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Simple Summary: Although Warthin’s tumor is a well-known and frequent tumor in the salivary
gland, its pathogenesis is not fully understood. Warthin’s tumor is composed of oncocytic epithelial
cells lining papillary and cystic structures in a lymphoid stroma. Previously several hypotheses have
been postulated. The risk factors for its development are known and they include aging, smoking,
and radiation exposure. Recent findings have suggested that chronic inflammation and aging cells
promote the growth of Warthin’s tumor. In this short review, we propose that DNA dame, metabolic
dysfunction of mitochondria, senescence-associated secretory phenotype, human papillomavirus,
and IgG-4 may be involved in the development of Warthin’s tumor.

Abstract: Warthin’s tumor is the second most frequent neoplasm next to pleomorphic adenoma in the
salivary gland, mostly in the parotid gland. The epithelial cells constituting a tumor are characterized
by the presence of mitochondria that undergo structural and functional changes, resulting in the
development of oncocytes. In addition to containing epithelial cells, Warthin’s tumors contain
abundant lymphocytes with lymph follicles (germinal centers) that are surrounded by epithelial
cells. The pathogenesis of Warthin’s tumor is not fully understood, and several hypotheses have
been proposed. The risk factors for the development of Warthin’s tumor, which predominantly
occurs in males, include aging, smoking, and radiation exposure. Recently, it has been reported
that chronic inflammation and aging cells promote the growth of Warthin’s tumor. Several reports
regarding the origin of the tumor have suggested that (1) Warthin’s tumor is an IgG4-related disease,
(2) epithelial cells that compose Warthin’s tumor accumulate mitochondria, and (3) Warthin’s tumor
is a metaplastic lesion in the lymph nodes. It is possible that the pathogenesis of Warthin’s tumor
includes mitochondrial metabolic abnormalities, accumulation of aged cells, chronic inflammation,
and senescence-associated secretory phenotype (SASP). In this short review, we propose that DNA
damage, metabolic dysfunction of mitochondria, senescent cells, SASP, human papillomavirus, and
IgG4 may be involved in the development of Warthin’s tumor.
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1. Introduction

Warthin’s tumor, also known as papillary cystadenoma lymphomatosum, monomor-
phic adenoma, or adenolymphoma, is the second most common tumor of the parotid gland
after pleomorphic adenoma, accounting for approximately 15% of all parotid tumors, and
is encountered relatively frequently in daily clinical practice [1,2]. An investigation by
Franzen et al. [3] suggested that Warthin’s tumor was the most common histological type
in the period from 1997 to 2017. The researchers also suggested a growing incidence in
women and a decreasing age of patients [3]. The site of occurrence is restricted to the
parotid gland and surrounding lymph nodes, with a high frequency of simultaneous or
ectopic multiple or bilateral occurrence [4,5]. The tumor usually presents as a painless mass,
but it may be painful when the lesion is associated with inflammation [6]. Clinically, an
ultrasound examination reveals the tumor as an oval and well-defined mass with multiple
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anechoic areas, or an anechoic mass with posterior acoustic enhancement. Rapid growth is
stimulated by infection. In some cases, multiple septa and intra-tumoral fluid thickness can
cause non-uniform echo patterns [7–9]. Treatment is usually based on surgical resection;
however, most patients have low malignancy rates. Therefore, conservative treatment may
be an option if Warthin’s tumor is preoperatively diagnosed [10,11].

Although it has been more than 100 years since the discovery of Warthin’s tumor,
the etiology remains unclear [12]. In this short review, we propose a possible association
between DNA damage, metabolic dysfunction of mitochondria, senescent cells, senescence-
associated secretory phenotype (SASP), human papillomavirus, and IgG4, which may be
involved in the development of Warthin’s tumor. Our hypotheses as described support the
results of the investigation by Kuzenko et al. [2].

2. Anatomy/Histology of the Salivary Glands

The salivary glands are exocrine glands that produce saliva. Humans have three major
paired salivary glands (parotid, submandibular, and sublingual glands) as well as numerous
minute salivary glands. The salivary glands can also be classified according to their
secretions as serous, mucous, or seromucous (mixed). In serous secretions, the main type of
secreted protein is α-amylase, an enzyme that breaks down starch into maltose and glucose,
whereas in the mucous glands, mucin, which acts as a lubricant, is the main secreted protein.
In humans, saliva is produced every day. The secretion of saliva (salivation) is mediated
by parasympathetic stimulation. Acetylcholine is an active neurotransmitter that binds to
muscarinic receptors in the glands, leading to increased salivation.

