis, or there might be errors in target-
ing the lung mass. Some high-risk patients might not be fit to undergo a Trucut biopsy
due to a deranged coagulation profile or other underlying morbidities. There is always a
small risk of life-threatening complications associated with biopsies such as pneumothorax,
haemoptysis due to alveolar haemorrhage, haemothorax, and hemopericardium. Also,
in developing countries like India, advanced laboratory facilities for genomic mutation
studies are not widely available, especially in small towns and rural areas. In this situation,
clinical parameters such as Asian ethnicity, female sex, non-smoking status, and adeno-
carcinoma histology have been considered as potential prerequisites for the presence of
EGFR mutation [4,5]. However, these clinical characteristics represent only a selected small
population with higher probability of harbouring the EGFR mutation. The tumour cells
harvested via a core biopsy represent only a tiny fraction of the tumour, and might not
represent the complex heterogeneity of the tumour mass. A study conducted by Taniguchi
et al. [6] analysed 50–60 areas of tumour tissue in 21 patients with a known EGFR mutation.
Intra-tumoural heterogeneity was seen in 28.6% of the study cohort (6 out of 21 tumours),
which contained both EGFR-mutated and wild-type cells. Thus, more detailed factors are
needed to analyse EGFR mutation statuses, such as the characterisation and analysis of
quantitative computed tomography (CT) features. Every patient with a lung mass needs to
undergo a CT scan; hence, pre-treatment CT images can prove to be a rich source of data
for analysis. They can provide additional data for genomics and can potentially identify
tumours with EGFR mutations [7,8]. The resampling of the tumour can be considered
if there are discrepancies between the mutation results from the biopsy and CT findings
(based on deep learning, radiomics, and semantic markers); these combined analyses can
potentially reduce the chances of missing EGFR mutations in a tumour mass.

Medical imaging is intuitively very suitable as a biomarker source, especially in lung
cancer patients, where it is used to visualize tumour phenotypes and predict treatment
response. There has been an increase in research on the characterisation of quantitative
imaging features reflecting tumour biology, physiology, and phenotype using artificial
intelligence (AI)-based algorithms. Radiomics and deep-learning (DL)–AI-based models
are extensively used with medical imaging [9–11]. Radiomics refers to the computerized
extraction of data from radiologic images, and provides unique potential for making lung
cancer screening more rapid and accurate by using machine learning algorithms. For
analysing the tumour area, radiomics models require the precise annotation of the tumour
boundary, which requires manually marking the tumour on all three planes [12,13]. Since
only the tumour area is taken into consideration, the microenvironment of the surrounding
lung parenchyma is ignored. Advanced AI models such as neural network-based DL
methods can overcome these limitations through a self-learning strategy, and present
a promising tool for genomic analysis [14–17]. The DL method can be likened to the
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functioning of the neural network in the brain. In comparison to radiomic methods,
precise tumour boundary annotation is not required with deep learning, thus saving a
lot of time and human effort. Furthermore, the DL method takes into consideration the
microenvironment of the surrounding lung parenchyma, and can extract features that are
adaptive to specific clinical outcomes, whereas radiomics can only describe general features
that lack specificity for outcome prediction [18–20]. Moreover, with the help of the DL
model, the sub areas within the tumour that are strongly related to EGFR mutation status
can be identified and further subjected to biopsy if required. Thus, both the methods can
directly or indirectly help clinicians make rapid treatment decisions for patients.

The primary purpose of this study is to develop radiomics and DL models, which
can mine data from CT images to predict EGFR mutation status using a large cohort of
patients with NSCLC. Our DL method is an end-to-end pipeline that requires only the
manual marking of the tumour region in a CT image without precise annotation [21]. We
also identified specific CT-based semantic features that correlate strongly with the presence
of positive EGFR mutation in our study population.

2. Materials and Methods

The study was approved by the Institutional Ethics Committee and a waiver for
consent was obtained in view of the retrospective nature of the study. The inclusion criteria
for enrolling patients into the study were (1) primary lung adenocarcinoma confirmed
on histopathology report; (2) the presence of proven records of EGFR mutation status;
and (3) pre-operative/baseline contrast-enhanced CT data available. Exclusion criteria
were (1) incomplete medical records or non-availability of digital DICOM CT images;
(2) patients who have received chemotherapy or radiotherapy outside our institute before
the baseline scan; (3) any other active illness or pathological condition that might interfere
with the study data as per medical records. Finally, 990 patients were included in the study
with patient cases evaluated from 2010 January to 2016 December. These patients were
accrued from two clinical trials, which evaluated the role of Gefitinib vs. Pemetrexed and
Carboplatin in the treatment of EGFR-mutated NSCLC [22,23].