The working parts of salivary glandular tissue consist of secretory end pieces (acini)
and a branched ductal system (Figure 1). In serous glands (e.g., parotid glands), the cells in
the end piece are arranged in a roughly spherical shape. Mucous glands tend to be arranged
in a tubular configuration with a larger central lumen. In both types of glands, the cells in
the end piece surround the lumen, which is the start of the ductal system (Figure 1). Three
types of ducts are present in most of the salivary glands. The fluid first passes through
the intercalated ducts, which have a low cuboidal epithelium and a narrow lumen. From
there, the secretions enter the striated ducts, which are lined with columnar cells with many
mitochondria. Finally, the saliva passes through the excretory ducts, where the cell type is
cuboidal, until the terminal part, which is lined with a stratified squamous epithelium. The
end pieces may contain mucous cells, serous cells, or a mixture of both. A salivary gland
can consist of a varied mixture of these types of end-pieces. In mixed glands, mucous acini
are capped by a serous demilune. In addition, myoepithelial cells surround the end piece,
and their function is to assist in propelling secretions into the ductal system. The gland and
its specialized nerves and blood supply are supported by connective tissue stroma.
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Figure 1. Histology of the salivary gland. Salivary glands are composed of epithelial columnar cells,
myoepithelial cells, intercalated duct cells, acinar cells, and connective tissue. There is no lymphatic
tissue in the stroma of a normal salivary gland.
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3. Histopathology of Warthin’s Tumor

The histopathology of Warthin’s tumor is defined by the tubular, cystic, and papillary
proliferation of highly cylindrical oncocyte-like cells with eosinophilic granular sporulation.
It is well demarcated from the surrounding normal salivary gland tissue [13,14]. The tumor
is also characterized by a biphasic arrangement of similar oncocyte-like cuboidal cells with
cylindrical cells on the basal side. The stroma is occupied by mature, non-atypical small
lymphocytes with lymph follicles (germinal centers), although the number of stroma varies
from case to case [2] (Figure 2a). This may be caused by an immune response to the tumor
epithelium or by residual lymphoid tissue within the lymph nodes that is partially replaced
by the tumor epithelium [15]. In addition, the cytoplasm of cells exhibiting oncocytes
possesses an excessive accumulation of mitochondria [16]. This may be a result of the
accumulation of senescent mitochondria due to the reduction in cellular mitophages and
is associated with a deletion of 4977 bp in the mitochondrial genome [17–20]. It is not
uncommon for intermingled goblet cell-type mucous cells, glandular hairy metaplastic cells,
and squamous metaplastic cells to be observed. Basal cells do not usually differentiate into
myoepithelial cells. The cystic structure, lined with epithelial cells, is filled with necrotic
contents, including cholesterol crystals. When the cystic structures rupture, the fluid leaks
into the lymphangitic stroma, causing epithelioid granulomas with neutrophil infiltration.
In association with this, squamous epithelium and mucous cells sometimes appear due to
inflammatory or chemogenic changes, and in rare cases, extensive necrosis may accompany
the lesions. Neither the epithelial nor the lymphocytic component is usually atypical; how-
ever, secondary adenocarcinoma, mucoepidermoid carcinoma, squamous cell carcinoma,
oncocytic carcinoma, or malignant lymphoma (follicular lymphoma) may occur [21–28].
The most common histologic type of carcinoma derived from Warthin’s tumor is squamous
cell carcinoma, although mucoepidermoid carcinoma has also been reported [29,30].

Cancers 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

Figure 2. (a) Histopathology of Warthin’s tumor. Note: varying proportions of papillary cystic struc-

tures are lined with bilayered oncocytic epithelial cells (orange arrow) and surrounded by a lym-

phoid stroma, including germinal centers (black arrow). (b) FNA cytology of Warthin’s tumor 

shows small cohesive sheets of oncocytes with abundant granular cytoplasm with a central round 

nucleus/prominent nucleolus (orange arrow). Lymphocytes (black arrows) with granular debris in 

the background. (a) Hematoxylin and eosin staining (Bar represents 50 μm) and (b) Papanicolaou 

staining (bar represents 20 μm). 

4. Cytology of Warthin’s Tumor 

A cytological diagnosis of Warthin’s tumor can be made by observing a two-cell pat-

tern of lymphocytes and epithelial cells, with lymphocytes in the background and eosin-

ophilic cells in clusters or sporadically isolated. The aggregates of oncocytes range in size 

from large to small sheets without abnormal overlapping [31]. On Papanicolaou staining 

smears, oncocytes appear with light green stained granular cytoplasm, often with eosino-

philic changes that stain orange G. Their nuclei are small and slightly atypical, sometimes 

with a few small nucleoli, but they are often obscure. Occasional findings include cystic 

structures, including oncocytes floating in the lumen (Figure 2b). When cyst contents of 

punctured cells contain hypercylindrical nucleated oncocyte cells along with histiocytes, 

the diagnosis of Warthin’s tumor is inferred; however, in the absence of nucleated onco-

cyte cells, the diagnosis is more challenging [32]. In May–Giemsa-stained specimens, 

Warthin’s tumor cells do not possess a metachromatic component, and in some cases, 

there are various mature lymphocytes in the background. 

The cellular presentation of squamous metaplastic Warthin’s tumor, which is a sec-

ondary alteration of Warthin’s tumor, is a mixed appearance of neutrophils and histio-

cytes with orange G-stained metaplastic squamous cells [33]. In addition, mucous cells 

often appear with metaplasticity, in which case mucous cells are interspersed with collec-

tions of oncocytes on a mucous background. For the diagnosis of Warthin’s tumor, fine 

needle aspiration cytology (FNAC) is useful in the preoperative diagnosis of salivary 

gland tumors because it is minimally invasive and has many typical cytological findings 

[34–36]. Data have been reported that FNAC has a sensitivity of 93%, a specificity of 94.8%, 

and an accuracy of 94.6% in the diagnosis of Warthin’s tumor [36]. 

  

Figure 2. (a) Histopathology of Warthin’s tumor. Note: varying proportions of papillary cystic
structures are lined with bilayered oncocytic epithelial cells (orange arrow) and surrounded by a
lymphoid stroma, including germinal centers (black arrow). (b) FNA cytology of Warthin’s tumor
shows small cohesive sheets of oncocytes with abundant granular cytoplasm with a central round
nucleus/prominent nucleolus (orange arrow). Lymphocytes (black arrows) with granular debris in
the background. (a) Hematoxylin and eosin staining (Bar represents 50 µm) and (b) Papanicolaou
staining (bar represents 20 µm).
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4. Cytology of Warthin’s Tumor

A cytological diagnosis of Warthin’s tumor can be made by observing a two-cell pattern
of lymphocytes and epithelial cells, with lymphocytes in the background and eosinophilic
cells in clusters or sporadically isolated. The aggregates of oncocytes range in size from
large to small sheets without abnormal overlapping [31]. On Papanicolaou staining smears,
oncocytes appear with light green stained granular cytoplasm, often with eosinophilic
changes that stain orange G. Their nuclei are small and slightly atypical, sometimes with a
few small nucleoli, but they are often obscure. Occasional findings include cystic structures,
including oncocytes floating in the lumen (Figure 2b). When cyst contents of punctured
cells contain hypercylindrical nucleated oncocyte cells along with histiocytes, the diagnosis
of Warthin’s tumor is inferred; however, in the absence of nucleated oncocyte cells, the
diagnosis is more challenging [32]. In May–Giemsa-stained specimens, Warthin’s tumor
cells do not possess a metachromatic component, and in some cases, there are various
mature lymphocytes in the background.

The cellular presentation of squamous metaplastic Warthin’s tumor, which is a sec-
ondary alteration of Warthin’s tumor, is a mixed appearance of neutrophils and histiocytes
with orange G-stained metaplastic squamous cells [33]. In addition, mucous cells often
appear with metaplasticity, in which case mucous cells are interspersed with collections
of oncocytes on a mucous background. For the diagnosis of Warthin’s tumor, fine needle
aspiration cytology (FNAC) is useful in the preoperative diagnosis of salivary gland tumors
because it is minimally invasive and has many typical cytological findings [34–36]. Data
have been reported that FNAC has a sensitivity of 93%, a specificity of 94.8%, and an
accuracy of 94.6% in the diagnosis of Warthin’s tumor [36].