The tumour specimens were obtained using CT-guided Trucut biopsy, with the biopsy
targeted enhanced solid components of the tumour. EGFR mutations were identified
on four tyrosine kinase domains (exons 18–21), which are common mutations in lung
cancer. The mutation status was determined using a TaqMan Probe-Based Endpoint
Genotyping Mutation Analysis undertaken via Real-Time PCR on the LC 480 II platform.
For identifying a tumour as an EGFR mutant, any one exon (exon 18–21) mutation should
be present; otherwise, the tumour should be identified as EGFR wild-type. The focus of the
study was predicting the EGFR mutation status.

2.1. Radiology Review

A clinical radiologist with 10 years of experience in thoracic imaging and another
radiologist with 2 years of experience in general radiology retrospectively reviewed the CT
scans. Both the radiologists were blinded to clinical and histologic findings. The imaging
review was performed on reconstructed DICOM data using a volume viewer integrated
within the PACS. The images were reviewed for lung, soft-tissue, and bone window with
reformatting available in all three planes, i.e., axial, coronal and sagittal. In case of any
disagreements between the radiologists as regards the CT findings, the majority class was
used as the final CT feature. Mean values were used for continuous variables. A subset of
223 patients was selected for the extraction of pre-determined semantic features from CT.
The clinical details of the same subset of patients were also collected.

2.2. Development of the DL Model

Using a convolutional neural network, DL aims to learn the abstract mapping between
the raw data and the desired label. Our DL model for EGFR mutation classification is a lin-
ear support vector machine (SVM), which takes in 9 different feature vectors extracted from
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6 DL models and uses them to classify the EGFR mutation status. The 6 DL models include
2 models trained to segment masses, 2 models trained for nodule texture classification,
1 model for nodule spiculation classification, and another model for nodule segmentation.
The selection of ROI for the DL model and its illustration is shown in Figures 1 and 2.
Table 1 shows the list of 9 feature vectors, the models used and their combinations. For
each model, a patch was extracted around the largest mass in the study. The DL model was
constructed using the following frameworks: Python 3.8, Pytorch 1.1.
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Table 1. List of 9 feature vectors, the models used and their combinations.

Feature Vector Model Patch Size Processing Feature Vector
Size

1 Mass segmentation 1 132 × 132 × 132 Original image is at 1× zoom 512
2 Mass segmentation 1 132 × 132 × 132 Original image is at 2× zoom 512
3 Mass segmentation 1 132 × 132 × 132 Original image is at 0.5× zoom 512
4 Mass segmentation 2 132 × 132 × 132 Original image at 0.5× zoom 512
5 Nodule segmentation 132 × 132 × 132 Original image is 0.5× zoom 512
6 Texture classification 1 64 × 64 × 64 Original image is at 0.5× zoom 320
7 Texture classification 1 32 × 32 × 32 Original image is at 0.5× zoom 320
8 Texture classification 2 64 × 64 × 64 Original image is at 0.5× zoom 320
9 Spiculation classification 64 × 64 × 64 Original image is at 0.5× zoom 512

For all the segmentation models, we used a standard 3D U-Net architecture, and
a 512-dimensional feature vector was taken from the bottom-most layer of the U-Net.
Figure 3 shows the architecture of a standard U-Net with 512 features at the bottom-most
layer. For all the classification tasks, a standard 3D Wide ResNet was used. The feature
vector was extracted from the layer before the AveragePool3D layer. Figure 4 shows the
structure of a standard 3D Wide ResNet. Feature vector was extracted from the conv4 layer
before the avg-pooling layer.
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Both the mass segmentation networks were trained using the above 990 patient data.
All the masses were annotated by a technologist and were reviewed by an experienced
radiologist. For nodule segmentation, texture classification and spiculation classification
networks, 1010 studies from the publicly available dataset LIDC-IDRI were used for training.
All these models were trained with a learning rate of 1 × 10−4 and a weight decay of
1 × 10−5. Segmentation networks were trained with Negative-Log Likelihood (NLL) loss
and classification networks were trained with Cross Entropy loss. Augmentations such as
rotate, flip, scale and translate were used for all the models.