5. Risk Factors for Warthin’s Tumor

Warthin’s tumors were first reported over 100 years ago, but their pathogenesis is
not fully understood [12]. Various possible pathogeneses and risk factors have been de-
scribed. (1) The majority of Warthin’s tumors show an obvious marginal sinus beneath
the tumor capsule and have an intralymphatic origin or a metaplasia of normal salivary
gland epithelial or ductal cell origin [37–40]. (2) Catalytically inactive glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was found to bind to damaged mitochondria and
incorporate these mitochondria directly into lysosomes, exhibiting a characteristic im-
munohistochemical GAPDH staining pattern in Warthin’s tumor cells, suggesting either
whole cell progressive loss of cytoplasmic GAPDH (Figure 3), likely due to loss or nuclear
shift of the protein [18]. (3) The epithelium of Warthin’s tumor, whether hyperplastic,
metaplastic, or neoplastic, interacts with lymphoid tissue [2]. (4) A high association with
smoking, which causes chronic inflammation of the epithelium, has been reported [41–43].
(5) The incidence of Warthin’s tumor is reported to be high after radiation exposure [44].
(6) Patients with Warthin’s tumor have been reported to show an increased incidence of
autoimmune or infectious diseases [12,45]. (7) It has been reported that angiogenesis and
lymphangiogenesis are increased, reactive lymphocyte hyperplasia is induced, and that
the two elements, epithelial cells and lymphocytes, are not simply present by chance but
are interdependently related to tumor development [46]. (8) HPV infection is reportedly
associated with the development of Warthin’s tumor [47]. (9) IgG4-reated disease (IgG4-RD)
has been reported to be indirectly involved in the development of Warthin’s tumor [48].
To date, there is no consensus on the development of Warthin’s tumor. However, based
on our previous studies, we believe that mitochondrial metabolic abnormalities, senescent
cell accumulation, chronic inflammation, SASP, and HPV infection may be involved in the
pathogenesis of Warthin’s tumor.
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Figure 3. Immunohistochemistry of GAPDH in Warthin’s tumor. Note the (a) negative reaction in the
columnar epithelial cells and (b) positive reaction in the cytoplasm of intercalated ductal cells and
some nuclei of acinar cells. Bars represent 20 µm.

6. Association between SASP and Warthin’s Tumor

Normal somatic cells irreversibly arrest the cell cycle after a certain number of divi-
sions. This is caused by telomere shortening, also known as replicative senescence [49].
The same phenomenon occurs in normal epithelial cells with proliferative capacity when
they receive carcinogenic stimuli such as DNA damage, oxidative stress, or excessive pro-
liferative stimulation by oncogene (Ras) products. This is called “premature senescence”,
which does not involve telomere shortening. This phenomenon is considered to be a
mechanism of cancer suppression. It has been reported that the proportion of senescent
cells increases in tissues and organs with aging, and cellular senescence is also involved
in the pathogenesis of individual aging and age-associated diseases. The process of cel-
lular senescence is as follows: telomere shortening, radiation, carcinogens, and oxidative
stress trigger the DNA-damage response (DDR), which activates the p53 pathway and
induces cellular senescence. Double-stranded DNA damage arrests the cell cycle and
proceeds to the repair process, whereas irreparable DNA damage induces apoptosis and
cellular senescence. DDR involves kinases such as ataxia telangiectasia mutated (ATM) and
checkpoint-2 (CHK2), adapter proteins (e.g., 53BP1, mediator of DNA damage checkpoint
protein-1 [MDC1]) and chromatin-modifying proteins (e.g., phosphorylation of histone
H2AX [γ-H2AX]) (Figure 4), many of which are localized to sites of DNA damage [50].
When the p53 pathway is inhibited and the cell cycle continues to progress in senescent cells,
the telomere length continues to decrease. Eventually, the loss of telomeric DNA causes
severe genomic instability, leading to cell death, known as mitotic collapse. Cell cycle arrest
activates the p53-p21 and p16-retinoblastoma (RB) pathways [51,52]. While senescent cells
usually remain in the G1 phase of the cell cycle, their intracellular metabolism is active
and characterized by protein secretion phenomena, including, for example, inflammatory
cytokines (e.g., interleukin [IL1]β (Figure 5), IL6 (Figure 6), IL8, plasminogen activator
inhibitor [PAI]-1, vascular endothelial growth factor receptor [VEGF], matrix metallo-
proteinase [MMP]3, etc.), which are called “senescence-associated secretory phenotypes”
(SASPs) [53,54]. SASPs have been shown to promote the development of age-related dis-
eases, induce oncogenesis/carcinogenesis, and increase tumor size while enhancing tissue
repair and regeneration [55–58]. For example, senescent fibroblasts and many other SASP
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factors enhance cancer cells’ proliferation and invasion in culture systems [59,60]. Thus,
cellular senescence has a dual nature: inhibiting tumors while promoting them [57,61–63].
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Figure 4. Immunohistochemistry of γ-H2AX in Warthin’s tumor. γ-H2AX positivity is found (a) in
the nuclei of the columnar epithelial cells and (b) the nuclei of lymphocytes in the germinal center.
(c) The normal salivary gland is negative for γ-H2AX. Bars represent 50 µm.
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of the columnar epithelial cells and (b) the surrounding lymphocytes in and around the germinal
center. Bars represent 20 µm.



Cancers 2024, 16, 912 7 of 17

Cancers 2024, 16, x FOR PEER REVIEW 7 of 18 
 

 

Figure 5. IL1β immunohistochemistry of Warthin’s tumor. (a) IL1b positivity is found in some nuclei 

of the columnar epithelial cells and (b) the surrounding lymphocytes in and around the germinal 

center. Bars represent 20 μm. 

 

Figure 6. IL6 immunohistochemistry of Warthin’s tumor. (a) Weak positivity for IL6 is found in the 

cytoplasm of the columnar epithelial cells. (b) The surrounding lymphocytes in and around the ger-

minal center are negative. Bars represent 20 μm. 

Chronic inflammation is closely associated with tumorigenesis [64,65]. In addition, 

age-associated cellular senescence is thought to act as a tumor promoter by initiating sev-

eral inflammatory processes. Chronically activated leukocytes produce direct and indirect 

mitogenic growth factors (epidermal growth factor [EGF], tumor growth factor [TGF]β, 

tumor necrosis factor [TNA]α, fibroblast growth factor [FGA], interleukin [ILs], chemo-

kines, histamine, and heparin), which stimulate tumor and stromal cell proliferation. In 

addition, inflammatory cells such as macrophages, granulocytes, monocytes, and mast 

cells secrete diverse classes of proteolytic enzymes that modify the structure and function 

of the extracellular matrix (ECM) and release mitogenic factors. Macrophages also pro-

duce vascular endothelial growth factor (VEGF) and EGF when exposed to T helper 2 

Figure 6. IL6 immunohistochemistry of Warthin’s tumor. (a) Weak positivity for IL6 is found in
the cytoplasm of the columnar epithelial cells. (b) The surrounding lymphocytes in and around the
germinal center are negative. Bars represent 20 µm.

Chronic inflammation is closely associated with tumorigenesis [64,65]. In addition,
age-associated cellular senescence is thought to act as a tumor promoter by initiating
several inflammatory processes. Chronically activated leukocytes produce direct and
indirect mitogenic growth factors (epidermal growth factor [EGF], tumor growth factor
[TGF]β, tumor necrosis factor [TNA]α, fibroblast growth factor [FGA], interleukin [ILs],
chemokines, histamine, and heparin), which stimulate tumor and stromal cell proliferation.
In addition, inflammatory cells such as macrophages, granulocytes, monocytes, and mast
cells secrete diverse classes of proteolytic enzymes that modify the structure and function
of the extracellular matrix (ECM) and release mitogenic factors. Macrophages also produce
vascular endothelial growth factor (VEGF) and EGF when exposed to T helper 2 (Th2)-
type cytokines, such as IL4, which promote angiogenesis and metastasis. In addition,
Th2 cells are well recognized as tumor promoters. Th2 cells are “driven” by OX40 ligand
(L)-expressing dendritic cells in response to cancer-derived thymic stromal lymphopoietin
(TSLP) [66]. Th2 CD4+ T lymphocytes secrete IL4 and IL13. Subsequently, macrophages
release EGF, VEGF, and TGFβ to promote tumorigenesis [67,68].

7. Mitochondrial Dysfunction and Warthin’s Tumor

Warthin’s tumor is morphologically composed of oncocytic epithelial cells with abun-
dant papillary and cystic mitochondrial structures in the lymphoid stroma. Mitochondria
are intracellular organelles that synthesize ATP using high-energy electrons and oxygen
molecules. In addition, mitochondria actively fuse and divide to stabilize their morphology.
Recently, interesting findings showing that (1) “mitochondrial DNA mutations accumulate
in human tissues with senescence” [69]; and (2) “mitochondrial dysfunction induces aging”
have been reported [70]. With aging, mitochondria become highly susceptible to morpho-
logical changes, and these changes lead to reduced function due to oxygen radical damage,
ultimately causing the organism to age [71]. Since mitochondria are the primary source of
cellular ATP and are involved in the biosynthesis of deoxyribose nucleoside triphosphate
(dNTP), mitochondrial dysfunction results in a reduction in ATP levels and alterations in
ATP-dependent pathways that are involved in transcription, DNA replication, DNA repair,
and DNA recombination. Additionally, mitochondrial defects may lead to mutagenesis of
the nuclear genome [72]. Approximately 10% of mtDNA has a “common” 4977 bp deletion.
One study, in which polymerase chain reaction (PCR) was used to further quantify 4977 bp
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deletion in normal parotid control tissue that was age-matched to Warthin’s tumor, revealed
that deletions were present in all parotid tissues, but the changes were significantly greater
in oncocytic tumors. Although there were a small number of controls, there was a tendency
towards higher concentrations of deletions in smokers [73].