Once all the 9 feature vectors had been extracted, we generated a combined feature
vector of 4032 features. Of these 4032 features, 789 feature columns were zero, leaving
a feature vector of size 3243. An SVM with linear kernel and balanced weights for the
2 classes was trained on the 3242 features of 990 patients with 3-fold cross-validation.
Using the coefficients of the best model obtained, we removed all the feature columns with
coefficients ≤ N. We iterated on various values for N and found N = 0.04 yielded the best
model. After using N = 0.04 to remove the small coefficients, we had 1422 features left. We
retrain the SVM with the new set of features to generate our best model.

On the subset with semantic features, the same experiments with the same set of
9 feature vectors were conducted with and without the semantic features.

2.3. Development of Radiomics Model

The primary tumour was segmented using the following techniques: manual, semi-
automated and automated segmentation methods. The primary tumour on contrast-
enhanced CT was delineated manually using the post-processing software (AW 4.4) by
a radiologist with ten years of experience in thoracic imaging. The tumour was first
annotated in the mediastinal window (W 330 HU; L 50 HU) to include only the tumour area
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by identifying boundaries with the chest wall and other soft tissues, as shown in Figure 5,
then in the lung window (W 1500 HU; L −600 HU) to delineate the maximum extent of the
lung parenchyma.
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Figure 5. Segmentation of the tumour (in red) done manually in all the three planes using multiplanar
reconstruction for the extraction of radiomics features.

The segmented image was then subjected to the extraction of radiomics features
using pyradiomics [24]. A total of 1110 radiomic features were calculated, divided into
five groups: tumour intensity (n = 19), texture (n = 95), wavelet (n = 912), Laplacian of
Gaussian (n = 74), and shape (n = 19). Emphasis was placed on the features from the
previously published prognostic radiomic signatures: (I) tumour intensity—“Energy”,
(II) texture—“Gray Level Nonuniformity”, (III) wavelet—“Gray Level Nonuniformity
HLH”, and (IV) shape—“Compactness”. Our radiomics model for EGFR mutation classifier
is a linear SVM, which takes in the 1110 radiomic features and predicts the presence of EGFR
mutation. No feature columns with all zeros were identified. An SVM with linear kernel
and balanced weights for the 2 classes was trained on the 1110 features of 990 patients with
3-fold cross-validation. Using the coefficients of the best model obtained, we removed all
the feature columns with coefficients ≤ N. We iterated on various values for N and found
that N = 0.1 yielded the best model. After using N = 0.1 to remove the small coefficients,
we had 200 features left. We retrained the SVM with the new set of features to generate our
best model. Table 2 shows top-performing radiomics features in predicting EGFR mutation.
Figure 6 shows the pattern of radiomic workflow. Figure 7 shows the covariance matrix of
radiomic features.



Cancers 2024, 16, 1130 7 of 17

Table 2. Top-performing radiomics features in predicting EGFR mutation.

Radiomics Features Importance Normalized
Importance (%)

Entropy 0.046 71.3
Variance 0.03 56.4
Enhance Count 0.036 57.4
Core Count 0.032 49.70
Cluster Shade 0.033 46.2
Core Count 0.031 44.4
Two-step Cluster Number
Based on Age 0.032 42.10

Edema Count 0.030 42.6
Dissimilarity 0.027 46.3
Core Count 0.03 42.8
Difference in Entropy 0.028 41.9
Enhance Count 0.025 42.9
Variance 0.026 38.0
Maximum Probability 0.029 36.9
Sum of Variance 0.027 36.7
Homogeneity 0.026 36.5
Minimum Probability 0.026 35.4
Correlation 0.022 32.6
Inverse Difference 0.024 32.3
Contrast 0.023 29.5
Cluster Shade 0.018 26.6
Correlation 0.017 24.5
Variance 0.017 22.7
Maximum Probability 0.015 19.5
Cluster Prominence 0.016 18.5
Dissimilarity 0.013 18.9
Auto-Correlation 0.015 18.5
Inverse Difference 0.013 18.4
Sum of Squares Variance 0.011 18.2
Difference in Entropy 0.013 17.5
Average 0.015 17.2
Maximum Probability 0.013 16.3
Homogeneity 0.01 15.4
Difference in Entropy 0.008 13.9
Mean 0.008 13.4
Cluster Prominence 0.008 11.2
Sum Average 0.008 11.1
Inverse Difference 0.007 9
Minimum 0.006 7.8
Contrast 0.005 6.4
Sum of Intensities 0.003 6.3
Contrast 0.004 4.7
Homogeneity 0.002 2.5
Contrast 0.002 1.7
Dissimilarity 0.001 1.5