Recently, a group of hydrogen peroxides that function in mitochondrial fusion and
fission was identified. Mitofusin (Mfn) 1, Mfn2, and OPA1 are involved in fusion, while
dynamin-related protein 1 (Drp1) (as well as dynamin-like protein [DLP1]) is involved
in fission [74]. Mitochondrial mitosis is associated with mechanisms that promote cell
cycle arrest and apoptosis. In the cell cycle, Drp1 Ser 616 is mainly phosphorylated in
the early S phase, which leads to the promotion of mitochondrial division and movement
of cells into G2/M. Loss of Drp1 induces mitochondrial hyperfusion, leading to ATM-
dependent G2/M arrest and apoptosis. The overexpression of Drp1 has been associated
with malignant oncocytic thyroid tumors, and genetic and pharmacological blockade of
Drp1 activity has been reported to affect the migration and invasion of thyroid cancer
cells, which is a characteristic of malignant tumors [75]. In addition, it has been reported
that Drp1 promotes KRas-driven metabolic changes to drive pancreatic tumor growth
and that the expression of dynamin-related protein 1 (Drp1) in epithelial ovarian cancer
has a poor prognosis, suggesting that Drp1 may be used as a biomarker for malignant
tumors [76,77]. Mitochondrial dysfunction has recently been identified as a pathological
factor related to cellular aging [78,79]. Therefore, we hypothesized that the development
of Warthin’s tumor may be related to cellular senescence, including Drp1 (Figure 7). IL13
was recently shown to play a critical role in the induction of salivary gland epithelial cell
senescence by increasing mitochondrial oxidative stress through a phosphorylated signal
transducer and activator of transcription 6 (p-STAT6)-cAMP-response element binding
protein (CREB)-binding protein (CBP)-superoxide dismutase 2 (SOD2)-dependent pathway
in IgG4-related sialadenitis (IgG4-RS). In addition, a clear increase in SA-β-gal-positive
cells in IgG4-RS in both acini tufts and ducts was observed, suggesting the possibility that
epithelial cell senescence is present and may be related to salivary gland dysfunction in
IgG4-RS [80].
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Figure 7. Drp1 immunohistochemistry of Warthin’s tumor. (a) Most cytoplasm of the columnar
epithelial cells is positive for Drp1. (b) In the normal salivary gland, the cytoplasm of intercalated
duct cells is also positive for Drp1, while the cytoplasm of acinar cells is negative for Drp1. Bars
represent 50 µm.



Cancers 2024, 16, 912 9 of 17

8. IgG4 and Warthin’s Tumor

IgG4-RD is a systemic inflammatory disease characterized by severe fibrosis, high
serum IgG4 levels (>135 mg/dL), and marked IgG4-positive lymphoplasmacytic infiltrates.
It was initially proposed as autoimmune pancreatitis and Mikulicz disease [81,82]. High
IgE levels and eosinophilic infiltrates are often observed. However, the etiological mecha-
nisms underlying this IgG4-related disease are largely unknown, and it is unclear whether
IgG4-RD is caused by abnormal acquired immunity, such as autoimmune diseases, or
whether increased IgG4 production has a direct impact [83]. IgG4 accounts for less than
5% of all IgGs in healthy individuals. IgG4 accounts for a lower percentage in comparison
to IgG1 to IgG3, and the Fc region of IgG4 is thought to play a small role in immune
activation due to its weak binding to C1q and Fcγ receptors. IgG4 differs from other IgGs
after secretion from plasma cells in that the Fab region is exchanged for other Fab regions,
allowing a single molecule to recognize different antigens. The resulting antibodies are
thought to exhibit anti-inflammatory effects by reducing their ability to form immune
complexes [84]. IgG4 production is primarily controlled by Th2 cells [85]. Under antigen
stimulation, IgG4 production is induced by IL4 and IL13, which are Th2-type cytokines
involved in allergic reactions. In the presence of IL10, IL12, and IL21, IgG4 production
becomes predominant over IgE production. In Th2 cytokine-driven immune reactions, IgG4
production is preferentially induced by the activation of IL10 produced by regulatory T
(Treg) cells [86]. The overexpression of IL10, TGFβ, and activation-induced cytidine deami-
nase (AID) has been reported in the labial salivary glands (LSGs) of IgG4-RD patients in
comparison to SS patients, suggesting that Treg cytokines (IL10 and TGFβ) combined with
AID, an IgG4-unrelated molecule in IgG4-RD (MD) patients, contributes to IgG4-specific
class switch recombination and fibrosis [87]. Aga et al. recently suggested an association
between Warthin’s tumor and IgG4-RD [48]. In addition, serum IgG4 levels showed an
increasing trend in Warthin’s tumors in comparison to pleomorphic adenomas [88].