2.4. Combining DL and Radiomic Features

We combined the 4032 features from DL models and 1110 radiomic features and trained
an SVM to predict the EGFR mutation. Similar to the above methods, the coefficients of the
initial SVM were used to identify the best contributing features. For this model, N = 0.05
gave the best results. At N = 0.05, we were left with the top 2000 features, which were then
used to retrain the SVM to generate out best model.
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2.5. Statistical Analysis

Statistical analysis was performed using SPSS version 21 (IBM, Armonk, NY, USA).
Data were descriptively analysed using frequency and percentage for categorical data.
Interobserver agreement was determined by calculating Kappa values. A chi square test
for independence was used to observe if any association could be seen between two
variables. The Mann–Whitney U test was used to compare the medians between the two



Cancers 2024, 16, 1130 9 of 17

groups. Univariate Binomial logistic regression was used to determine the predictive
factors for EGFR mutation. Multiple logistic regression analyses were performed to identify
independent factors that can be used to predict EGFR mutation status. The final model was
selected with the backward elimination method. Area under the curve (AUC) and Receiver
Operating Characteristics (ROC) curves were used to present the accuracy of different
predictive models. All statistics were 2-sided, and a value of p < 0.05 was considered
statistically significant.

3. Results
3.1. Patient’s Characteristics

The relevant clinical data of a subset of 223 subjects are given in Table 3.

Table 3. Association between clinical features and EGFR mutation status.

Sr. No. Variables N EGFR Wild
Type

EGFR Mutant
Type Mean Age p Value ˆ Univariate OR

{CI}

Total Patients 223 102 121

1 Median Age
(years)

57
(48–62.8)

54
(46–59) 0.095 0.981

{0.95, 1.007}

2 Gender
[%] Male 143 79 [77.55%] 68 [56.25%] 54.7

(28–80)

Female 76 23 [22.5%] 53
[43.8%]

52.7
(31–75) 0.001 2.6

{1.48, 4.81}

3 Smoking status
[%] Yes 44

[45.1%]
22
[18.1%] 0.001 3.5

{1.94, 6.50}

No 57
[55.9%]

99
[81.8%]

4 Tumour stage
[%] III 12 [11.8%] 1

[0.8%]

IV 90 [88.2%] 120
[99.2%] 0.008 16

{2.04, 125.31}

Note—OR = odds ratio; CI—confidence interval. Data in parentheses [] are the percentage and parenthesis () are
the range. ˆ p value was based on a comparison between the EGFR mutation group and the wild-type group. Data
in parentheses {} are 95% confidence intervals (CIs).

3.2. Correlation of EGFR Mutation Status with Clinical Features

The median ages of patients did not differ between the EGFR wild-type and EGFR
mutant (p = 0.095) (Refer Table 1). EGFR mutation rates were significantly higher (a) in
women than in men (p < 0.001) and (b) in non-smokers than in smokers (p < 0.001). Statistical
analysis also revealed that Stage III disease was frequently seen with EGFR wild-type
tumours (p < 0.008).

3.3. Correlation of EGFR Mutation Status with Semantic Features

Semantic features were extracted for 223 patients. The semantic features have been
outlined in Table 4. Of 28 CT semantic features, univariate analysis (Table 4) revealed that
the following CT features were significantly associated with harbouring EGFR mutation
in NSCLC patients, including (a) pure solid tumours with no associated ground glass
component (p < 0.03), (b) the absence of peripheral emphysema (p < 0.03), (c) the presence
of pleural retraction (p = 0.004), (d) the presence of fissure attachment (p = 0.001), (e) the
presence of a metastatic nodule in both the tumour-containing lobe (p = 0.001) and the non-
tumour-containing lobe (p = 0.001) (f) the presence of ipsilateral pleural effusion (p = 0.04)
and (f) the average enhancement of the tumour mass above 54 HU (p < 0.001).
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Table 4. CT Features and EGFR mutation status.