Our recent findings suggest that Warthin’s tumor tends to have more IgG4-positive
cells upon immunohistochemical staining of histological sections, suggesting a certain
but not causal relationship between IgG4-RD and Warthin’s tumor (Figures 8 and 9).
However, since salivary gland-like cystic carcinomas with IgG4-RD have also been reported
recently [89], additional research is necessary to determine whether salivary gland tumors
themselves, not just Warthin’s tumors, are prone to producing IgG4 or whether IgG4-
positive plasma cell infiltration occurs via tumor-stimulated signals.
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9. The Role of GAPDH in Warthin’s Tumor Cells

Once considered a simple “housekeeping” protein, the glycolytic enzyme GAPDH has
recently been shown to be involved in many cellular functions other than glycolysis [90,91].
In addition, studies pointing to its involvement in apoptosis-promoting functions and
tumor progression have suggested that GAPDH depletion is associated with cellular
senescence, such as accelerated senescence in tumor cells [92–95]. However, many aspects
of the function of GAPDH remain unclear [96].

Regarding the association between Warthin’s tumor and GAPDH, on anti-GAPDH
immunohistochemical staining, Warthin’s tumor cells had a significantly lower percentage
of GAPDH-positive cells (p < 0.0001) in comparison to normal parotid duct cells [18]. The
quantitative analysis of the expression of GAPDH mRNA by quantitative RT-PCR also
showed that Warthin’s tumor cells had lower expression levels in comparison to normal
parotid duct cells [18]. GAPDH was found to be associated with damaged mitochondria,
resulting in direct incorporation of these mitochondria into lysosomes [97]. This suggests
that Warthin’s tumor cells gradually lose cytoplasmic GAPDH due to cell-wide GAPDH
loss or a nuclear shift [18], as shown in Figure 3.

10. The Role of p16 and p53 in Warthin’s Tumor

p16 is a tumor suppressor protein encoded by the cyclin-dependent kinase inhibition
2A (CDKN2A) gene. On immunostaining, p16 positivity is generally a biomarker for HPV
infection-related malignancies, such as cervical and pharyngeal cancers. Although this
seems contradictory, it is thought to be due to the interference of HPV E6 and E7 viral tumor
protein expression with the tumor suppressor p53 and Rb pathways, causing upregulation
of p16 expression through the inactivation of Rb by E7 [98,99].

p53 is a tumor suppressor gene that promotes or suppresses the transcription of vari-
ous proteins, thereby conferring resistance to various cellular stresses. The inhibition of cell
cycle progression by p53 is mediated by multiple mechanisms, including the upregulation
of p21, which inhibits the cyclin-dependent kinase (CDK) family of kinases, and transcrip-
tional regulation of Gadd45 and 14-3-3σ. p53 maintains genomic stability and is involved
in DNA repair, apoptosis, and cellular senescence [100]. The inactivation of p53 tumor sup-
pressor genes occurs frequently during tumorigenesis. In most cases, the p53 gene mutates
to produce a stable mutant protein, the accumulation of which is considered a hallmark of
cancer cells. Mutant p53 proteins not only lose their tumor suppressor activity, but often
acquire additional oncogenic functions that confer growth and survival advantages to the
cell [101].
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In normal cells, the p53 protein has a very short half-life and is not present in suf-
ficient amounts to be detected by immunostaining. However, abnormal p53 caused by
mutations has a long half-life and accumulates in the nucleus. As a result, mutated p53
is easily detectable by IHC. There are interesting studies on the immunohistochemical
staining of p16ink and p53 in Warthin’s tumors. Classic cytogenetic studies have identified
clonal abnormalities in several Warthin’s tumors [102,103]. Recently, however, several
molecular biological studies have begun to address the controversy over whether Warthin’s
tumor is neoplastic or nonneoplastic and have shown conflicting results. For example,
immunohistochemical staining of p16ink and p53 in 12 cases of Warthin’s tumor was
negative in all cases, suggesting that there was no evidence of abnormal staining for tumor
suppressor gene protein products (p16ink and p53) and no evidence of consistent clonal
allelic deletions, indicating that Warthin’s tumor is non-neoplastic [104]. In another study
that examined the clonality of the epithelial component of Warthin’s tumors using a PCR
assay based on random inactivation of the gene by trinucleotide repeat polymorphisms
and methylation of the X chromosome-related human androgen receptor gene (HUMARA),
all cases showed a polyclonal X inactivation pattern, suggesting that Warthin’s tumors are
non-neoplastic [105].