Variables EGFR Wild
Type

EGFR Mutant
Type p Value ˆ

OR
(Odds
Ratio)

1 Tumour size ≤5 CM (Ref.) 60 (58.8) 65 (53.7) Reference

>5 CM 42 (41.2) 56 (46.3) 0.44 1.231
{0.72, 2.09}

2
Tumour
lobe
location

Right upper lobe (Ref.) 25 (24.5) 36 (29.8) Reference

Right middle lobe 7 (6.9) 9 (7.4) 0.84 0.893
{0.29, 2.71}

Right lower lobe 17 (16.7) 21 (17.4) 0.71 0.858
{0.37, 1.94}

Left upper lobe 34 (33.3) 30 (24.8) 0.17 0.613
{0.30, 1.24}

Left lower lobe 19 (18.6) 25 (20.7) 0.82 0.914
{0.41, 2.003}

3 Tumour
distribution Central 9 (8.8) 14 (11.6) 0.87 0.929

{0.36, 2.34}

Peripheral 53 (52.0) 40 (33.1) 0.01 0.451
{0.25, 0.79}

Both (Ref.) 40 (39.2) 67 (55.4) Reference
4 Contour (%) Round/oval (Ref.) 0 (0.0) 1 (0.8) Reference

Irregular 99 (97.1) 117 (96.7) 0.87 0.886
{0.19, 4.05}

5 Margins Well defined (Ref.) 25 (24.5) 24 (19.8) Reference

Poorly defined 77 (75.5) 97 (80.2) 0.40 1.312
{0.69, 2.47}

6 Spiculations
(%) Absent (Ref.) 28 (27.5) 23 (19.0) Reference

Fine spiculations 38 (37.3) 45 (37.2) 0.30 1.442
{0.71, 2.90}

Coarse spiculations 36 (35.3) 53 (43.8) 0.10 1.792
{0.89, 3.59}

7 Enhancement
pattern Homogeneous (Ref.) 14 (13.7) 13 (10.7) Reference

Mild/moderate heterogeneous 43 (42.2) 41 (33.9) 0.95 1.027
{0.43, 2.44}

Marked heterogeneous 45 (44.1) 67 (55.4) 0.27 1.603
{0.68, 3.73}

8 Enhancement
heterogeneity

Maximum
Enhancement

60.5
[50.25–75.5]

71
[59–87] 0.001 1.024

{1.01, 1.03}
Minimum
Enhancement

35
[28–48]

44
[35–55] 0.002 1.026

{1.009, 1.04}

Average
Enhancement
A. Average Enhancement < 54 HU

B. Average Enhancement > 54 HU

48
[41–60]

64 (62.7)

38(37.3)

57
[48–66]

47
(38.8)

74
(61.2)

0.004

Reference

<0.001

2.652
{1.54, 4.55}

Relative
Enhancement to reference artery

0.32
[0.24–0.4]

0.35
[0.28–0.41] 0.116 9.733

9 Texture Predominant solid with associated
GGO component 21 (20.6) 11 (9.1) Reference

Pure Solid
(no associated
ground glass component)

81 (79.4) 109 (90.1) 0.028 2.355
{1.09, 5.06}
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Table 4. Cont.

Variables EGFR Wild
Type

EGFR Mutant
Type p Value ˆ

OR
(Odds
Ratio)