In our recent study, immunohistochemical staining of p16 (Figure 10) and p53 (Figure 11)
revealed positive nuclei in the columnar cells of Warthin’s tumor, suggesting that Warthin’s
tumor is neoplastic, although whether Warthin’s tumor is a true neoplasm that occurs as a
clonal growth or a non-neoplastic developmental malformation is still a matter of debate.
In addition, our recent unpublished study revealed positive immunohistochemical staining
of Ki67/MIB-1 in columnar cells in Warthin’s tumors (Figure 12), indicating that columnar
cells possess proliferative activity.
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Figure 10. p16 immunohistochemistry of Warthin’s tumor. (a,b) p16 immunoreactivity is noted in the
nuclei of the columnar cells and some surrounding lymphocytes. (c) On the other hand, p16 is not
detected in the normal salivary gland. (a) Bar represents 100 µm. (b) Bar represents 20 µm. (c) Bar
represents 50 µm.
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Figure 11. p53 immunohistochemistry of Warthin’s tumor. (a,b) p53 immunoreactivity is noted in the
nuclei of the columnar cells and some surrounding lymphocytes. (c) However, p53 is not detected in
the normal salivary gland. (a) Bar represents 100 µm. (b) Bar represents 20 µm. (c) Bar represents
50 µm.
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Figure 12. Ki67/MIB-1 immunohistochemistry of columnar cells in Warthin’s tumors. Several nuclei
of the columnar cells in the Warthin’s tumor are positive for Ki67/MIB-1. Bar represents 50 µm.

11. HPV Infection and Warthin’s Tumor

An interesting study showed that HPV-PCR was performed on 50 of 55 salivary gland
tumors that tested positive for p16, and it was found that HPV was not involved in salivary
gland pathogenesis [106]. However, in another study, HPV PCR was performed in 25 cases
of Warthin’s tumor, and HPV was detected in 19 of 25 cases (76%). The remaining six cases
were negative or had no amplified DNA; HPV type 16 was detected in all 19 positive cases
that tested positive for HPV by PCR [47]. These results suggest a correlation between the
nuclear overexpression of p16 and high-risk HPV infection in Warthin’s tumors. HPV
type 16 has also been detected in other salivary gland neoplasms, such as adenoid cystic
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carcinoma; adenocarcinoma NOS; Warthin’s tumor; and to a lesser extent, acinus cell
carcinoma, salivary duct carcinoma, and adenoid basal cell carcinoma. Thus, HPV appears
to be involved in a significant proportion of salivary gland tumors, but its exact role remains
controversial [47]. It is possible that salivary gland tumors may decrease as HPV vaccines
become more widely available. We would propose additional research that can more
definitively link HPV to Warthin’s tumor.

12. Conclusions

As illustrated in Figure 13, senescent cells and chronic inflammation (SASP) may be
associated with the development and progression of Warthin’s tumors. Morphologically,
the cytoplasm of Warthin’s tumor reflects a state of mitochondrial overaccumulation called
oncocytosis, which is caused by abnormal mitochondrial metabolism and involves damage
to the mitochondrial genome. Positive p53 immunohistochemical staining in Warthin’s
tumors may reflect mutations in the p53 gene or p53 activity due to cellular senescence.
Whether Warthin’s tumor is a true neoplasm that occurs as a clonal growth or nonneoplastic
developmental malformation remains controversial. However, given the accumulation of
aged mitochondria (senescent cells), HPV positivity, and p53 and p16 positivity in Warthin’s
tumor, we believe that Warthin’s tumor is neoplastic.
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