10 Air
bronchogram Absent (Ref.) 65 (63.7) 63 (52.1)

Present 37 (36.3) 58 (47.9) 0.08 1.617
{0.94, 2.77}

11 Bubble like
lucency Absent (Ref.) 94 (92.2) 110 (90.9) Reference

Present 8 (7.8) 11 (9.1) 0.73 1.175
{0.45, 3.04}

12 Cavitation Absent (Ref.) 99 (97.1) 114 (94.2) Reference

Present 3 (2.9) 7 (5.8) 0.31 2.026
{0.51, 8.04}

13 Peripheral
emphysema Absent (Ref.) 85 (83.3) 114 (94.2) Reference

Mild/moderate 14 (13.7) 6 (5.0) 0.024 0.320
{0.11, 0.86}

Marked 3 (2.9) 1 (0.8) 0.23 0.249
{0.025, 2.43}

14 Peripheral
fibrosis Absent (Ref.) 67 (65.7) 73 (60.3) Reference

Mild/Moderate 27 (26.5) 38 (31.4) 0.39 1.292
{0.71, 2.34}

Marked 8 (7.8) 10 (8.3) 0.78 1.147
{0.42, 3.07}

15 Fissure
attachment Absent (Ref.) 43 (42.2) 25 (20.7) Reference

Present 59 (57.8) 96 (79.3) 0.001 2.799
{1.55, 5.04}

16 Pleural
attachment Absent (Ref.) 12 (11.8) 13 (10.7) Reference

Present 90 (88.2) 108 (89.3) 0.80 1.108
{0.48, 2.54}

17 Pleural
retraction Absent (Ref.) 38 (37.3) 24 (19.8) Reference

Present 64 (62.7) 97 (80.2) 0.004 2.400
{1.31, 4.37}

18 Vascular
convergence Absent (Ref.) 101 (99.0) 119 (98.3) Reference

Present 1 (1.0) 2 (1.7) 0.66 1.697
{0.15, 18.99}

19

Thickened
Broncho
vascular
bundle

Absent (Ref.) 50 (49.0) 50 (41.3) Reference

Present 52 (51.0) 71 (58.7) 0.25 1.365
{0.80, 2.32}

20 Calcifications Absent (Ref.) 100 (98.0) 115 (95.0) 2.609
Present 2 (2.0) 6 (5.0) 0.24 {0.51, 13.2}

21 LymphadenopathyAbsent (Ref.) 28 (27.5) 29 (24.0) Reference

Present 74 (72.5) 92 (76.0) 0.55 1.200
{0.65, 2.19}

22 Vascular
involvement Absent (Ref.) 56 (54.9) 39 (32.2) Reference

Present 46 (45.1) 82 (67.8) 0.001 2.560
{1.48, 4.41}
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Table 4. Cont.

Variables EGFR Wild
Type

EGFR Mutant
Type p Value ˆ

OR
(Odds
Ratio)

23 Pleural
effusion Absent (Ref.) 71 (69.6) 67 (55.4) Reference

Present ipsilateral 30 (29.4) 51 (42.1) 0.04 1.801
{1.02, 3.15}

Present contralateral 1 (1.0) 3 (2.5) 0.32 3.179
{0.32, 31.32}

24 Lymphangitic
spread Absent (Ref.) 76 (74.5) 82 (67.8) Reference

Present 26 (25.5) 39 (32.2) 0.27 1.390
{0.77, 2.49}

25 Pleural
nodularity Absent (Ref.) 66 (64.7) 71 (58.7) Reference

Present 34 (33.3) 50 (41.3) 0.35 1.291
{0.74, 2.22}

26 Lobulations Absent (Ref.) 80 (78.4) 98 (81.0) Reference

Present < 3 1 (1.0) 4 (3.3) 0.29 3.265
{0.35, 29.79}

Present > 3 21 (20.6) 19 (15.7) 0.38 0.739
{0.37, 1.46}

27
Tumour lobe
metastatic
nodule

Absent (Ref.) 39 (38.2) 30 (24.8) Reference

Present 63 (61.8) 91 (75.2) 0.032 1.878
{1.05, 3.33}

28

Non-tumour
lobe
metastatic
nodule

Absent (Ref.) 42 (41.2) 25 (20.7) Reference

Present 60 (58.8) 96 (79.3) 0.001 2.688
{1.48, 4.85}

Note—OR = odds ratio; CI—confidence interval. Data in parentheses [] are the percentage and parenthesis () are
the range. ˆ p value was based on the comparison between the EGFR mutation group and the wild-type group.
Data in parentheses {} are 95% confidence intervals (CIs). p-values with statistical significance are shown in bold.

3.4. Radiomics Model Used in Predicting EGFR Mutation

The SVM model for EGFR mutation classification using radiomic features had an AUC
of 0.72 ± 0.03 with three-fold cross-validation in 990 studies. Figure 8a shows the ROC
curve of the model.

3.5. DL Model in Predicting EGFR Mutation

The SVM model for EGFR mutation classification using the nine feature vectors
generated from DL models had an AUC of 0.82 ± 0.01 (CI: 0.81, 0.83) with three-fold
cross-validation on 990 patients. Figure 8b shows the ROC curves for the three repetitions
and their respective AUCs. On the subset of 223 cases with semantic features, the model
had an AUC of 0.84 ± 0.02 (CI: 0.82, 0.86) without any semantic features, whereas the
model with semantic features had an AUC of 0.88 ± 0.05 (CI: 0.83, 0.93). There was a 4%
improvement in AUC following the addition of semantic features irrespective of the value
of N used. Figure 8c,d show the ROC curves for the smaller subset of cases without and
with semantic features added.
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3.6. Combining DL and Radiomic Features

The SVM model for EGFR mutation classification using the nine feature vectors
generated from DL models, and 1110 radiomic features had an AUC of 0.88 ± 0.03 with
three-fold cross-validation on 990 studies. Figure 9 shows the ROC curve of the model.
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4. Discussion

In this study, we assessed the role of AI-based radiomics and DL models using pre-
treatment CT images of patients with lung adenocarcinoma to predict the EGFR mutation
status. The DL model was trained using the CT images of 990 patients with three-fold
cross-validation. The radiomics model showed good predictive performance with an AUC
of 0.72 ± 0.03 with three-fold cross-validation on 990 studies. The SVM model generated
from DL models had an AUC of 0.82 ± 0.01 with three-fold cross-validation on 990 studies.
On a smaller subset of 223 cases for which semantic features were extracted, the DL model
had an AUC of 0.84 ± 0.02, which improved to an AUC of 0.88 ± 0.05 when the semantic
features were combined. There was a 4% improvement in AUC following the addition
of semantic features. Cases with marked heterogeneity in the tumour, in cases with large
tumour sizes and associated collapse or consolidation, showed the reduced accuracy of
the DL and radiomics model. This resulted in increased error in the manual as well as
automatic annotation of tumours, including the annotation of non-tumoural segment, and
by extension, errors in feature extraction and texture analysis. With increasing tumour size
and heterogeneity, there is a loss in the internal characteristics of tumours related to specific
genetic mutation, which results in the inaccurate training of the model and a reduction in
predictive performance.

Other similar studies have shown a similar utility of DL models with improvements in
the AUC when combined with clinical parameters [25–28]. Further, a study on the PET/CT
fusion algorithm using a dataset of 150 patients showed a prediction accuracy of EGFR and
non-EGFR mutations of 86.25% in the training dataset and 81.92% in the validation set [29].

Clinical utility of the DL model: Our analysis provides an alternative effective method
to assess EGFR mutation in patients with NSCLC without requiring any intervention. It can
also act as an effective supplement to a biopsy. It can also help avoid complications associ-
ated with biopsies, and reduce false negative biopsy results due to tumour heterogeneity.
In such cases, if the deep learning model shows a high probability of EGFR mutation,
re-biopsy can be attempted. The DL method can further assist in selecting the target area
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for biopsy. Since the human assistance required is minimal, a large amount of data can be
processed with minimal errors and time. The model is easy to use and apply at various
levels of healthcare settings. The deep learning model only requires routinely used CT
images, without adding any extra cost. Therefore, this model can be used multiple times
throughout the course of treatment.

Limitations: The study was conducted on a population from a single tertiary healthcare
centre. The model needs to be further trained and validated on large multicentric cohorts
to increase the accuracy and robustness. In the current study, only EGFR mutation status
was taken into consideration. The relationship between EGFR mutation and other genetic
mutations (e.g., ROS-1, ALK) can be explored in future work, as has been explored in a few
other preliminary studies [30].

5. Conclusions

Radiomics and deep learning models show promising results in the prediction of
EGFR mutation status. The accuracy is further increased when CT semantic features are
taken into consideration, along with the deep learning model. The application of both the
models in clinical practice can be useful in predicting EGFR mutation status in a patient
while the lung biopsy or genetic mutation test results are still being awaited. Further
improvements in the sensitivity and specificity of both the models are expected with larger
data sets.
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